
Programmazione Avanzata

Vittorio Ruggiero
(v.ruggiero@cineca.it)

Roma, 16 Aprile 2014

Outline

Bugs and Prevention

Testing

Static analysis

Run-time analysis

As soon as we started programming, we found to our surprise
that it wasn’t as easy to get programs right as we had thought.
Debugging had to be discovered. I can remember the exact
instant when I realized that a large part of my life from then on
was going to be spent in finding mistakes in my own programs.!

Maurice Wilkes discovers debugging, 1949.

Testing-Debugging

I TESTING: finds errors.
I DEBUGGING: localizes and repairs them.

TESTING DEBUGGING CYCLE:
we test, then debug, then repeat.

Program testing can be used to show the presence of bugs, but
never to show their absence!
Edsger Dijkstra

Testing-Debugging

I TESTING: finds errors.
I DEBUGGING: localizes and repairs them.

TESTING DEBUGGING CYCLE:
we test, then debug, then repeat.

Program testing can be used to show the presence of bugs, but
never to show their absence!
Edsger Dijkstra

What is a bug?

I Defect: An incorrect program code

=⇒ a bug in the code.

I Infection: An incorrect program state =⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour =⇒ a bug
in the behaviour.

What is a bug?

I Defect: An incorrect program code =⇒ a bug in the code.

I Infection: An incorrect program state =⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour =⇒ a bug
in the behaviour.

What is a bug?

I Defect: An incorrect program code =⇒ a bug in the code.

I Infection: An incorrect program state

=⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour =⇒ a bug
in the behaviour.

What is a bug?

I Defect: An incorrect program code =⇒ a bug in the code.

I Infection: An incorrect program state =⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour =⇒ a bug
in the behaviour.

What is a bug?

I Defect: An incorrect program code =⇒ a bug in the code.

I Infection: An incorrect program state =⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour

=⇒ a bug
in the behaviour.

What is a bug?

I Defect: An incorrect program code =⇒ a bug in the code.

I Infection: An incorrect program state =⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour =⇒ a bug
in the behaviour.

Infection chain

Defect

=⇒ Infection =⇒ Failure

I The programmer creates a defect in the program code (also
known as bug or fault).

I The defect causes an in infection in the program state.

I The infection creates a failure - an externally observable error.

Infection chain

Defect =⇒ Infection

=⇒ Failure

I The programmer creates a defect in the program code (also
known as bug or fault).

I The defect causes an in infection in the program state.

I The infection creates a failure - an externally observable error.

Infection chain

Defect =⇒ Infection =⇒ Failure

I The programmer creates a defect in the program code (also
known as bug or fault).

I The defect causes an in infection in the program state.

I The infection creates a failure - an externally observable error.

Tracking down defect

Defect ⇐= Infection ⇐=

Failure

I A Failure is visible to the end user of a program. For example,
the program prints an incorrect output.

I Infection is the underlying state of the program at runtime that
leads to a Failure. For example, the program might display the
incorrect output because the wrong value is stored in avariable.

I A Defect is the actual incorrect fragment of code that the
programmer wrote; this is what must be changed to fix the
problem.

Tracking down defect

Defect ⇐=

Infection ⇐= Failure

I A Failure is visible to the end user of a program. For example,
the program prints an incorrect output.

I Infection is the underlying state of the program at runtime that
leads to a Failure. For example, the program might display the
incorrect output because the wrong value is stored in avariable.

I A Defect is the actual incorrect fragment of code that the
programmer wrote; this is what must be changed to fix the
problem.

Tracking down defect

Defect ⇐= Infection ⇐= Failure

I A Failure is visible to the end user of a program. For example,
the program prints an incorrect output.

I Infection is the underlying state of the program at runtime that
leads to a Failure. For example, the program might display the
incorrect output because the wrong value is stored in avariable.

I A Defect is the actual incorrect fragment of code that the
programmer wrote; this is what must be changed to fix the
problem.

First of all..

