
Introduction to GPGPUs and to
CUDA programming model

Agenda

GPGPU architecture

CUDA programming model

CUDA efficient programming

Debugging & profiling tools

GPU vs CPU: different philosophies

Design of GPUs optimized for the execution

of large number of threads dedicated to

floating-points calculations:

many-cores (several hundreds)

minimized the control logic in order to

manage leightweight threads and

maximize execution throughput

taking advantage of large number of

threads to overcome long-latency

memory accesses

Design of CPUs optimized for

sequential code performance:

multi-core

sophisticated control logic unit

large cache memories to

reduce access latencies

Fermi architecture
512 cores

 (16 SM x 32 SP)

first GPU architecture to support
a true cache hierarchy:

 L1 cache per SM

 unified L2 caches (768 KB)

Memory Bandwidth (GDDR5)
148 GB/s (ECC off)

6 GB of global memory

48KB of shared memory

Concurrent Kernels execution

support C++ (only in host
code)

CUDA core architecture
New IEEE 754-2008
floating point
standard

Fused multiply-add
(FMA) instruction for
both single and
double precision

Newly designed
integer ALU
optimized for 64-bit
and extended
precision operations

Kepler SMX Fermi SM

NVIDIA naming

Mainstream & laptops: GeForce

• Target: videogames and multi-media

Workstation: Quadro

• Target: graphic professionals who use CAD and 3D

modeling applications

• The surcharge is due to more memory and especially the

specific drivers for accelerating applications

GPGPU: Tesla

• Target: High Performance Computing

There cannot be a GPU

without a CPU

GPUs are designed as numeric

computing engines, therefore they

will not perform well on other tasks.

 Applications should use both CPUs and

GPUs, where the latter is exploited

as a coprocessor in order to speed

up numerically intensive sections of

the code by a massive fine grained

parallelism.

CUDA programming model introduced

by NVIDIA in 2007, is designed to

support joint CPU/GPU execution of

an application.

CUDA program:

 Serial sections of the code are performed by CPU (host)

 The parallel ones (that exhibit rich amount of data

parallelism) are performed by GPU (device) in the SIMD

mode as CUDA kernels.

 host and device have separate memory spaces:

programmers need to transfer data between CPU and GPU

in a manner similar to “one-sided” message passing.

CUDA programming model

Compute Unified Device Architecture:

 extends ANSI C language with minimal extensions

 provides application programming interface (API) to
manage host and device components

CUDA threads organization

Block of threads:

set of concurrently executing

threads that can cooperate

among themselves through

barrier synchronization, by

 using the function __syncthreads();

shared memory.

A kernel is executed as a grid of many parallel threads.

They are organized into a two-level hierarchy:

 a grid is organized as up to 3-dim array of thread blocks

 each block is organized into up to 3-dim array of threads

 all blocks have the same number of threads

 organized in the same manner.

Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

CUDA threads organization

Because all threads in a grid execute the same code, they rely on unique

coordinates assigned to them by the CUDA runtime system as built-in

preinitialized variables

Block ID up to 3 dimensions:

 (blockIdx.x, blockIdx.y, blockIdx.z)

Thread ID within the block up to 3 dimensions:

 (threadIdx.x, threadIdx.y, threadIdx.z)

The exact organization of a grid is determined by the execution

configuration provided at kernel launch.

Two additional variables of type dim3 (C struct with 3 unsigned integer

fields) are declared:

gridDim dimensions of the grid in terms of number of blocks

blockDim dimensions of the block in terms of number of threads

Thread ID computation

The built-in variables are

used to compute the global ID

of the thread, in order to

determine the area of data that

it is designed to work on.

1D:

int id = blockDim.x * blockIdx.x + threadIdx.x;

2D:

int iy = blockDim.y * blockIdx.y + threadIdx.y;

int ix = blockDim.x * blockIdx.x + threadIdx.x;

int id = iy * dimx + ix;

Threads execution model

Software Hardware

Thread

CUDA
core

Block of
Thread

Streaming
 Multiprocessor

...

