
Running MD on HPC architectures I.
Clusters and Hybrid Clusters

Alessandro Grottesi
Cineca

Outlook

 System architecture of hybrid clusters @CINECA

 How to explore and interact with the software installed on the system

 Running MD simulation exploiting the computing resources available
at CINECA

Performance optimizzation and benchmarks

PLX system performance
Peak performance: 32 Tflops (3288 cores at
2.40GHz clock frequency)

Peak performance: 565 TFlops SP or 283 TFlops DP
(548 Nvidia M2070)

Model: IBM iDataPlex DX360M3

Architecture: Linux Infiniband Cluster

Processor Type:
• Intel Xeon (Esa-Core Westmere) E5645 2.4 GHz
(Compute)
• Intel Xeon (Quad-Core Nehalem) E5530 2.66 GHz
(Service and Login)

Number of nodes: 274 Compute + 1 Login + 1 Service +
8 Fat + 6 RVN + 8 Storage + 2 Management

Number of cores: 3288 (Compute)

Number of GPUs: 548 nVIDIA Tesla M2070 + 20 nVIDIA
Tesla M2070Q

RAM: 14 TB (48 GB/Compute node + 128GB/Fat node)

PLX characteristics

Eurora characteristics
Model: Eurora prototype

Architecture: Linux Infiniband Cluster

Processors Type:

 - Intel Xeon (Eight-Core SandyBridge) E5-2658 2.10 GHz
(Compute)

 - Intel Xeon (Eight-Core SandyBridge) E5-2687W 3.10 GHz
(Compute)

 - Intel Xeon (Esa-Core Westmere) E5645 2.4 GHz (Login)

Number of nodes: 64 Compute + 1 Login

Number of cores: 1024 (compute) + 12 (login)

Number of accelerators: 64 nVIDIA Tesla K20 (Kepler) + 64
Intel Xeon Phi (MIC)

RAM: 1.1 TB (16 GB/Compute node +

32GB/Fat node)

OS: RedHat CentOS release 6.3, 64 bit

Infiniband connection

Compute nodes

Disks and filesystems

Standard CINECA environment

please use “cindata” command to get info on your disk occupation

IBM-FERMI

Work Environment

$HOME:
 Permanent, backed-up,and local to PLX.
 Quota = 5GB.
 For source code or important input files.

$CINECA_SCRATCH:
 Large, parallel filesystem (GPFS).
 Temporary (files older than 30 days automatically deleted), no backup.
 No quota. Run your simulations and calculations here.

Accounting: saldo

[mcestari@node342] (~)

$ saldo -b

--

account start end total localCluster totConsumed totConsumed

 (local h) Consumed(local h) (local h) %

--

try11_test 20110301 20111201 10000 0 2 0.0

cin_staff 20110323 20200323 200000000 64581 6689593 3.3

ArpaP_prod 20130130 20131101 1500000 0 0 0.0

Accounting philosophy is based on the resources requested for the time of the
batch job:

cost = no. of cores requested x job duration

In the CINECA system it is possible to have more than 1 budget (“account”)
from which you can use time. The accounts available to your UNIX username
can be found from the saldo command.

Modules

 CINECA’ s work environment is organized in modules, a set of
installed libs, tools and applications available for all users.

 “loading” a module means that a series of (useful) shell
environment variables wil be set

 E.g. after a module is loaded, an environment variable of the
form “<MODULENAME>_HOME” is set

module, my best friend

 all the optional software on the system is made available
through the "module" system

 provides a way to rationalize software and its env variables

 modules are divided in 3 profiles
 profile/base (stable and tested modules)
 profile/engineering (contains specific software for engineering

simulations)
 profile/advanced (software not yet tested or not well optimized)

 each profile is divided in 4 categories
 compilers (Intel, GNU, Portland)
 libraries (e.g. LAPACK, BLAS, FFTW, ...)
 tools (e.g. Scalasca, GNU make, VNC, ...)
 applications (software for chemistry, physics, ...)

Module commands

> module available (or just “> module av”)
Shows the full list of the modules available in the profile you’re into, divided
by: environment, libraries, compilers, tools, applications

 > module (un)load <module_name>

 (Un)loads a specific module

> module show <module_name>
Shows the environment variables set by a specific module

> module help <module_name>
Gets all informations about how to use a specific module

> module purge
Gets rid of all the loaded modules

Running MD code on
PLX/Eurora

GROMACS: what for...?