THE BEST WAY TO DEBUG A PROGRAM IS
TO MAKE NO MISTAKES

I Preventing bugs.
I Detecting/locating bugs.

Ca. 80 percent of software development costs spent on
identifying and correcting defects.

It is much more expensive (in terms of time and effort) to
detect/locate exisisting bugs, than prevent them in the first
place.

First of all..

THE BEST WAY TO DEBUG A PROGRAM IS
TO MAKE NO MISTAKES

I Preventing bugs.
I Detecting/locating bugs.

Ca. 80 percent of software development costs spent on
identifying and correcting defects.

It is much more expensive (in terms of time and effort) to
detect/locate exisisting bugs, than prevent them in the first
place.

First of all..

THE BEST WAY TO DEBUG A PROGRAM IS
TO MAKE NO MISTAKES

I Preventing bugs.
I Detecting/locating bugs.

Ca. 80 percent of software development costs spent on
identifying and correcting defects.

It is much more expensive (in terms of time and effort) to
detect/locate exisisting bugs, than prevent them in the first
place.

IfSQ Institute for Software Quality

www.ifsq.org

I We have an agreed common goal: to raise the standard of
software (and software development) around the world by
promoting Code Inspection as a prerequisite to Software
Testing in the production and delivery cycle.

I Our strong hope is that eventually the idea of inspecting code
before testing will be as self-evident as testing software before
using it.

IfSQ Institute for Software Quality

www.ifsq.org

I We have an agreed common goal: to raise the standard of
software (and software development) around the world by
promoting Code Inspection as a prerequisite to Software
Testing in the production and delivery cycle.

I Our strong hope is that eventually the idea of inspecting code
before testing will be as self-evident as testing software before
using it.

The Fundamental question

How can I prevent Bugs?

I Design.

I Good writing.

I Self-checking code.

I Test scaffolding.

The Fundamental question

How can I prevent Bugs?

I Design.

I Good writing.

I Self-checking code.

I Test scaffolding.

Preventing bugs via design

Programming is a design activity.
It’s a creative act, not mechanical code generation.

I Good modularization.

I Strong encapsulation/information hiding.

I Clear,simple pre- and post-processing.

I Requirements of operations should testable.

Preventing bugs via design

Programming is a design activity.
It’s a creative act, not mechanical code generation.

I Good modularization.

I Strong encapsulation/information hiding.

I Clear,simple pre- and post-processing.

I Requirements of operations should testable.

What is a module?

I A module is a discrete, well-defined, small component of a system.

I The smaller the component, the easier it is to understand.

I Every component has interfaces with other components, and all
interfaces are sources of confusion.

39% of all errors are caused by internal
interface errors / errors in communication between routines.

I Large components reduce external interfaces but have complicated
internal logic that may be difficult or impossible to understand.

I The art of software engineering is setting component size and
boundaries at points that balance internal complexity against
interface complexity to achieve an overall complexity minimization.
A study showed that when routines averaged 100 to 150 lines each,
code was more stable and required less changes.

What is a module?

I A module is a discrete, well-defined, small component of a system.

I The smaller the component, the easier it is to understand.

I Every component has interfaces with other components, and all
interfaces are sources of confusion.
39% of all errors are caused by internal
interface errors / errors in communication between routines.

I Large components reduce external interfaces but have complicated
internal logic that may be difficult or impossible to understand.

I The art of software engineering is setting component size and
boundaries at points that balance internal complexity against
interface complexity to achieve an overall complexity minimization.
A study showed that when routines averaged 100 to 150 lines each,
code was more stable and required less changes.

What is a module?

I A module is a discrete, well-defined, small component of a system.

I The smaller the component, the easier it is to understand.

I Every component has interfaces with other components, and all
interfaces are sources of confusion.
39% of all errors are caused by internal
interface errors / errors in communication between routines.

I Large components reduce external interfaces but have complicated
internal logic that may be difficult or impossible to understand.