Grid

GPU

CUDA’s hierarchy of threads/memories

maps to the hierarchy of processors on

the GPU:

• a GPU executes one or more kernel

grids;

• a streaming multiprocessor (SM)

executes one or more thread blocks;

• a streaming processor (SP) in the SM

executes threads.

A maximum number of blocks can be assigned to each SM (8 for Fermi, 16 for Kepler)

The runtime system maintains a list of blocks that need to execute and assigns new
blocks to SMs as they complete the execution of blocks previously assigned to them.

Device

SM1

 Block 0 Block 1

 Block 2 Block 3

 Block 4 Block 5

 Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

SM1 SM2 SM3 SM4

 Block 0 Block 1 Block 2 Block 3

 Block 4 Block 5 Block 6 Block 7

time

SM2

Transparent scalability

By not allowing threads in different blocks to synchronize with each

other, CUDA runtime system can execute blocks in any order

relative to each other.

This flexibility enables to execute the same application code on

hardware with different numbers of SM (transparent scalability).

Launching a kernel

A kernel must be called from the host with the following syntax:

__global__ void KernelFunc(…);

dim3 gridDim(100, 50); // 5000 thread blocks

dim3 blockDim(8, 8, 4); // 256 threads per block

//call the kernel

KernelFunc<<< gridDim, blockDim >>>(<arguments>);

 All kernel calls are

asynchronous!

Typical CUDA grids contain

thousands to millions of
threads.

Kernel example

CPU code:

void increment_cpu(float* a, float b, int n){

 for (idx=0; idx<n; ++idx)

 a[idx]+=b;

}

int main(void){

 //…

 increment_cpu(h_a,h_b,16);

}

GPU code:

__global__ increment_gpu(float* a, float b, int n){

 int idx = threadIdx.x + blockIdx.x*blockDim.x;

 if (idx < n)

 a[idx]+=b;

}

int main(void){

 //…

 increment_gpu<<<blocks,threads>>>(d_a,d_b,16);

}

CUDA Function modifiers

Function

declaration

Executed

on the

Only callable

from the

__device__

(device functions)
device device

__global__

(kernel function)
device

host

__host__

(host functions)
host host

CUDA extends C function declarations with three qualifier keywords.

CUDA variable qualifiers

Variable declaration memory lifetime scope

Automatic scalar variables register kernel thread

Automatic array variables
__device__ __local__

local

kernel

thread

__device__ __shared__ shared

kernel block

__device__ global application grid

__device__ __constant__ constant application grid

Global variables are often used to pass information from one
kernel to another.

Constant variables are often used for providing input values to
kernel functions.

Hierarchy of device memories

CUDA’s hierarchy of threads maps to a

hierarchy of memories on the GPU:

Each thread has some registers,

used to hold automatic scalar

variables declared in kernel and

device functions, and a per-thread

private memory space used for

register spills, function calls, and C

automatic array variables

Each thread block has a per-block

shared memory space used for

inter-thread communication, data

sharing, and result sharing in parallel

algorithms

Grids of thread blocks share results

in global memory space

CUDA device memory model

on-chip memories:

registers (~8KB) → SP

shared memory (~16KB) → SM

they can be accessed at very high
speed in a highly parallel manner.

per-grid memories:

global memory (~4GB)

 long access latencies (hundreds of
clock cycles)

 finite access bandwith

constant memory (~64KB)

 read only

 short-latency (cached) and high
bandwith when all threads
simultaneously access the same
location

 texture memory (read only)

 CPU can transfer data to/from all

per-grid memories.

Local memory is implemented as part of

the global memory, therefore has a long

access latencies too.

Shared memory allocation

Static modality

 inside the kernel:

 __shared__ float f[100];

Dynamic modality

 in the execution configuration of the kernel,
define the number of bytes to be allocated per
block in the shared memory :

 kernel<<<DimGrid, DimBlock, SharedMemBytes>>>(…);

 while inside the kernel:

 extern __shared__ float f[];

 Global memory allocation

CUDA API functions to manage data allocation
on the device global memory:

cudaMalloc(void** bufferPtr, size_t n)

It allocates a buffer into the device global memory

The first parameter is the address of a generic
pointer variable that must point to the allocated
buffer

it should be cast to (void**)!

