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GPU vs CPU: different philosophies 

Design of GPUs optimized for the execution 

of large number of threads dedicated to 

floating-points calculations:  

many-cores (several hundreds) 

minimized the control logic in order to 

manage leightweight threads and 

maximize execution throughput 

taking advantage of large number of 

threads to overcome long-latency 

memory accesses    

Design of CPUs optimized for 

sequential code performance: 

multi-core 

sophisticated control logic unit 

large cache memories to 

reduce access latencies 

 



Fermi architecture 
512 cores  

 (16 SM x 32 SP) 

first GPU architecture to support 
a true cache hierarchy: 

    L1 cache per SM 

    unified L2 caches (768 KB) 

Memory Bandwidth (GDDR5) 
148 GB/s (ECC off) 

6 GB of global memory 

48KB of shared memory 

Concurrent Kernels execution 

support C++ (only in host 
code) 



CUDA core architecture 
New IEEE 754-2008 
floating point 
standard 

 

Fused multiply-add 
(FMA) instruction for 
both single and 
double precision 

 

Newly designed 
integer ALU 
optimized for 64-bit 
and extended 
precision operations 

Kepler SMX Fermi SM 



NVIDIA naming 

Mainstream & laptops: GeForce 

• Target: videogames and multi-media 

 

Workstation: Quadro 

• Target: graphic professionals who use CAD and 3D 

modeling applications 

• The surcharge is due to more memory and especially the 

specific drivers for accelerating applications 
 

GPGPU: Tesla 

• Target: High Performance Computing 



There cannot be a GPU 

without a CPU    

GPUs are designed as numeric 

computing engines, therefore they 

will not perform well on other tasks. 

 

 Applications should use both CPUs and 

GPUs, where the latter is exploited 

as a coprocessor in order to speed 

up numerically intensive sections of 

the code by a massive fine grained 

parallelism. 

 

CUDA programming model introduced 

by NVIDIA in 2007, is designed to 

support joint CPU/GPU execution of 

an application. 



CUDA program: 

 Serial sections of the code are performed by CPU (host)   

 The parallel ones (that exhibit rich amount of data 

parallelism) are performed by GPU (device) in the SIMD 

mode as CUDA kernels. 

 host and device have separate memory spaces: 

programmers need to transfer data between CPU and GPU 

in a manner similar to “one-sided” message passing. 

CUDA programming model 

Compute Unified Device Architecture: 

 extends ANSI C language with minimal extensions  

 provides application programming interface (API) to 
manage host and device components 



CUDA threads organization 

Block of threads:  

set of concurrently executing  

threads that can cooperate  

among themselves through  

barrier synchronization, by  

   using the function __syncthreads(); 

shared memory. 

A kernel is executed as a grid of many parallel threads.  

They are organized into a two-level hierarchy: 

 a grid is organized as up to 3-dim array of thread blocks 

 each block is organized into up to 3-dim array of threads 

 all blocks have the same number of threads  

   organized in the same manner. 
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CUDA threads organization 

Because all threads in a grid execute the same code, they rely on unique 

coordinates assigned to them by the CUDA runtime system as built-in 

preinitialized variables 

Block ID up to 3 dimensions:  

                   (blockIdx.x, blockIdx.y, blockIdx.z) 

Thread ID within the block up to 3 dimensions:  

                   (threadIdx.x, threadIdx.y, threadIdx.z) 

The exact organization of a grid is determined by the execution 

configuration provided at kernel launch. 

Two additional variables of type dim3 (C struct with 3 unsigned integer 

fields) are declared: 

gridDim               dimensions of the grid in terms of number of blocks 

blockDim             dimensions of the block in terms of number of threads 
 

 



Thread ID computation 

The built-in variables are  

used to compute the global ID 

of the thread, in order to  

determine the area of data that  

it is designed to work on. 
 

