PLUMED
 An introduction

Giovanni Bussi

Statistical and Biological Physics Sector SISSA, Trieste, Italy
bussi@sissa.it
www.sissa.it/~bussi
srnas.sissa.it

Molecular dynamics

time 0.0041 ps

Molecular dynamics (MD) is a form of computer simulation wherein atoms and molecules are allowed to interact for a period of time under known laws of physics, giving a view of the motion of the atoms

Timescales for, e.g., RNA dynamics

GROMACS
ANTON
(normal computer) (special computer)
adapted from Rinnenthal, Buck, Ferner,Wacker, Fuertig, and Schwalbe Chem Res 44, I292 (201 I)

Rare events

Rare events

Agenda

Tackling rare events Introduction to PLUMED

Sample applications \& recent developments

Tackling rare events

Brute force:

very long simulations distributed computing
...

Tackling rare events

Brute force:

very long simulations distributed computing
...

Based on annealing: simulated annealing parallel tempering simulated tempering

Tackling rare events

Brute force:

very long simulations distributed computing
...

Based on annealing: simulated annealing parallel tempering simulated tempering

Based on a priori physical insight: umbrella sampling steered MD

metadynamics adiabatic free-energy, temperature accelerated MD

Tackling rare events

Brute force:

 very long simulations distributed computing...

Based on annealing: simulated annealing parallel tempering simulated tempering

Based on a priori physical insight:

 umbrella sampling steered MD
metadynamics adiabatic free-energy, temperature accelerated MD

Pulling

Steered MD

Pulling to accelerate rare events
CV can be any possible function of the microscopic coordinates
Grubmuller, Heymann, and Tavan, Science (I996) Jarzynsky, PRL (1997)

Filling

Metadynamics

Reaction coordinate (AKA Collective Variable)

Fill wells in free-energy landscape, then reconstruct it!
Laio and Parrinello, PNAS (2002)
Barducci, Bussi, and Parrinello, PRL (2008)

Filling

Metadynamics

Reaction coordinate (AKA Collective Variable)

Fill wells in free-energy landscape, then reconstruct it!
Laio and Parrinello, PNAS (2002)
Barducci, Bussi, and Parrinello, PRL (2008)

Actual implementation

depending on physical problem/type of machine/...

Actual implementation

depending on the physical problem: distances, angles, ...
depending on physical problem/type of machine/...

Actual implementation

depending on the physical problem: distances, angles, ...
depending on physical problem/type of machine/...

> several possible algorithms
> e.g. steered MD, metadynamics, ...

PLUMED (born 2008)

MD code

Bonomi, Branduardi, Bussi, Camilloni, Provasi, Raiteri, Donadio, Marinelli, Pietrucci, Broglia, and Parrinello, CPC (2008)

PLUMED (born 2008)

MD codes

Bonomi, Branduardi, Bussi, Camilloni, Provasi, Raiteri, Donadio, Marinelli, Pietrucci, Broglia, and Parrinello, CPC (2009)

PLUMED (born 2008)

MD codes

Why PLUMED?

Bonomi, Branduardi, Bussi, Camilloni, Provasi, Raiteri, Donadio, Marinelli, Pietrucci, Broglia, and Parrinello, CPC (2009)

PLUMED (born 2008)

MD codes

PLUgin for MEtaDynamics

Why PLUMED?

Bonomi, Branduardi, Bussi, Camilloni, Provasi, Raiteri, Donadio, Marinelli, Pietrucci, Broglia, and Parrinello, CPC (2009)

PLUMED (born 2008)

MD codes

PLUgin for MEtaDynamics
Why PLUMED?
PLUgin for free-energy MEthoDs

Bonomi, Branduardi, Bussi, Camilloni, Provasi, Raiteri, Donadio, Marinelli, Pietrucci, Broglia, and Parrinello, CPC (2009)

PLUMED (born 2008)

MD codes

 for several MD codes!

PLUgin for MEtaDynamics

Why PLUMED?

PLUgin for free-energy MEthoDs
PLUgin for MolEcular Dynamics
Bonomi, Branduardi, Bussi, Camilloni, Provasi, Raiteri, Donadio, Marinelli, Pietrucci, Broglia, and Parrinello, CPC (2009)

History

PLUMED I.x
I. 0
I. 2 CECAM tutorial 2010
1.3

2008

I.I

2009
2010

2011

2012

2013

2014

History

PLUMED I.x

2008
1.0
I. 2 CECAM tutorial 2010
development started

2012
user meeting
2011 beta

2009

2013
2.0
2.1 user meeting

A quickly growing community

Number of "external" users grows rapidly
all: ISI citations to Bonomi et al CPC (2009) others: without authors of first paper + Laio and Gervasio

What can you do with PLUMED?