I The art of software engineering is setting component size and
boundaries at points that balance internal complexity against
interface complexity to achieve an overall complexity minimization.

A study showed that when routines averaged 100 to 150 lines each,
code was more stable and required less changes.

What is a module?

I A module is a discrete, well-defined, small component of a system.

I The smaller the component, the easier it is to understand.

I Every component has interfaces with other components, and all
interfaces are sources of confusion.
39% of all errors are caused by internal
interface errors / errors in communication between routines.

I Large components reduce external interfaces but have complicated
internal logic that may be difficult or impossible to understand.

I The art of software engineering is setting component size and
boundaries at points that balance internal complexity against
interface complexity to achieve an overall complexity minimization.
A study showed that when routines averaged 100 to 150 lines each,
code was more stable and required less changes.

Good modularization...

I reduces complexity
I avoids duplicate code
I facilitates reusable code
I limits effects of the changes
I facilitates test
I results in easier implementation

Strong encapsulation/information hiding

I The principle of information hiding suggests that modules be
characterized by design decisions that each hides from all
others.

I The information contained within a module is inaccesible to
other modules that have no need for such information.

I Hiding implies that effective modularity can be achieved by
defining a set of independent modules that communicate with
one another only that information necessary to achieve
software function.

I Because most data and procedure are hidden from other parts
of software , inadvertent errors introduced during modification
are less likely to propagate to other locations within the
software.

Cohesion & Coupling

I Cohesion: a measure of how closely the instructions in a
module are related to each other.

I Coupling: a measure of how closely a modules’ execution
depends upon other modules.

I Avoid global variables.
I As a general rule, you should always aim to create modules

that have strong cohesion and weak coupling.
I The routines with the highest coupling-to-cohesion ratios had 7

times more errors than those with the lowest ratios.

Spaghetti code is characterized by very strong coupling.

Cohesion & Coupling

I Cohesion: a measure of how closely the instructions in a
module are related to each other.

I Coupling: a measure of how closely a modules’ execution
depends upon other modules.

I Avoid global variables.
I As a general rule, you should always aim to create modules

that have strong cohesion and weak coupling.
I The routines with the highest coupling-to-cohesion ratios had 7

times more errors than those with the lowest ratios.

Spaghetti code is characterized by very strong coupling.

Cohesion & Coupling

I Cohesion: a measure of how closely the instructions in a
module are related to each other.

I Coupling: a measure of how closely a modules’ execution
depends upon other modules.

I Avoid global variables.
I As a general rule, you should always aim to create modules

that have strong cohesion and weak coupling.
I The routines with the highest coupling-to-cohesion ratios had 7

times more errors than those with the lowest ratios.

Spaghetti code is characterized by very strong coupling.

Preventing bugs via good writing

I Clarity is more important than efficiency: clarity of writing and
style.

I Use simple expressions, not complex
I Use meaningful names
I Clarity of purpose for:

I Functions.
I Loops.
I Nested constructs.

Studies have shown that few people can understand nesting of
conditional statements to more than 3 levels.

I Comments,comments,comments.
I Small size of functions,routines.

A study at IBM found that the most error-prone routines were
those larger than 500 lines of code.

Preventing bugs via good writing

I Clarity is more important than efficiency: clarity of writing and
style.

I Use simple expressions, not complex
I Use meaningful names
I Clarity of purpose for:

I Functions.
I Loops.
I Nested constructs.

Studies have shown that few people can understand nesting of
conditional statements to more than 3 levels.

I Comments,comments,comments.
I Small size of functions,routines.

A study at IBM found that the most error-prone routines were
those larger than 500 lines of code.

Preventing bugs via good writing

I Clarity is more important than efficiency: clarity of writing and
style.

I Use simple expressions, not complex
I Use meaningful names
I Clarity of purpose for:

I Functions.
I Loops.
I Nested constructs.

Studies have shown that few people can understand nesting of
conditional statements to more than 3 levels.

I Comments,comments,comments.
I Small size of functions,routines.