 

1D: 

int id = blockDim.x * blockIdx.x + threadIdx.x; 

2D: 

int iy = blockDim.y * blockIdx.y + threadIdx.y; 

int ix = blockDim.x * blockIdx.x + threadIdx.x; 

int id = iy * dimx + ix; 



Threads execution model 
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CUDA’s hierarchy of threads/memories 

maps to the hierarchy of processors on 

the GPU: 

• a GPU executes one or more kernel 

grids; 

• a streaming multiprocessor (SM) 

executes one or more thread blocks;  

• a streaming processor (SP) in the SM 

executes threads. 

A maximum number of blocks can be assigned to each SM (8 for Fermi, 16 for Kepler)  

The runtime system maintains a list of blocks that need to execute and assigns new 
blocks to SMs as they complete the execution of blocks previously assigned to them. 
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Transparent scalability 

By not allowing threads in different blocks to synchronize with each 

other, CUDA runtime system can execute blocks in any order 

relative to each other. 

This flexibility enables to execute the same application code on 

hardware with different numbers of SM (transparent scalability). 



Launching a kernel 

A kernel must be called from the host with the following syntax: 

__global__ void KernelFunc(…); 

dim3 gridDim(100, 50);  // 5000 thread blocks 

dim3 blockDim(8, 8, 4); // 256 threads per block 

 

//call the kernel 

KernelFunc<<< gridDim, blockDim >>>(<arguments>); 

 All kernel calls are 

asynchronous! 

Typical CUDA grids contain  

thousands to millions of 
threads. 



Kernel example 

CPU code: 

void increment_cpu(float* a, float b, int n){ 

  for (idx=0; idx<n; ++idx) 

   a[idx]+=b; 

} 

int main(void){ 

  //… 

  increment_cpu(h_a,h_b,16); 

} 

GPU code: 

__global__ increment_gpu(float* a, float b, int n){ 

  int idx = threadIdx.x + blockIdx.x*blockDim.x; 

  if (idx < n) 

    a[idx]+=b; 

} 

int main(void){ 

  //… 

  increment_gpu<<<blocks,threads>>>(d_a,d_b,16); 

} 



CUDA Function modifiers 

Function 

declaration 

Executed  

on the 

Only callable 

from the 

__device__ 

(device functions) 
device device 

__global__ 

(kernel function) 
device 

 

host 

__host__ 

(host functions) 
host host 

  

CUDA extends C function declarations with three qualifier keywords. 



CUDA variable qualifiers 

Variable declaration memory lifetime scope 

 

Automatic scalar variables register kernel thread 

Automatic array variables 
__device__ __local__ 

 

 

local 

 

kernel 

 

thread 

__device__ __shared__ shared 

 

kernel block 

__device__ global application grid 

__device__ __constant__ constant application grid 

Global variables are often used to pass information from one 
kernel to another. 

Constant variables are often used for providing input values to 
kernel functions. 



Hierarchy of device memories 

CUDA’s hierarchy of threads maps to a 

hierarchy of memories on the GPU: 

Each thread has some registers, 

used to hold automatic scalar 

variables declared in kernel and 

device functions, and a per-thread 

private memory space used for 

register spills, function calls, and C 

automatic array variables 

Each thread block has a per-block 

shared memory space used for 

inter-thread communication, data 

sharing, and result sharing in parallel 

algorithms 

Grids of thread blocks share results 

in global memory space   



CUDA device memory model 

on-chip memories: 

registers (~8KB) → SP 

shared memory (~16KB) → SM  

they can be accessed at very high 
speed in a highly parallel manner. 

 

per-grid memories: 

global memory (~4GB) 

 long access latencies (hundreds of 
clock cycles) 

 finite access bandwith 

constant memory (~64KB) 

 read only 

 short-latency (cached) and high 
bandwith when all threads 
simultaneously access the same 
location 

 texture memory (read only) 

 CPU can transfer data to/from all  

per-grid memories.  

Local memory is implemented as part of  

the global memory, therefore has a long  

access latencies too. 