13

1. Minimizzation

2. Molecular Dynamics (classic, brownian, Langevin)

3. Normal Mode Analysis

4. Essential Dynamics and Sampling

5. Free Energy calculations (FEP, Umbrella sampling, AFM)

6. Replica Exchange Molecular Dynamics

7. Coarse-Grained MD

8. Metadynamics

9. Much more...

14

1. AMBER03 protein, nucleic AMBER94 (Duan et al., J. Comp. Chem. 24, 1999-2012, 2003)

2. AMBER94 force field (Cornell et al., JACS 117, 5179-5197, 1995)

3. AMBER96 protein, nucleic AMBER94 (Kollman et al., Acc. Chem. Res. 29, 461-469, 1996)

4. AMBER99 protein, nucleic AMBER94 (Wang et al., J. Comp. Chem. 21, 1049-1074, 2000)

5. AMBER99SB protein, nucleic AMBER94 (Hornak et al., Proteins 65, 712-725, 2006)

6. AMBER99SB-ILDN protein, nucleic AMBER94 (Lindorff-Larsen et al., Proteins 78, 1950-58, 2010)

7. AMBERGS force field (Garcia & Sanbonmatsu, PNAS 99, 2782-2787, 2002)

8. CHARMM27 all-atom force field (with CMAP) - version 2.0

9. GROMOS96 43a1 force field

10. GROMOS96 43a2 force field (improved alkane dihedrals)

11. GROMOS96 45a3 force field (Schuler JCC 2001 22 1205)

12. GROMOS96 53a5 force field (JCC 2004 vol 25 pag 1656)

13. GROMOS96 53a6 force field (JCC 2004 vol 25 pag 1656)

14. GROMOS96 54a7 force field (Eur. Biophys. J. (2011), 40,, 843-856)

15. OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)

16. [DEPRECATED] Encad all-atom force field, using full solvent charges

17. [DEPRECATED] Encad all-atom force field, using scaled-down vacuum charges

18. [DEPRECATED] Gromacs force field (see manual)

19. [DEPRECATED] Gromacs force field with hydrogens for NMR

Available forcefield in Gromacs (4.6.5)

topol.tpr

15

Generate a topology

Generate simulation box

Solvate the system

Analysis of trajectory files

Generate input file for mdrun

Actually run the simulation

Workflow for running MD simulations in GROMACS

grompp

genbox

editconf

pdb2gmx

mdrun

trjconv g_rms

g_covar g_anaeig

g_energy g_rmsf

g_rdf

Initial coordinates: X-Ray vs. NMR

16

Higher X-ray resolution allows to
use a more reliable starting
structure in terms of amino-acids
stereo-chemistry and accuracy of
atomic positions

Error on initial position of protein
atoms determines local structural
alterations of the protein structure

X-ray resolutions smaller than 2 Å
are much more reliable, although
difficult to achieve. Generally, a
resolution in the range 2 < R < 3 Å
are acceptable. Beyond 3 Å the
uncertainty of the initial position
may cause artefacts in the MD
simulation

Initial coordinates: X-Ray vs. NMR

17

NMR determined structure provide
information in a more realistic physiological
environment as compared to X-ray
determined structures although this could
result in lower quality of initial coordinates
and incertainties in the position of atomic
coordinates.

KcsA Potassium channel
(PDB code: 2K1E)

Generate topology: pdb2gmx

18

To convert a structure pdb file into a Gromacs topology:

pdb2gmx –f input_file.pdb –ignh –ter

input:
1. file_in.pdb initial set of coordinates (either pdb or gro format)

output:
1. topol.top system topology
2. posre.itp position restraints file
3. conf.gro coordinate file (gro format by default)
4. topolA.itp, topolB.itp, etc topology of chain A, B, etc...
5. posreA.itp, posreB.itp, etc position restraints file for chain A, B, etc...