The second parameter is the size of the buffer to
be allocated, in terms of bytes

cudaFree(void* bufferPtr)

It frees the storage space of the object

Global memory inizialization

cudaMemset(void* devPtr, int value, size_t count)

Fills the first count bytes of the memory area pointed

to by devPtr with the constant byte of the int value

converted to unsigned char.

CUDA version of the C memset() function.

devPtr - Pointer to device memory

value - Value to set for each byte of specified memory

count - Size in bytes to set

Data transfer CPU-GPU

API blocking functions for data transfer between memories:

Destination source number of symbolic constant
 data bytes indicating the direction

Data transfer to constant memory

cudaMemcpyToSymbol(const char * symbol,

 const void * src,

 size_t count,

 size_t offset,

 enum cudaMemcpyKind kind)

symbol - symbol destination on device, it can either be a
variable that resides in global or constant memory
space, or it can be a character string, naming a variable
that resides in global or constant memory space.

src - source memory address

count - size in bytes to copy

offset - offset from start of symbol in bytes

kind - type of transfer, it can be either
cudaMemcpyHostToDevice or
cudaMemcpyDeviceToDevice

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html

Device management

Application can query and select GPUs

cudaGetDeviceCount(int *count)

cudaSetDevice(int device)

cudaGetDevice(int *device)

cudaGetDeviceProperties(cudaDeviceProp *prop,

int device)

Multiple threads can share a device

A single thread can manage multiple devices

cudaSetDevice(i) to select current device

cudaMemcpy(…) for peer-to-peer copies

Device management (sample code)

int cudadevice;
struct cudaDeviceProp prop;
cudaGetDevice(&cudadevice);
cudaGetDeviceProperties (&prop, cudadevice);
mpc=prop.multiProcessorCount;
mtpb=prop.maxThreadsPerBlock;
shmsize=prop.sharedMemPerBlock;
printf("Device %d: number of multiprocessors %d\n , max number of threads per

block %d\n, shared memory per block %d\n", cudadevice, mpc, mtpb, shmsize);

Error checking

All runtime functions return an error code of type:
cudaError_t.

No error is indicated as cudaSuccess.

char* cudaGetErrorString(cudaError_t code)

returns a string describing the error:

For asynchronous functions (i.e. kernels, asynchronous
copies) the only way to check for errors just after the call is
to synchronize: cudaDeviceSynchronize()

Then the following function returns the code of the last error:
cudaError_t cudaGetLastError()

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

NVIDIA C compiler

nvcc front-end for compilation:

separates GPU code from

CPU code

CPU code -> C/C++ compiler

(Microsoft Visual C/C++,

GCC, ecc.)

GPU code is converted in an

intermediate assembly

language: PTX, then in binary

form (the cubin object)

link all executables

CUDA Driver Vs Runtime API

CUDA is composed of two APIs:

the CUDA runtime API

the CUDA driver API

They are mutually exclusive

Runtime API:

easier to program

it eases device code

management: it’s where the C-for-

CUDA language lives

Driver API:

requires more code: no syntax

sugar for the kernel launch, for

example

finer control over the device

expecially in multithreaded

application

doesn’t need nvcc to compile the

host code.

CUDA Driver API

The driver API is implemented in the nvcuda dynamic library. All

its entry points are prefixed with cu.

It is a handle-based, imperative API: most objects are

referenced by opaque handles that may be specified to

functions to manipulate the objects.

The driver API must be initialized with cuInit() before any

function from the driver API is called. A CUDA context must

then be created that is attached to a specific device and made

current to the calling host thread.

Within a CUDA context, kernels are explicitly loaded as PTX or

binary objects by the host code**.

Kernels are launched using API entry points.