Shared memory allocation 

Static modality 

 inside the kernel: 

 __shared__ float f[100]; 

 

Dynamic modality 

   in the execution configuration of the kernel, 
define the number of bytes to be allocated per 
block in the shared memory : 

 

  kernel<<<DimGrid, DimBlock, SharedMemBytes>>>(…); 

 

   while inside the kernel: 

   extern __shared__ float f[ ]; 



 Global memory allocation 

CUDA API functions to manage data allocation 
on the device global memory: 

 
cudaMalloc(void** bufferPtr, size_t n) 

It allocates a buffer into the device global memory  

The first parameter is the address of a generic 
pointer variable that must point to the allocated 
buffer  

it should be cast to (void**)!  

The second parameter is the size of the buffer to 
be allocated, in terms of bytes 

cudaFree(void* bufferPtr) 

It frees the storage space of the object  



Global memory inizialization 

 
cudaMemset(void* devPtr, int value, size_t count) 

  

Fills the first count bytes of the memory area pointed 

to by devPtr with the constant byte of the int  value 

converted to unsigned char. 

CUDA version of the C memset() function. 

devPtr - Pointer to device memory  

value  - Value to set for each byte of specified memory  

count  - Size in bytes to set 

 



Data transfer CPU-GPU 

 

 

API blocking functions for data transfer between memories: 

Destination   source  number of        symbolic constant  
                       data        bytes          indicating  the direction  

    



Data transfer to constant memory 

cudaMemcpyToSymbol(const char * symbol,  

                                       const void * src,  

                                       size_t count,  

                                       size_t offset,  

                                       enum cudaMemcpyKind kind)   

 

symbol - symbol destination on device, it can either be a 
variable that resides in global or constant memory 
space, or it can be a character string, naming a variable 
that resides in global or constant memory space. 

src - source memory address  

count - size in bytes to copy  

offset - offset from start of symbol in bytes  

kind - type of transfer, it can be either 
cudaMemcpyHostToDevice or 
cudaMemcpyDeviceToDevice  

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html


Device management 

Application can query and select GPUs 

cudaGetDeviceCount(int *count) 

cudaSetDevice(int device) 

cudaGetDevice(int *device) 

cudaGetDeviceProperties(cudaDeviceProp *prop, 

int device) 

Multiple threads can share a device 

A single thread can manage multiple devices 

cudaSetDevice(i) to select current device 

cudaMemcpy(…) for peer-to-peer copies 



Device management (sample code) 

int cudadevice; 
struct cudaDeviceProp prop; 
cudaGetDevice( &cudadevice ); 
cudaGetDeviceProperties (&prop, cudadevice); 
mpc=prop.multiProcessorCount; 
mtpb=prop.maxThreadsPerBlock; 
shmsize=prop.sharedMemPerBlock; 
printf("Device %d: number of multiprocessors %d\n , max number of threads per 

block %d\n, shared memory per block %d\n", cudadevice, mpc, mtpb, shmsize); 



Error checking  

All runtime functions return an error code of type: 
cudaError_t. 

No error is indicated as cudaSuccess. 
 

char* cudaGetErrorString(cudaError_t code) 

returns a string describing the error: 

 

For asynchronous functions (i.e. kernels, asynchronous 
copies) the only way to check for errors just after the call is 
to synchronize: cudaDeviceSynchronize() 

 

Then the following function returns the code of the last error: 
cudaError_t cudaGetLastError() 

printf("%s\n", cudaGetErrorString(cudaGetLastError())); 



NVIDIA C compiler 

nvcc front-end for compilation:  

separates GPU code from 

CPU code 

CPU code -> C/C++ compiler 

(Microsoft Visual C/C++, 

GCC, ecc.) 

GPU code is converted in an 

intermediate assembly 

language: PTX, then in binary 

form (the cubin object) 

link all executables 



CUDA Driver Vs Runtime API  

CUDA is composed of two APIs: 

the CUDA runtime API 

the CUDA driver API 

They are mutually exclusive 

Runtime API:  

easier to program  

it eases device code 

management: it’s where the C-for-

CUDA language lives 

Driver API: 

requires more code: no syntax  

sugar for the kernel launch, for 

example 

finer control over the device 

expecially in multithreaded 

application 

doesn’t need nvcc to compile the 

host code.  