Analyze trajectories ${ }^{\$}$
\# using plumed as a standalone tool plumed driver --igro traj.gro --plumed plumed.dat

Analyze simulations on the fly*

> \# e.g. using gromacs: mdrun -plumed plumed.dat

Bias simulations on the fly*

> \# e.g. using gromacs: mdrun -plumed plumed.dat
\$from command line or from VMD - Giorgino, CPC (2014), http://github.com/tonigi/vmd_plumed
*used in combination with a supported MD engine, e.g. GROMACS, NAMD, LAMMPS, Q-ESPRESSO, AMBER + others

PLUMED+MD

MD code

PLUMED+MD

PLUMED read from a separate file

MD code

PLUMED+MD

PLUMED read from a separate file

MD code
initialization

also derivatives w.r.t. atom positions

PLUMED+MD

PLUMED read from a separate file

MD code

initialization

also derivatives w.r.t. atom positions

> sometime using history-dependent schemes

plumed.dat file

```
# Compute distances, angles, torsions, ...
c1: COM ATOMS=1-10
c2: COM ATOMS=30-40
d1: DISTANCE ATOMS=c1,c2 COMPONENTS
f1: COMBINE ARG=d1.x,d1.y,d1.z POWERS=2,2,2
a1: ANGLE ATOMS=14,15,16
t1: TORSION ATOMS=20, c1, c2,23
# Perform a metadynamics simulation
b1: METAD ARG=f1,a1 PACE=20 HEIGHT=0.5 SIGMA=0.05,0.1
# Limit the exploration to a relevant region
b2: UPPER_WALL ARG=d1.z AT=1.0 KAPPA=0.1
# Print the result
PRINT ARG=a1,t1,b1.bias,b2.bias FILE=colvar STRIDE=100
```


Example: SN2 reaction

SN2 reaction with density functional theory (QESPRESSO). Compute $\mathrm{Cl}-\mathrm{C}$ distance and bias it with a moving restraint.
d12: DISTANCE ATOMS=1,2
d23: DISTANCE ATOMS=2,3
\# moving restraint
MOVINGRESTRAINT ...

ARG=d12
STEP0=0 AT0=0.31 KAPPA0 $=200000.0$
STEP1=5000 AT1=0.18
LABEL=steer
... MOVINGRESTRAINT
PRINT
FILE=COLVAR ARG=d12,d23,steer.d12_cntr,steer.d12_work STRIDE=1
... PRINT
Tribello, Bonomi, Branduardi, Camilloni, and Bussi, CPC (2014)

Example: path CV

Alanine dipeptide

 Path CVs ${ }^{\#}+$ WT-MetaD ${ }^{\$}$ with adaptive Gaussians ${ }^{\%}$ (path can be made with a single command this is just to show input flexibility)\# just declare the RMSD^2 for five structures t1: RMSD REFERENCE=c_1.pdb TYPE=OPTIMAL SQUARED
\#\#\# ...etc for t2, t3, t4, t5 ... \#\#\#
\# calculate the sum of the exp of the five RMSDs
 MATHEVAL ...
LABEL=dwn
$A R G=t 1, t 2, t 3, t 4, t 5 V A R=d 1, d 2, d 3, d 4, d 5$
FUNC $=(\exp (-770 * d 1)+\exp (-770 * d 2)+\exp (-770 * d 3)+\exp (-770 * d 4)+\exp (-770 * d 5))$
PERIODIC=N0
... MATHEVAL
\#\#\# etc \#\#\#
\# do metadynamics
METAD HEIGHT=1.2 SIGMA=0.02 PACE=60 ARG=s,z ADAPTIVE=GEOM BIASFACTOR=5 TEMP=300
Tribello, Bonomi, Branduardi, Camilloni, and Bussi, CPC (2014)
\#Branduardi, Gervasio, and Parrinello, JCP (2007)
\$Barducci, Bussi, and Parrinello, PRL (2008)
\%Branduardi, Bussi, and Parrinello, JCTC (2012)

Example: CV distribution

Lennard-Jones cluster at high T reweighted at low T. Free energy as a function of moments of coordination number distribution*

```
COORDINATIONNUMBER ...
    SPECIES=1-7
    MOMENTS=2-3
    SWITCH={RATIONAL R_0=1.5 NN=8 MM=16}
    LABEL=c1
```