pdb2gmx: interactive options

19

pdb2gmx –f input.pdb –ignh –ter

Select N-terminus type (start)
 0: NH3+
 1: NH2
 2: None

Select C-terminus type (end)
 0: COO-
 1: COOH
 2: None

Proteins extremities (N- and C-terminus) have to be treated with particular care as they are
usually charged at neutral pH (7.2/7.3). However, in most cases, protein sequences in the
PDB databank are composed of a sub-set of the actual primary structure and therefore
extremities are likely to be neutral.
To set up ionizzation state for N- and C-terminus in proteins:

pdb2gmx: pH and net charge

20

By default, pdb2gmx assumes you want to simulate your protein in a
neutral pH environment (ph=7). Hence the net charge carried by ionizzable
residues is the default at that pH. Otherwise you need to set up net charge
according to the following table:

pH
Lysine Arginine Glutamate Aspartate

7.0 +1 +1 -1
-1

< 5.0 +1 +1 0
0

> 9.0 0 0 -1
-1

How to set-up non default pH

21

In Gromacs, a usefull way to simulate a biological macromolecule at pH ≠ 7
consists of using the flags -lys -arg -asp -glu to set up interactivelly the net
charge on lysine, arginine, apartate and glutamate residue, respectivelly. By
these flag we can indeed change the default ionizzation state on single
residue in the protein sequence.

pdb2gmx –f input_file.pdb –ignh –ter –lys –arg –asp –glu

Processing chain 1 'A' (803 atoms, 100 residues)
Which LYSINE type do you want for residue 33
0. Not protonated (charge 0) (LYS)
1. Protonated (charge +1) (LYSH)

Processing chain 1 'A' (803 atoms, 100 residues)
Which GLUTAMIC ACID type do you want for

residue 13
0. Not protonated (charge -1) (GLU)
1. Protonated (charge 0) (GLUH)

Histidines

22

Histidine residues play an important rule in protein function as they are
often located within catalytic pockets and binding sites or could be
involved in interactions with prosthetic group (HEME) or could binf metal
ions for important enzymatic activities (cytochromes, clorophylls, etc.)

In Gromacs, four types of histidine residue
are available for use with special case,
differing for it ionizzation state:

1. HISA (neutral): hydrogen atom on N1
2. HISB (neutral): hydrogen atom on N2
3. HISH (net charge = +1): hydrogen atom on N1 and N2
4. HIS1: histidine bound to HEME

pdb2gmx –f input.pdb –ignh –ter –his

How to generate the box: editconf

23

editconf –f conf.gro -bt triclinic –d 0.8 –o output.gro

Minimal solute-solvent
distance along box axes.

Structure generated file has to be immersed in a box of water molecules
(or alternative solvent) prior to run an MD simulation. Different types of
box are available in Gromacs (triclinic, cubic, dodecahedron or
octahedron) and can be generated by the command:

Box type: triclinic in this case

Box solvation: genbox

24

genbox –cp conf.gro –cs spc216.gro –o out.gro

Once defined, box has to be physically soaked with
water (or alternative solvent). This can be easly
performed by running the command:

Ionic strength: genion

25

genion –s topol.tpr –random –seed XXX –o oution.gro
–nn 20 –np 10 -p topol.top

Grid based electrostatic treatment (Ewald sums, PME, etc.) are
better performed with system net charge = 0. Namely, make
sure that:

solute charge + solvent charge = 0

To set up box neutrality we can replace as many water molecule
with corresponding positive or negative ions to generate a total
charge = 0. To do so, we can run the genion command as follows:

This command replace randomly a total of 30 water molecules
with 20 negative ions (chloride) and 10 positive ions (sodium) and
updates the topol.top file with the new list of atoms.

grompp:
the GROMACS preprocessor

26

grompp –f param.mdp –c coord.gro –n index.ndx –p topol.top –o topol.tpr

Command grompp generates a binary input file with all structural
info and forcefield parameters neeed to run an MD simulation.

Grompp output is a binary file called topol.tpr that can be used as input
for running the calculation. To visualize and check all info stored in the
topol.tpr file we can use the following command:

gmxdump –s topol.tpr

title = Yo
cpp = cpp
Include = -I../top
cefine = -DPOSRES
integrator = md
dt = 0.002
nsteps = 500000
nstxout = 5000
nstvout = 5000
nstlog = 5000
nstenergy = 250
nstxtcou = 250
xtc_grps = Protein
energygrps = Protein SOL
nstlist = 10
ns_type = grid
rlist = 0.8
coulombtype = PME
rcoulomb = 1.4
rvdw = 0.8
tcoupl = V-Rescale
tc-grps = Protein SOL
tau_t = 0.1 0.1
ref_t = 300 300
pcoupl =
tau_p = 1.0
compressibility = 4.5e-5
ref_p = 1.0
gen_vel = yes
gen_temp = 300
gen_seed = 173529
constraints = all-bonds