**by the way, any application that wants to run on future device architectures must

load PTX, not binary code

Vector add: driver Vs runtime API
// driver API

// initialize CUDA

err = cuInit(0);

err = cuDeviceGet(&device, 0);

err = cuCtxCreate(&context, 0, device);

// setup device memory

err = cuMemAlloc(&d_a, sizeof(int) * N);

err = cuMemAlloc(&d_b, sizeof(int) * N);

err = cuMemAlloc(&d_c, sizeof(int) * N);

// copy arrays to device

err = cuMemcpyHtoD(d_a, a, sizeof(int) * N);

err = cuMemcpyHtoD(d_b, b, sizeof(int) * N);

// prepare kernel launch

kernelArgs[0] = &d_a;

kernelArgs[1] = &d_b;

kernelArgs[2] = &d_c;

// load device code (PTX or cubin. PTX here)

err = cuModuleLoad(&module, module_file);

err = cuModuleGetFunction(&function, module,kernel_name);

// execute the kernel over the <N,1> grid

err = cuLaunchKernel(function, N, 1, 1, // Nx1x1 blocks

 1, 1, 1, // 1x1x1 threads

 0, 0, kernelArgs, 0);

// runtime API

// setup device memory

err = cudaMalloc((void**)&d_a, sizeof(int) * N);

err = cudaMalloc((void**)&d_b, sizeof(int) * N);

err = cudaMalloc((void**)&d_c, sizeof(int) * N);

// copy arrays to device

err=cudaMemcpy(d_a, a, sizeof(int) * N, cudaMemcpyHostToDevice);

err=cudaMemcpy(d_b, b, sizeof(int) * N, cudaMemcpyHostToDevice);

// launch kernel over the <N, 1> grid

 matSum<<<N,1>>>(d_a, d_b, d_c); // yum, syntax sugar!

Matrix-Matrix multiplication
example

CUDA parallelization: each thread computes an element of P

P = M*N

void MatrixMulOnHost(float* M, float* N, float* P,

 int Width) {

 for (int i = 0; i < Width; ++i) {

 for (int j = 0; j < Width; ++j) {

 float pvalue = 0;

 for (int k = 0; k < Width; ++k) {

 float a = M[i * Width + k];

 float b = N[k * Width + j];

 pvalue += a * b;

 }

 P[i * Width + j] = pvalue;

 }

 }

}

Matrix-Matrix multiplication
device code

__global__ void MNKernel(float* Md, float *Nd, float *Pd, int
width)

{

 // 2D thread ID

 int col = threadIdx.x;

 int row = threadIdx.y;

 // Pvalue stores the Pd element that is computed by the

 // thread

 float Pvalue = 0;

 for (int k=0; k < width; k++)

 Pvalue += Md[row * width + k] * Nd[k * width + col];

 // write the matrix to device memory

 // (each thread writes one element)

 Pd[row * width + col] = Pvalue;

}

Matrix-Matrix multiplication
host code

void MatrixMultiplication(float* M, float *N, float *P, int width)

{

 size_t size = width*width*sizeof(float);

 float* Md, Nd, Pd;

 // allocate M, N and P on the device

 cudaMalloc((void**)&Md, size);

 cudaMalloc((void**)&Nd, size);

 cudaMalloc((void**)&Pd, size);

 // transfer M and N to the device memory

 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // kernel invocation

 dim3 gridDim(1,1);

 dim3 blockDim(width,width);

 MNKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, width);

 // transfer P from the device to the host

 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

 // free device matrices

 cudaFree(Md); cudaFree(Nd); cudaFree(Pd);

}

Limitation: a block can have up to 1024 threads (for Fermi

and Kepler). Therefore the previous implementation can

compute square matrices of order less or equal to 32.

Improvement:

use more blocks by breaking matrix Pd into square tiles

all elements of a tile are computed by a block of threads

each thread still calculates one Pd element but it uses its

blockIdx values to identify the tile that contains its

element.

Matrix-Matrix multiplication
example

Matrix
N x N

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3)

Matrix-Matrix multiplication
example

i = blockIdx.x * blockDim.x + threadIdx.x;

j = blockIdx.y * blockDim.y + threadIdx.y;

index = j * gridDim.x * blockDim.x + i;

i

j

gridDim.x * blockDim.x

* index

__global__ void MNKernel(float* Md, float *Nd, float *Pd, int
width)

{

 // 2D thread ID

 int col = blockIdx.x*blockDim.x + threadIdx.x;

 int row = blockIdx.y*blockDim.y + threadIdx.y;

 // Pvalue stores the Pd element that is computed by the thread

 float Pvalue = 0;

 for (int k=0; k < width; k++)

 Pvalue += Md[row * width + k] * Nd[k * width + col];

 Pd[row * width + col] = Pvalue;

}

 Kernel invocation:

 dim3 gridDim(width/TILE_WIDTH,width/TILE_WIDTH);

 dim3 blockDim(TILE_WIDTH,TILE_WIDTH);

 MNKernel<<<dimGrid, dimBlock>>>(Md,Nd,Pd,width);

Matrix-Matrix multiplication
example

Which is the optimal dimension of the block (i.e. TILE_WIDTH)?