... COORDINATIONNUMBER
\#

\# calculate histograms from the moments
\#
HISTOGRAM ...
ARG=c1.moment_2,c1.moment_3 STRIDE=10
REWEIGHT_TEMP=0.1 TEMP=0.2
GRID_MIN=0.2,-0.5 GRID_MAX=1.2,1.7 GRID_BIN=200,440
BANDWIDTH=0.01,0.01 KERNEL=triangular
GRID_WSTRIDE=10000000 GRID_WFILE=histo
... HISTOGRAM

Tribello, Ceriotti, and Parrinello, PNAS (20I0)

On the web

Website: http://www.plumed-code.org/
Github: http://github.com/plumed/plumed2
User \& developer mailing lists

User \& developer manuals + tutorials

Plumed 2.0 is wiriten in $\mathrm{C}+$ and uses many ot the advancood, object-oriented features ot his language. This structure makes the implementation of o olleative coordinates and tree energy melthods

 bout implementing CV, tunctions and bliseses. Another usetulu page is he Tool Box page, which contains in itomation on the many reusable objects hat have been implemented in plumed
A bref introduction to the plumed core
A bref introduction to the plumed core
And finaly, tor the devevepers ot MD cocose, we provide intormation as to how to incorperate plumed into your codes here:
How to add plumed to an MD code

TAR-Tat binding

Crucial step for HIV replication

Initiation
Elongation

Oligopeptides mimicking TAT developed in G.Varani's lab* (UoW)

Mechanism of binding?

*Davidson et al, PNAS (2009)

Pretend binding mode is unknown

- GROMACS 4 MD code* (+PLUMED*)
- parmbsc0 force field\%
- Explicit water (TIP3P\$, ~12k molecules)
- Explicit counter-ions (NaCl I50mM)

> Pulling on TAR-peptide distance: problem is too complex, difficult to reach the proper binding site...

*Hess, Kutzner, Van Der Spoel and Lindahl JCTC (2008)
\#www.plumed-code.org
\%Perez et al, BJ (2007)
\$Jorgensen et al, JCP (1983)

Pretend binding mode is unknown

- GROMACS 4 MD code* (+PLUMED*)
- parmbsc0 force field\%
- Explicit water (TIP3P\$, ~12k molecules)
- Explicit counter-ions (NaCl I50mM)

Pulling on TAR-peptide distance: problem is too complex, difficult to reach the proper binding site...

Binding is driven by electrostatics: why not pulling the "electrostatic energy"?

Der Spoel and Lindahl JCTC (2008)
\#www.plumed-code.org \%Perez et al, BJ (2007) \$Jorgensen et al, JCP (1983)

Pulling the estimated interaction energy

pulling out pulling in
(from NMR structure) (from unbound structure)

$$
\begin{aligned}
& s=G^{D H}=\frac{1}{k_{B} T \epsilon_{w}} \sum_{j \in B} \sum_{i \in A} q_{i} q_{j} \frac{e^{-\kappa\left|\mathbf{r}_{i j}\right|}}{\left|\mathbf{r}_{i j}\right|} \\
& V(t, s)=\frac{1}{2} k\left(s_{0}+\left(s_{1}-s_{0}\right) \frac{t}{T}-G^{D H}\right)^{2}
\end{aligned}
$$

Made on
FERMI@CINECA

Pulling the estimated interaction energy

pulling out
(from NMR structure)
pulling in
(from unbound structure)

$$
s=G^{D H}=\frac{1}{k_{B} T \epsilon_{w}} \sum_{j \in B} \sum_{i \in A} q_{i} q_{j} \frac{e^{-\kappa\left|\mathbf{r}_{i j}\right|}}{\left|\mathbf{r}_{i j}\right|}
$$

$$
V(t, s)=\frac{1}{2} k\left(s_{0}+\left(s_{1}-s_{0}\right) \frac{t}{T}-G^{D H}\right)^{2}
$$

Made on
 FERMI@CINECA

Pulling the estimated interaction energy

pulling out
(from NMR structure)
pulling in
(from unbound structure)

$$
s=G^{D H}=\frac{1}{k_{B} T \epsilon_{w}} \sum_{j \in B} \sum_{i \in A} q_{i} q_{j} \frac{e^{-\kappa\left|\mathbf{r}_{i j}\right|}}{\left|\mathbf{r}_{i j}\right|}
$$

$$
V(t, s)=\frac{1}{2} k\left(s_{0}+\left(s_{1}-s_{0}\right) \frac{t}{T}-G^{D H}\right)^{2}
$$

Made on
 FERMI@CINECA

Comparison with NMR structure

(2)

correct pocket inverse orientation
*Davidson et al, PNAS (2009) Do, Carloni, Varani and Bussi, JCTC (2013)

When performance is an issue

Biased sampling is expected to provide a huge speedup provided good CVs are used.