Van der Waals and
electrostatics

Output control

Temperature and pressure
coupling

Output control parameters

28

nsteps = 500000
nstxout = 5000
nstvout = 5000
nstlog = 5000
nstenergy = 250
nstxtcout = 250
xtc_grps = Protein
energygrps = Protein SOL

Total number of steps
coords output frequency for traj.trr
velocity output frequency for traj.trr
output frequency for log file (md.log)
output frequency for energy file ener.edr
coords output frequency for traj.xtc
content of file traj.xtc
energy groups to store in file ener.edr

File traj.xtc contains coordinates of our simulated system. Atomic coordinates are saved in a
compressed format so that to reduce file size. This file is the main trajectory file used for
simulation analysis.

File traj.trr contains atomic coordinates, velocities and forces of our simulated system. These
data are saved as 4 digits floating point numbers and are usefull to recover coordinates and
velocities after a job crash or if we need velocities and forces for special analyses.

Electrostatics control

29

; Method for doing electrostatics
coulombtype = PME
rcoulomb-switch = 0
rcoulomb = 1.2
; Relative dielectric constant for the medium and the reaction field
epsilon_r = 1
epsilon_rf = 1
; Method for doing Van der Waals
vdw-type = Cut-of
; cut-of lengths
rvdw-switch = 0
rvdw = 1.2
; Spacing for the PME/PPPM FFT grid
fourierspacing = 0.150
; FFT grid size, when a value is 0 fourierspacing will be used
fourier_nx = 0
fourier_ny = 0
fourier_nz = 0
; EWALD/PME/PPPM parameters
pme_order = 4
ewald_rtol = 1e-05
ewald_geometry = 3d
epsilon_surface = 0
optimize_ft = no

Parameter for temperature and
pressure coupling

30

; Temperature coupling
Tcoupl = V-rescale
; Groups to couple separately
tc-grps = System
; Time constant (ps) and reference temperature (K)
tau_t = 0.1
ref_t = 250.0
; Pressure coupling
Pcoupl = Parrinello-Rahman
Pcoupltype = isotropic
; Time constant (ps), compressibility (1/bar) and reference P (bar)
tau_p = 0.5
compressibility = 4.5e-5
ref_p = 1.0
; Scaling of reference coordinates, No, All or COM
refcoord_scaling = No
; Random seed for Andersen thermostat
andersen_seed = 815131

weak temperature coupling

Run the simulation: mdrun

31

mdrun –s topol.tpr –dd dx dy dz -pd -npme N

1. confout.gro final coordinates file (gro format)
2. traj.xtc simulation trajectory file (compressed)
3. traj.trr simulation trajectory file (coord+velocity, high prec.)
4. ener.edr energy file
5. state.cpt chekpoint file for restarting runs.
6. md.log log file with output control

The command generates many outpuf filed at the end of the job. Among them:

domain decomposition particle decomposition

What if it all crashes...?

mdrun -s topol.tpr -cpi state.cpt

mdrun -s topol.tpr -cpi state.cpt -append

A .cpt file is produced by mdrun at specified intervals (mdrun -cpt n, where n
is the interval in minutes), and contains information on all the state variables
in a simulated system. In the case of a crash (hardware failure, power
outage, etc), a checkpoint file can be used to resume the simulations exactly
as it was before the failure. Simulations can also be extended using a
checkpoint file (www.gromacs.org).

Write down coordinates on previous generated files

Gromacs 4.6.5, pure MPI on PLX

>module load autoload gromacs/4.6.5

>module help gromacs/4.6.5

#!/bin/bash

#PBS -N gmx

#PBS -l select=1:ncpus=12:mpiprocs=12:mem=47GB

#PBS -q <queue>

#PBS -l walltime=1:00:00

#PBS -A <account_nr>

cd $PBS_O_WORKDIR ==> change to current dir

module load profile/advanced

module load autoload gromacs/4.6.5

export OMP_NUM_THREADS=1 ==> set nr. Of OpenMP threads per MPI proc to 1

==> set total mpi tasks = 12 and bind to two GPUs

mdrun=$(which mdrun_mpi)