 



CUDA Driver API 

The driver API is implemented in the nvcuda dynamic library. All 

its entry points are prefixed with cu. 

It is a handle-based, imperative API: most objects are 

referenced by opaque handles that may be specified to 

functions to manipulate the objects. 

The driver API must be initialized with cuInit() before any 

function from the driver API is called. A CUDA context must 

then be created that is attached to a specific device and made 

current to the calling host thread. 

Within a CUDA context, kernels are explicitly loaded as PTX or 

binary objects by the host code**. 

Kernels are launched using API entry points. 

 

**by the way, any application that wants to run on future device architectures must 

load PTX, not binary code 

 



Vector add: driver Vs runtime API 
// driver API 

// initialize CUDA 

err = cuInit(0); 

err = cuDeviceGet(&device, 0); 

err = cuCtxCreate(&context, 0, device); 

 

// setup device memory 

err = cuMemAlloc(&d_a, sizeof(int) * N); 

err = cuMemAlloc(&d_b, sizeof(int) * N); 

err = cuMemAlloc(&d_c, sizeof(int) * N); 

 

// copy arrays to device 

err = cuMemcpyHtoD(d_a, a, sizeof(int) * N); 

err = cuMemcpyHtoD(d_b, b, sizeof(int) * N); 

 

// prepare kernel launch 

kernelArgs[0] = &d_a; 

kernelArgs[1] = &d_b; 

kernelArgs[2] = &d_c; 

// load device code (PTX or cubin. PTX here) 

err = cuModuleLoad(&module, module_file); 

err = cuModuleGetFunction(&function, module,kernel_name); 

// execute the kernel over the <N,1> grid 

err = cuLaunchKernel(function, N, 1, 1,  // Nx1x1 blocks 

                            1, 1, 1, // 1x1x1 threads 

                            0, 0, kernelArgs, 0); 

// runtime API 

// setup device memory 

err = cudaMalloc((void**)&d_a, sizeof(int) * N); 

err = cudaMalloc((void**)&d_b, sizeof(int) * N); 

err = cudaMalloc((void**)&d_c, sizeof(int) * N); 

 

// copy arrays to device 

err=cudaMemcpy(d_a, a, sizeof(int) * N, cudaMemcpyHostToDevice); 

err=cudaMemcpy(d_b, b, sizeof(int) * N, cudaMemcpyHostToDevice); 

 

// launch kernel over the <N, 1> grid 

 matSum<<<N,1>>>(d_a, d_b, d_c); // yum, syntax sugar! 

 



Matrix-Matrix multiplication 
example 

CUDA parallelization: each thread computes an element of P 

P = M*N 

void MatrixMulOnHost(float* M, float* N, float* P, 

                                             int Width) { 

  for (int i = 0; i < Width; ++i) { 

    for (int j = 0; j < Width; ++j) { 

      float pvalue = 0; 

      for (int k = 0; k < Width; ++k) { 

        float a = M[i * Width + k]; 

        float b = N[k * Width + j]; 

        pvalue += a * b; 

      } 

      P[i * Width + j] = pvalue; 

    } 

  } 

} 

 



Matrix-Matrix multiplication  
device code 

__global__ void MNKernel(float* Md, float *Nd, float *Pd, int 
width) 

{ 

  // 2D thread ID 

  int col = threadIdx.x; 

  int row = threadIdx.y; 

 

  // Pvalue stores the Pd element that is computed by the 

  // thread 

  float Pvalue = 0; 

  for (int k=0; k < width; k++) 

     Pvalue += Md[row * width + k] * Nd[k * width + col]; 

 

  // write the matrix to device memory 

  // (each thread writes one element) 

  Pd[row * width + col] = Pvalue; 

} 



Matrix-Matrix multiplication  
host code 

void MatrixMultiplication(float* M, float *N, float *P, int width) 