Knowing that each SM of a Fermi can have up to 1536 threads,
we have

8x8 = 64 threads 1536/64 = 24 blocks to fully occupy an
SM; but we are limited to 8 blocks in each SM therefore we
will end up with only 64x8 = 512 threads in each SM.

16x16 = 256 threads 1536/256 = 6 blocks

 we will have full thread capacity in each SM.

32x32 = 1024 threads 1536/1024 = 1.5 1 block.

 TILE_WIDTH = 16

Matrix-Matrix multiplication
example

Which is the optimal dimension of the block (i.e. TILE_WIDTH)?

Knowing that each SM of a Kepler can have up to 2048 threads,
we have

8x8 = 64 threads 2048/64 = 32 blocks to fully occupy an
SM; but we are limited to 16 blocks in each SM therefore we
will end up with only 64x16 = 1024 threads in each SM.

16x16 = 256 threads 2048/256 = 8 blocks

 we will have full thread capacity in each SM.

32x32 = 1024 threads 2048/1024 = 2 blocks.

 TILE_WIDTH = 16 or 32

Matrix-Matrix multiplication
example

Global memory access efficiency

Although having many threads available for execution
can theoretically tolerate long memory access latency,
one can easily run into a situation where traffic
congestion prevents all but few threads from making
progress, thus making some SM idle!

A common strategy for reducing global memory traffic
(i.e. increasing the number of floating-point operations
performed for each access to the global memory) is to
partition the data into subsets called tiles such that
each tile fits into the shared memory and the kernel
computations on these tiles can be done
independently of each other.

In the simplest form, the tile dimensions equal those of
the block.

Matrix-Matrix multiplication
example

In the previous kernel:
thread(x,y) of block(0,0) access the elements of Md
row x and Nd column y from the global memory.

 thread(0,0) and thread(0,1) access the
same Md row 0

What if these threads collaborate so that the elements
of this row are only loaded from the global memory
once? We can reduce the total number of accesses
to the global memory by N, using NxN blocks!

Basic idea:

to have the threads within a block collaboratively load
Md and Nd elements into the shared memory before
they individually use these elements in their dot
product calculation.

The dot product performed by each thread is now divided
into phases: in each phase all threads in a block collaborate
to load a tile of Md and a tile of Nd into the shared memory
and use these values to compute a partial product. The dot
product would be performed in width/TILE_WIDTH
phases.

the reduction of the accesses to the global memory is by a
factor of TILE_WIDTH.

__global__ void MNKernel(float* Md, float *Nd, float *Pd, int width)

{

 __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];

 __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

 // 2D thread ID

 int tx = threadIdx.x; int ty = threadIdx.y;

 int col = blockIdx.x*BlockDim.x + tx;

 int row = blockIdx.y*BlockDim.y + ty;

 float Pvalue = 0;

 // Loop over the Md and Nd tiles required to compute the Pd element

 // m is the number of phases

 for (int m=0; m < width/TILE_WIDTH; m++)

 {//collaborative loading of Md and Nd tiles into shared memory

 Mds[ty][tx] = Md[row*width + (m*TILE_WIDTH + tx)];

 Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*width + col];

 __syncthreads();

 for (int k=0; k < TILE_WIDTH; k++)

 Pvalue += Mds[ty][k] * Nds[k][tx];

 __syncthreads();

 }

 Pd[row * width + col] = Pvalue;

}

Matrix-Matrix multiplication
example

Memory as a limiting factor to
parallelism

The limited amount of CUDA memory limits the number of
threads that can simultaneously reside in the SM!