cmd="$mdrun -s topol.tpr -v -maxh 1.0 -nb cpu"

mpirun -np 12 $cmd

Gromacs 4.6.5, pure MPI on PLX

Gromacs 4.6.5 MPI+CUDA on PLX

>module load autoload gromacs/4.6.5

>module help gromacs/4.6.5

#!/bin/bash

#PBS -N gmx

#PBS -l select=1:ncpus=12:mpiprocs=2:ngpus=2:mem=47GB

#PBS -q <queue>

#PBS -l walltime=1:00:00

#PBS -A <account_nr>

cd $PBS_O_WORKDIR ==> change to current dir

module load profile/advanced

module load autoload gromacs/4.6.5

export OMP_NUM_THREADS=1 ==> set nr. Of OpenMP threads to 1

==> set total MPI tasks = 2 and bind to two GPUs

mdrun=$(which mdrun_mpi_cuda)

cmd="$mdrun -s topol.tpr -v -maxh 1.0 -gpu_id 01 "

mpirun -np 2 $cmd

Gromacs 4.6.5 MPI+CUDA on PLX

Gromacs 4.6.5 MPI/OpenMP+CUDA on PLX

>module load autoload gromacs/4.6.5

>module help gromacs/4.6.5

#!/bin/bash

#PBS -N gmx

#PBS -l select=1:ncpus=12:mpiprocs=2:ngpus=2:mem=47GB

#PBS -q <queue>

#PBS -l walltime=1:00:00

#PBS -A <account_nr>

cd $PBS_O_WORKDIR ==> change to current dir

module load profile/advanced

module load autoload gromacs/4.6.5

export OMP_NUM_THREADS=6 ==> set nr. Of OpenMP threads to 6

==> set total mpi tasks = 2 and bind to two GPUs

mdrun=$(which mdrun_mpi_cuda)

cmd="$mdrun -s topol.tpr -v -maxh 1.0 -gpu_id 01 "

mpirun -np 2 $cmd

Gromacs 4.6.5 MPI/OpenMP+CUDA on PLX

MD Performance on hybrid
CPU-GPU clusters (PLX)

 Pure MPI (8 MPI procs) →88.3
ns/day

(scheme = verlet, domain decomposition)
 MPI-CUDA (2 MPI procs + 2 GPUs) →155.6

ns/day
 MPI/OpenMP/CUDA →229.9

ns/day

(2 MPI procs + 4 threads + 2 GPUs)
 Pure MPI (8 MPI procs) →134.3

ns/day

(scheme = groups, domain decomposition)

Small peptide in a box of water, ~3300 atoms

Gromacs 4.6.5 with GPU PME, 1 nm cut-off, T = 300 K

MD Performance on hybrid
CPU-GPU clusters (Eurora)

 Pure MPI (16 MPI procs) →11.63 ns/day
 MPI-CUDA (2 MPI procs + 2 GPUs) →9.53 ns/day
 MPI/OpenMP/CUDA (2 MPI procs + 8 threads + 2 GPUs) →24.6 ns/day

ATP/ADP Mitochondrial Carrier,

92K atoms

Gromacs 4.6.5 with GPU

PME for long electrostatics, 300 K

Domain Decomposition

Cut-off = 1 nm

Neigh. Search scheme = Verlet

MD Performance on hybrid
CPU-GPU clusters (Eurora)

ATP/ADP Mitochondrial Carrier,

92K atoms

Gromacs 4.6.5 with GPU

PME for long electrostatics, 300 K

Domain Decomposition

Cut-off = 1 nm

Neigh. Search scheme = Verlet

 Pure MPI (16 MPI procs) →11.63 ns/day
 MPI-CUDA (2 MPI procs + 2 GPUs) →9.53 ns/day
 MPI/OpenMP/CUDA (2 MPI procs + 8 threads + 2 GPUs) →24.6 ns/day

 Pure MPI (16 MPI procs) →16.48 ns/dayScheme = Group

The idea behind the native GPU acceleration in GROMACS is that we
offload the heavy nonbonded force calculation to an accelerator (either a
GPU or something else), while the CPU does bonded forces and lattice
summation (PME) in the mean time.

GPU acceleration in GROMACS
www.gromacs.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