However good CVs are sometime expensive:

- Steinhardt order parameters ${ }^{1}$
-Path/Property maps ${ }^{2}$
- Secondary structure CVs ${ }^{3}$
-SPRINT ${ }^{4}$
-Sketch maps ${ }^{5}$
$\mathrm{t}_{\text {tot }}=\mathrm{t}_{\mathrm{MD}}+\mathrm{t}_{\mathrm{PL}}$

'Steinhardt, Nelson, and Ronchetti, PRB (1983);Trudu, Donadio, and Parrinello, PRL (2006);
${ }^{2}$ Branduardi, Gervasio, and Parrinello, JCP (2007); Spiwok and Králová, JCP(201 I);
${ }^{3}$ Pietrucci and Laio, JCTC (2009); ${ }^{4}$ Pietrucci and Andreoni, PRL (201 I);
${ }^{5}$ Tribello, Ceriotti, and Parrinello, PNAS (20I2); ${ }^{6}$ Do, Carloni, Varani, and Bussi, JCTC (20I3)

Multiple time stepping

Compute PLUMED forces every n steps

$\mathrm{t}_{\text {tot }}=\mathrm{t}_{\text {MD }}+\mathrm{t}_{\text {pL }} / n$
$e^{A+B} \approx e^{\frac{A}{2}} e^{B} e^{\frac{A}{2}}$
Forces from PLUMED scaled up by a factor $n^{\#}$
Reversible trajectories
\#Tuckerman, Berne, and Martyna, JCP (1992); Sexton and Weingarten, Nucl. Phys. B (I992)

RNA/protein complex

MetaD on RNA/protein interaction

$$
G^{D H}=\frac{1}{k_{B} T \epsilon_{w}} \sum_{i \in \operatorname{prot}} \sum_{j \in \mathrm{RNA}} q_{i} q_{j} \frac{e^{-\kappa\left|\mathbf{r}_{i j}\right|}}{\left|\mathbf{r}_{i j}\right|}
$$

DHENERGY as introduced in Do, Carloni,Varani, and Bussi JCTC (2013) Ferrarotti, Bottaro, Perez-Villa, and Bussi, submitted

Overall speedup

PLUMED overhead can be decreased by a factor n Even $n=2$ can be interesting!

Tackling rare events

Brute force:

very long simulations distributed computing

Based on annealing: simulated annealing parallel tempering simulated tempering

 adiabatic free-energy, temperature accelerated MD

Replica exchange

Ladder of replicas:
-"reference" replica
-"ergodic" replica
-as many as needed in the middle (depends on "how different")
In parallel tempering,"ergodic" means "high T"

MetaD used to "increase T"

Φ
$\Delta T=600 \mathrm{~K}$

Φ
$\Delta T=1800 \mathrm{~K}$

$\Delta T=4200 \mathrm{~K}$
time is spent on the desired region $\exp (-\mathrm{F} /(\mathrm{T}+\Delta \mathrm{T}))$
ΔT tunes the explored region

(initial rate $\omega=\Delta T / T=2.4 \mathrm{kcal} / \mathrm{mol} / \mathrm{ps}$)

(Hamiltonian) replica exchange

-Replicas with different value of $(T+\Delta T)=\gamma T$

GACC tetranucleotide

r(GACC) tetranucleotide

A-form major

24 (T-REMD) $\times 8$ (H-REMD) replicas $\approx 60 \mu \mathrm{~s}$ total

> In comparison with poly-peptides, roughly $3 x$ complexity per residue

Bergonzo, Henriksen, Roe, Swails, Roitberg, and Cheatham, JCTC (2014)

GACC tetranucleotide

Amber99-chiOL\#
TIP-3P water\%
GROMACS $4.6^{\$}$
PLUMED 2.0@

Each nucleotide:

7 backbone dihedrals
puckering
minimum distance from other bases (total $28 \times 1 D+4 \times 2 \mathrm{D}$ concurrent MetaD)