{ 

  size_t size = width*width*sizeof(float); 

  float* Md, Nd, Pd; 

  // allocate M, N and P on the device 

  cudaMalloc((void**)&Md, size); 

  cudaMalloc((void**)&Nd, size); 

  cudaMalloc((void**)&Pd, size); 

  // transfer M and N to the device memory 

  cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

  cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 

  // kernel invocation 

  dim3 gridDim(1,1); 

  dim3 blockDim(width,width); 

  MNKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, width); 

  // transfer P from the device to the host  

  cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); 

  // free device matrices 

  cudaFree(Md); cudaFree(Nd); cudaFree(Pd); 

} 



Limitation: a block can have up to 1024 threads (for Fermi 

and Kepler). Therefore the previous implementation can 

compute square matrices of order less or equal to 32. 

 

Improvement:  

use more blocks by breaking matrix Pd into square tiles  

all elements of a tile are computed by a block of threads 

each thread still calculates one Pd element but it uses its 

blockIdx values to identify the tile that contains its 

element. 

Matrix-Matrix multiplication 
example 



Matrix 
N x N 

(0,0) (1,0) (2,0) 

(0,1) (1,1) (2,1) 

(0,2) (1,2) (2,2) 

(0,3) (1,3) (2,3) 

Matrix-Matrix multiplication 
example 

i = blockIdx.x * blockDim.x + threadIdx.x; 

j = blockIdx.y * blockDim.y + threadIdx.y; 

 

index = j * gridDim.x * blockDim.x + i; 

i 

j 

gridDim.x * blockDim.x 

* index 



__global__ void MNKernel(float* Md, float *Nd, float *Pd, int 
width) 

{ 

   // 2D thread ID 

   int col = blockIdx.x*blockDim.x + threadIdx.x; 

   int row = blockIdx.y*blockDim.y + threadIdx.y; 

 

   // Pvalue stores the Pd element that is computed by the thread 

   float Pvalue = 0; 

   for (int k=0; k < width; k++) 

     Pvalue += Md[row * width + k] * Nd[k * width + col];  

  

   Pd[row * width + col] = Pvalue; 

} 

 

  Kernel invocation: 
 

  dim3 gridDim(width/TILE_WIDTH,width/TILE_WIDTH); 

  dim3 blockDim(TILE_WIDTH,TILE_WIDTH); 

  MNKernel<<<dimGrid, dimBlock>>>(Md,Nd,Pd,width); 

Matrix-Matrix multiplication 
example 



Which is the optimal dimension of the block (i.e. TILE_WIDTH)? 

 

Knowing that each SM of a Fermi can have up to 1536 threads, 
we have  

8x8 = 64 threads        1536/64 = 24 blocks to fully occupy an 
SM; but we are limited to 8 blocks in each SM therefore we 
will end up with only 64x8 = 512 threads in each SM. 

16x16 = 256 threads        1536/256 = 6 blocks  

   we will have full thread capacity in each SM. 

32x32 = 1024 threads       1536/1024 = 1.5       1 block.  

 

                   TILE_WIDTH = 16 

   

 

 

 

Matrix-Matrix multiplication 
example 

  



Which is the optimal dimension of the block (i.e. TILE_WIDTH)? 

 

Knowing that each SM of a Kepler can have up to 2048 threads, 
we have  

8x8 = 64 threads        2048/64 = 32 blocks to fully occupy an 
SM; but we are limited to 16 blocks in each SM therefore we 
will end up with only 64x16 = 1024 threads in each SM. 

16x16 = 256 threads        2048/256 = 8 blocks  

   we will have full thread capacity in each SM. 

32x32 = 1024 threads       2048/1024 = 2 blocks.  

 

                   TILE_WIDTH = 16 or 32 

   

 

 

 

Matrix-Matrix multiplication 
example 

 



Global memory access efficiency 

Although having many threads available for execution 
can theoretically tolerate long memory access latency, 
one can easily run into a situation where traffic 
congestion prevents all but few threads from making 
progress, thus making some SM idle! 