For the matrix multiplication example, shared memory can
become a limiting factor:

TILE_WIDTH = 16 each block requires 16x16x4 = 1KB of storage for Mds

 + 1KB for Nds

 2KB of shared memory per block

The 48KB shared memory allows 24 blocks to simultaneously reside

in an SM. OK!

But the maximum number of threads per SM is 1536 (for Fermi)

 only 1536/256 = 8 blocks are allowed in each SM

 only 8 x 2KB = 16KB of the shared memory will be used.

Hint: Use occupancy calculator

Thread scheduling

Once a block is assigned to a SM,

it is further partitioned into 32-thread

units called warps.

Warps are the scheduling units in SM:

all threads in a same warp execute

the same instruction when the warp

is selected for execution (Single-Instruction, Multiple-Thread)

Block of threads warps
multiprocessor

Threads often execute long-latency operations:

 global memory access

 pipelined floating point arithmetics

 branch instructions

It is convenient to assign a large number of warps to each SM, because
the long waiting time of some warp instructions is hidden by executing
instructions from other warps. Therefore the selection of ready warps for
execution does not introduce any idle time into the execution timeline
(zero-overhead thread scheduling).

Control flow

The hardware executes an instruction for all threads in the
same warp before moving to the next instruction (SIMT).

It works well when all threads within a warp follow the same
control flow path when working their data.

When threads in the same warp follow different paths of
control flow, we say that these threads diverge in their
execution.

For an if-then-else construct the execution of the warp will
require multiple passes through the divergent paths.

Try to avoid warp divergence

Vector reduction example
(within a thread block)

An if-then-else construct can result in thread divergence
when its decision condition is based on threadIdx
values.

A sum reduction algorithm extracts a single value from an
array of values in order to sum them. Within a block
exploit the shared memory!

There is thread divergence!

Vector reduction example

Instead of adding neighbor
elements in the first round,
add elements that are half
a section away from each
other and so on.

No divergence until partial sums
involve less than 32 elements
(because of the warp size)

The Open Computing Language:
OpenCL

OpenCL is an open standard for cross-platform, parallel

programming of modern processors. i.e, multi core CPU and

GPGPU . OpenCL is a low-level C API (but C++ bindings are

also available)

it can be used to program heterogeneous computer architecture

(multicore CPU + accelerator, OCL slogan: ‘program once, run

everywhere’)

it can be used to program NVIDIA GPU, AMD GPU or even

Imagination Technology GPU (i.e. you don’t need to get married

with NVIDIA GeForce/Tesla/Quadro products)

So, how does the OpenCL framework look like?

it supports the data parallel programming paradigm

it has its dialects: a CUDA grid translates into a NDrange, a

warp becomes a wavefront and so on…

From a programmer point of view: it very closely resembles

the CUDA driver API

Vector add: OCL Host Code

// initialize OpenCL

err = clGetPlatformIDs(1, &cpPlatform, NULL);

err = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);

context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);

queue = clCreateCommandQueue(context, device_id, 0, &err);

// setup device memory

d_a = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, NULL);

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, NULL);

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, bytes, NULL, NULL);

// copy array to the device

err = clEnqueueWriteBuffer(queue, d_a, CL_TRUE, 0, bytes, h_a, 0, NULL, NULL);

err |= clEnqueueWriteBuffer(queue, d_b, CL_TRUE, 0, bytes, h_b, 0, NULL, NULL);

// prepare kernel launch

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);

err = clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);

err = clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);

// load, *COMPILE* and *LINK* device code

program = clCreateProgramWithSource(context, 1,

 (const char **) & kernelSource, NULL, &err);

clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

kernel = clCreateKernel(program, "vecAdd", &err);

// Execute the kernel over the NDrange

err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &globalSize, &localSize,

 0, NULL, NULL);

// initialize CUDA

err = cuInit(0);

err = cuDeviceGet(&device, 0);

err = cuCtxCreate(&context, 0, device);

// setup device memory

err = cuMemAlloc(&d_a, sizeof(int) * N);

err = cuMemAlloc(&d_b, sizeof(int) * N);

err = cuMemAlloc(&d_c, sizeof(int) * N);