16 replicas

$\gamma=1-4$
$\alpha \approx 40 \%-70 \%$

\#Zgarbova et al, JCTC (2010)
\% Jorgensen et al, JCP (1983)
\$Hess et al, JCTC (2008)
@Tribello et al, CPC (2014)

Dihedral distribution

Relative stability of rotamers

Gil-Ley and Bussi, submitted

Relative stability of rotamers

Gil-Ley and Bussi, submitted

Take home message

PLUMED: an open source plugin for molecular dynamics
A posteriorilon-the-fly analysis of MD
Many CVs and biasing methods (metadynamics et al)
Compatible with several MD engines
http://www.plumed-code.org

Acknowledgements

Andrea Perez-Villa Sandro Bottaro Alejandro Gil-Ley

Marco Jacopo Ferrarotti Do Trang

PLUMED developers:
Gareth Tribello Max Bonomi
Davide Branduardi Carlo Camilloni

ERC for funding CINECA for computing time

$\rho_{6} \frac{9}{5}$	erc INRICERCA	

PLUMED+VMD (GUI)

http://www.ks.uiuc.edu/Research/vmd Giorgino, CPC (2014) - see http://github.com/tonigi/vmd_plumed

Supported MD codes

GROMACS - fast, tuned for biomolecules, open source NAMD - fast, tuned for biomolecules, scalable LAMMPS - very general and scalable, open source QuantumESPRESSO - DFT, open source AMBER/sander, many force methods (QMMM, semi-empirical,...)

+ some code has PLUMED support out-of-the-box

PLUMED is a library with a documented API thus, you can easily add your own code!
http://www.gromacs.org http://www.ks.uiuc.edu/Research/namd
http://lammps.sandia.gov http://www.quantum-espresso.org http://ambermd.org

Molecular Dynamics

$$
\begin{aligned}
E_{\text {total }}= & \sum_{\text {bonds }} k_{\mathrm{b}}\left(\ell-\ell_{0}\right)^{2}+\sum_{\text {angles }} k_{\mathrm{a}}\left(\theta-\theta_{0}\right)^{2} \\
& +\sum_{\text {torsions }} \frac{1}{2} V_{\mathrm{n}}[1+\cos (n \omega-\gamma)]^{2} \\
& +\sum_{j=1}^{N-1} \sum_{i=j+1}^{N}\left\{\varepsilon_{i, j}\left[\left(\frac{r_{0 i j}}{r_{i j}}\right)^{12}-2\left(\frac{r_{0 i j}}{r_{i j}}\right)^{6}\right]+\frac{q_{i} q_{j}}{4 \pi \varepsilon_{0} r_{i j}}\right\}
\end{aligned}
$$

Classical empirical force field:
-Chemically motivated interactions

- Atomistic detail
- Water and ions explicitly modeled
- No polarization, no chemical reactions

Large computers required
5-100 ns/day

Open source philosophy

Do you want to contribute:

- reaction coordinates?
- free energy methods?
- source code cleaning?
- write documentation?
- port to other MD code?

Open source is good for me. I will fully embrace it: Open source is good for me. I will fully embrace t. Open source is good for me. I will fully embrace t; Open source is good for me. I will fully embrace t. Open source is good for me. I will fully embrace t. Open source is good for me. I will fully embre

Open source philosophy

Do you want to contribute:

- reaction coordinates?
- free energy methods?
- source code cleaning?
- write documentation?
- port to other MD code?

Open source is good for me. I will fully embrace it:
Open source is good for me. I will fully embrace t.,
Open source is good for me. I will fully embrace t:
Dpen source is good for me. I will fully embrace ts
Open source is good for me. I will fully embrace ts
Open source is good for me. I will fully embre in

Your code will be available for free, forever (also to you!)

Your method/coordinate will be usable by many people immediately

Open source philosophy

Do you want to contribute:

- reaction coordinates?
- free energy methods?
- source code cleaning?
- write documentation?
- port to other MD code?

Open source is good for me. I will fully embrace t:
Open source is good for me. I will fully embrace it:
Dpen source is good for me. I will fully embrace t:
Open source is good for me. I will fully embrace to
Open source is good for me. I will fully embrace ts
Open source is good for me. I will fully embrecth

Your code will be available for free, forever (also to you!)

Your method/coordinate will be usable by many people immediately *
*this is good for citations, too!

GPUs (gromacs)

Load balancing shifts load to GPU when PLUMED is too expensive