 

A common strategy for reducing global memory traffic 
(i.e. increasing the number of floating-point operations 
performed for each access to the global memory) is to 
partition the data into subsets called tiles such that 
each tile fits into the shared memory and the kernel 
computations on these tiles can be done 
independently of each other. 

In the simplest form, the tile dimensions equal those of 
the block.   



Matrix-Matrix multiplication 
example 

In the previous kernel: 
thread(x,y) of block(0,0) access the elements of Md 
row x and Nd column y from the global memory.  

            thread(0,0) and thread(0,1) access the 
same Md row 0 



What if these threads collaborate so that the elements 
of this row are only loaded from the global memory 
once? We can reduce the total number of accesses 
to the global memory by N, using NxN blocks! 

 

Basic idea:  

to have the threads within a block collaboratively load 
Md and Nd elements into the shared memory before 
they individually use these elements in their dot 
product calculation. 

 



The dot product performed by each thread is now divided 
into phases: in each phase all threads in a block collaborate 
to load a tile of Md and a tile of Nd into the shared memory 
and use these values to compute a partial product. The dot 
product would be performed in width/TILE_WIDTH 
phases.  

the reduction of the accesses to the global memory is by a 
factor of  TILE_WIDTH.   





__global__ void MNKernel(float* Md, float *Nd, float *Pd, int width) 

{ 

  __shared__ float Mds[TILE_WIDTH][TILE_WIDTH]; 

  __shared__ float Nds[TILE_WIDTH][TILE_WIDTH]; 

    

   // 2D thread ID 

   int tx = threadIdx.x; int ty = threadIdx.y; 

   int col = blockIdx.x*BlockDim.x + tx; 

   int row = blockIdx.y*BlockDim.y + ty; 

   float Pvalue = 0; 

   // Loop over the Md and Nd tiles required to compute the Pd element 

   // m is the number of phases 

   for (int m=0; m < width/TILE_WIDTH; m++) 

   {//collaborative loading of Md and Nd tiles into shared memory 

      Mds[ty][tx] = Md[row*width + (m*TILE_WIDTH + tx)]; 

      Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*width + col]; 

      __syncthreads(); 

      for (int k=0; k < TILE_WIDTH; k++) 

          Pvalue += Mds[ty][k] * Nds[k][tx]; 

      __syncthreads(); 

   } 

   Pd[row * width + col] = Pvalue; 

}  

Matrix-Matrix multiplication 
example 



Memory as a limiting factor to 
parallelism 

The limited amount of CUDA memory limits the number of 
threads that can simultaneously reside in the SM! 

 

For the matrix multiplication example, shared memory can 
become a limiting factor: 

 

TILE_WIDTH = 16        each block requires 16x16x4 = 1KB of storage for Mds 

                                      + 1KB for Nds 

                  2KB of shared memory per block 

 

The 48KB shared memory allows 24 blocks to simultaneously reside  

in an SM.  OK! 

But the maximum number of threads per SM is 1536 (for Fermi) 

            only 1536/256 = 8 blocks are allowed in each SM 

            only 8 x 2KB = 16KB of the shared memory will be used. 
 

Hint: Use occupancy calculator 

 

 

 



Thread scheduling 

Once a block is assigned to a SM,  

it is further partitioned into 32-thread  

units called  warps. 

Warps are the scheduling units in SM: 

all threads in a same warp execute  

the same instruction when the warp 

is selected for execution (Single-Instruction, Multiple-Thread) 

Block of threads warps 
multiprocessor 

Threads often execute long-latency operations: 

  global memory access  

  pipelined floating point arithmetics  

  branch instructions 

 

It is convenient to assign a large number of warps to each SM, because 
the long waiting time of some warp instructions is hidden by executing 
instructions from other warps. Therefore the selection of ready warps for 
execution does not introduce any idle time into the execution timeline 
(zero-overhead thread scheduling).     



Control flow 

The hardware executes an instruction for all threads in the 
same warp before moving to the next instruction (SIMT). 