// copy arrays to the device

err = cuMemcpyHtoD(d_a, a, sizeof(int) * N);

err = cuMemcpyHtoD(d_b, b, sizeof(int) * N);

// prepare kernel launch

kernelArgs[0] = &d_a;

kernelArgs[1] = &d_b;

kernelArgs[2] = &d_c;

// load device code (PTX or cubin. PTX here)

err = cuModuleLoad(&module, module_file);

err = cuModuleGetFunction(&function, module,kernel_name);

// execute the kernel over the <N,1> grid

err = cuLaunchKernel(function, N, 1, 1, // Nx1x1 blocks

 1, 1, 1, // 1x1x1 threads

 0, 0, kernelArgs, 0);

There ain’t such thing as a stand-alone OpenCL compiler

Vector add: OCL Device Code

// OpenCL kernel. Each work item takes care of one element of c

const char *kernelSource = "\n"\

"__kernel void vecAdd(__global double *a, \n"\

" __global double *b, \n"\

" __global double *c) \n"\

"{ \n"\

" //Get our global thread ID \n"\

" int id = get_global_id(0); \n"\

" \n"\

" //Make sure we do not go out of bounds \n"\

" if (id < n) \n"\

" c[id] = a[id] + b[id]; \n"\

"} \n"\

 "\n" ;

The kernel code, again, looks very similar to the CUDA counter part

Indeed, OpenCL/CUDA similarities code are so strong that a source-to-source
translator is available (CU2CL)

But there is not such a thing as an OpenCL compiler:

the compilation and linking of the kernel has to be done at runtime

An OpenCL kernel is a string within an OpenCL host code

o The kernel can be loaded from a source file avoiding very long and difficult to
manage string

OpenACC

OpenACC is a open parallel programming standard

designed to easily take advantage of the heterogeneous

CPU/GPU computing systems.

OpenACC allows parallel programmers to provide

simple hints, known as “directives,” to the compiler,

identifying which areas of code to accelerate, without

requiring programmers to modify or adapt the

underlying code itself.

OpenACC 1.0 (http://www.openacc-standard.org)

Implementations available from PGI, Cray, and CAPS

Will be rolled into OpenMP 4.0

Key Advantages:

High-Level: No involvement of OpenCL, CUDA, etc.

Single source: Compile the same program for accelerators or serial
(NO separate GPU code).

Portable: Supports GPU accelerators and co-processors from
multiple vendors, current and future versions.

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

OpenACC: A Simple Example

int main(){

 int N = 1<<10;

 float *x, *y;

 x = (float*)malloc(N*sizeof(float));

 y = (float*)malloc(N*sizeof(float));

 for (int i = 0; i < N; ++i) {

 x[i] = 2.0f; y[i] = 1.0f;

 }

 saxpy(N, 1.0f, x, y);

 return 0;

}

void saxpy (int n, float a,

 float *x, float *restrict y)

{

#pragma acc kernels

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

pgcc -acc -ta=nvidia -Minfo=accel saxpy.c

(-ta stands for target architecture)

saxpy:

 3, Generating present_or_copyin(x[0:n])

 Generating present_or_copy(y[0:n])

 Generating compute capability 1.0 binary

 Generating compute capability 2.0 binary

 4, Loop is parallelizable

 Accelerator kernel generated

 4, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 CC 1.0 : 8 registers; 48 shared, 0 constant, 0 local memory bytes

 CC 2.0 : 12 registers; 0 shared, 64 constant, 0 local memory bytes

Compiler was able to parallelize

OpenAcc performance

SpeedUp = 4x

SpeedUp vs 6 CPU cores

SpeedUp vs 1 CPU core

CPU: Intel Xeon X5680

6 Cores @ 3.33GHz

GPU: NVIDIA Tesla M2070

Example: Laplace equation in 2D

Reference
http://developer.nvidia.com/cuda

CUDA Programming Guide

CUDA Zone – tools, training, webinars and more

NVIDIA Books:

“Programming Massively Parallel Processors”,

D.Kirk - W.W. Hwu

“CUDA by example”, J.Sanders - E. Kandrot

http://developer.nvidia.com/cuda