 

It works well when all threads within a warp follow the same 
control flow path when working their data. 

 

When threads in the same warp follow different paths of 
control flow, we say that these threads diverge in their 
execution. 

 

For an if-then-else construct the execution of the warp will 
require multiple passes through the divergent paths. 

Try to avoid warp divergence 



Vector reduction example 
(within a thread block) 

An if-then-else construct can result in thread divergence 
when its decision condition is based on threadIdx 
values.    

 

A sum reduction algorithm extracts a single value from an 
array of values in order to sum them. Within a block 
exploit the shared memory! 

There is thread divergence! 



Vector reduction example 

Instead of adding neighbor 
elements in the first round, 
add elements that are half 
a section away from each 
other and so on. 

No divergence until partial sums 
involve less than 32 elements 
(because of the warp size) 



The Open Computing Language: 
OpenCL 

OpenCL is an open standard for cross-platform, parallel 

programming of modern processors. i.e,  multi core CPU and 

GPGPU . OpenCL is a low-level C API (but C++ bindings are 

also available)  

it can be used to program heterogeneous computer architecture 

(multicore CPU + accelerator, OCL slogan: ‘program once, run 

everywhere’) 

it can be used to program NVIDIA GPU, AMD GPU or even 

Imagination Technology GPU (i.e. you don’t need to get married 

with NVIDIA GeForce/Tesla/Quadro products) 

So, how does the OpenCL framework look like? 

it supports the data parallel programming paradigm 

it has its dialects: a CUDA grid translates into a NDrange, a 

warp becomes a wavefront and so on… 

From a programmer point of view: it very closely resembles 

the CUDA driver API 

 



Vector add: OCL Host Code 

// initialize OpenCL 

err = clGetPlatformIDs(1, &cpPlatform, NULL); 

err = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);                   

context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);                             

queue = clCreateCommandQueue(context, device_id, 0, &err);                                        

// setup device memory 

d_a = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, NULL);                             

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, NULL);             

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, bytes, NULL, NULL);            

// copy array to the device  

err = clEnqueueWriteBuffer(queue, d_a, CL_TRUE, 0, bytes, h_a, 0, NULL, NULL);               

err |= clEnqueueWriteBuffer(queue, d_b, CL_TRUE, 0, bytes, h_b, 0, NULL, NULL);          

// prepare kernel launch                                                                                           

err  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);                                                            

err = clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b); 

err = clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);                                                            

// load, *COMPILE* and *LINK* device code 

program = clCreateProgramWithSource(context, 1, 

                            (const char **) & kernelSource, NULL, &err);                                           

clBuildProgram(program, 0, NULL, NULL, NULL, NULL);                                                                

kernel = clCreateKernel(program, "vecAdd", &err);                                                                     

// Execute the kernel over the NDrange                                                                                             

err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &globalSize, &localSize,                

                                                              0, NULL, NULL);  

// initialize CUDA 

err = cuInit(0); 

err = cuDeviceGet(&device, 0); 

err = cuCtxCreate(&context, 0, device); 

// setup device memory 

err = cuMemAlloc(&d_a, sizeof(int) * N); 

err = cuMemAlloc(&d_b, sizeof(int) * N); 

err = cuMemAlloc(&d_c, sizeof(int) * N); 

// copy arrays to the device 

err = cuMemcpyHtoD(d_a, a, sizeof(int) * N); 

err = cuMemcpyHtoD(d_b, b, sizeof(int) * N); 

// prepare kernel launch 

kernelArgs[0] = &d_a; 

kernelArgs[1] = &d_b; 

kernelArgs[2] = &d_c; 

// load device code (PTX or cubin. PTX here) 

err = cuModuleLoad(&module, module_file); 

err = cuModuleGetFunction(&function, module,kernel_name); 

// execute the kernel over the <N,1> grid 

err = cuLaunchKernel(function, N, 1, 1,  // Nx1x1 blocks 

                            1, 1, 1, // 1x1x1 threads 

                            0, 0, kernelArgs, 0); 

There ain’t such thing as a stand-alone OpenCL compiler 



Vector add: OCL Device Code 

// OpenCL kernel. Each work item takes care of one element of c 

const char *kernelSource =                                      "\n"\ 

"__kernel void vecAdd(  __global double *a,             \n"\ 

"                       __global double *b,                            \n"\ 

"                       __global double *c)                            \n"\ 

"{                                                                                 \n"\ 

"    //Get our global thread ID                                      \n"\ 

"    int id = get_global_id(0);                                        \n"\ 

"                                                                                  \n"\ 

"    //Make sure we do not go out of bounds               \n"\ 

"    if (id < n)                                                                \n"\ 

"        c[id] = a[id] + b[id];                                             \n"\ 

"}                                                                                 \n"\ 

                                                                                   "\n" ; 

The kernel code, again, looks very similar to the CUDA counter part 

Indeed, OpenCL/CUDA similarities code are so strong that a source-to-source 
translator is available (CU2CL) 

*But* there is not such a thing as an OpenCL compiler: 

the compilation and linking of the kernel has to be done at runtime 

An OpenCL kernel is a string within an OpenCL host code 

o The kernel can be loaded from a source file avoiding very long and difficult to 
manage string 



OpenACC 

OpenACC is a open parallel programming standard 

designed to easily take advantage of the heterogeneous 

CPU/GPU computing systems. 

OpenACC allows parallel programmers to provide 

simple hints, known as “directives,” to the compiler, 

identifying which areas of code to accelerate, without 

requiring programmers to modify or adapt the 

underlying code itself. 

OpenACC 1.0 (http://www.openacc-standard.org) 

Implementations available from PGI, Cray, and CAPS 

Will be rolled into OpenMP 4.0 
 

Key Advantages: 

High-Level:  No involvement of OpenCL, CUDA, etc. 

Single source: Compile the same program for accelerators or serial 
(NO separate GPU code). 

Portable: Supports GPU accelerators and co-processors from 
multiple vendors, current and future versions. 

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/


OpenACC: A Simple Example 

int main(){ 

 

  int N = 1<<10; 

     

  float *x, *y; 

  x = (float*)malloc(N*sizeof(float)); 

  y = (float*)malloc(N*sizeof(float)); 

   

  for (int i = 0; i < N; ++i) { 

    x[i] = 2.0f; y[i] = 1.0f;  

  }  

   

  saxpy(N, 1.0f, x, y); 

   

  return 0;   

}  

void saxpy (int n, float a, 

                            float *x, float *restrict y) 

{ 

 

#pragma acc kernels 

  for (int i = 0; i < n; ++i) 

    y[i] = a*x[i] + y[i]; 

 

} 

 

pgcc -acc -ta=nvidia -Minfo=accel saxpy.c  

(-ta stands for target architecture) 

saxpy: 

      3, Generating present_or_copyin(x[0:n]) 

         Generating present_or_copy(y[0:n]) 

         Generating compute capability 1.0 binary 

         Generating compute capability 2.0 binary 

      4, Loop is parallelizable 

         Accelerator kernel generated 

          4, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ 

             CC 1.0 : 8 registers; 48 shared, 0 constant, 0 local memory bytes 

             CC 2.0 : 12 registers; 0 shared, 64 constant, 0 local memory bytes 

 

Compiler was able to parallelize 



OpenAcc performance 

SpeedUp = 4x 

SpeedUp vs 6 CPU cores 

SpeedUp vs 1 CPU core 

CPU: Intel Xeon X5680 

6 Cores @ 3.33GHz 

GPU: NVIDIA Tesla M2070 

Example: Laplace equation in 2D 



Reference 
http://developer.nvidia.com/cuda 

CUDA Programming Guide 

CUDA Zone – tools, training, webinars and more 
 

NVIDIA Books: 

“Programming Massively Parallel Processors”, 

D.Kirk - W.W. Hwu 

“CUDA by example”, J.Sanders - E. Kandrot  

http://developer.nvidia.com/cuda