A study at IBM found that the most error-prone routines were
those larger than 500 lines of code.

Preventing bugs via good writing

I Clarity is more important than efficiency: clarity of writing and
style.

I Use simple expressions, not complex
I Use meaningful names
I Clarity of purpose for:

I Functions.
I Loops.
I Nested constructs.

Studies have shown that few people can understand nesting of
conditional statements to more than 3 levels.

I Comments,comments,comments.
I Small size of functions,routines.

A study at IBM found that the most error-prone routines were
those larger than 500 lines of code.

Preventing bugs via good writing 2

I Use the smallest acceptable scope for:
I Variable names.
I Static/local functions.

I Use named intermediate values.
I Avoid "Magic numbers".
I Generalize your code.
I Document your program.
I Write standard language.

Clarity of writing

.....
do j=1,n

do i=1,n
v(i,j)=(i/j)*(j/i)

end do
end do
.....

.....
do j=1,n

do i=1,n
v(i,j)=0.0
v(i,i)=1.0

end do
end do
.....

Clarity of writing

.....
do j=1,n

do i=1,n
v(i,j)=(i/j)*(j/i)

end do
end do
.....

.....
do j=1,n

do i=1,n
v(i,j)=0.0
v(i,i)=1.0

end do
end do
.....

Use meaningful names

The name of a variable, function, etc. should answer all the big
questions:

I why it exists
I what it does
I how it is used.

If a name requires a comment, then the name does not reveal
its intent.

Use meaningful names

The name of a variable, function, etc. should answer all the big
questions:

I why it exists

I what it does
I how it is used.

If a name requires a comment, then the name does not reveal
its intent.

Use meaningful names

The name of a variable, function, etc. should answer all the big
questions:

I why it exists
I what it does

I how it is used.

If a name requires a comment, then the name does not reveal
its intent.

Use meaningful names

The name of a variable, function, etc. should answer all the big
questions:

I why it exists
I what it does
I how it is used.

If a name requires a comment, then the name does not reveal
its intent.

Use meaningful names

The name of a variable, function, etc. should answer all the big
questions:

I why it exists
I what it does
I how it is used.

If a name requires a comment, then the name does not reveal
its intent.

Use meaningful names

Purpose of variables Good names Bad names
Good descriptors Bad descriptors

Running total of runningTotal,checkTotal written,ct,checks,
checks written to date nChecks CHKTTL,x,x1,x2

Velocity of a bullet velocity,trainVelocity velt,v,tv,
train velocityInMph x,x1,x2,train

Current date currentDate,todaysDate cd,current,c,x,x1,x2,date

Lines per page LinesPerPage lpp,lines,l,x,x1,x2

Optimum name length

Too long: numberOfPeopleOnTheUsOlympicteam
numberOfSeatsInTheStadium
maximumNumberOfPointsModernOlympics

Too short: n,np,ntn
n,ns,nsisd
m,mp,max,points

Just right: numberTeammembers,teamMemberCount
numSeatInStadium,seatCount
teamPointsMax,pointsRecord

The effort required to debug a program is minimized when variables
had names averaging 10 to 16 characters long.

Optimum name length

Too long: numberOfPeopleOnTheUsOlympicteam
numberOfSeatsInTheStadium
maximumNumberOfPointsModernOlympics

Too short: n,np,ntn
n,ns,nsisd
m,mp,max,points

Just right: numberTeammembers,teamMemberCount
numSeatInStadium,seatCount
teamPointsMax,pointsRecord

The effort required to debug a program is minimized when variables
had names averaging 10 to 16 characters long.

Comments in the code

I Make sure comments and code are agree.

I Don’t comment bad code - rewrite it.
I Use variable names that mean something.
I Don’t over-comment,favor quality not quantity.
I Good comments explain why not how.
I Don’t duplicate code in a comment.
I Format a program to help the reader understand it.
I Indent to show the logical structure of a program.

Comments in the code

I Make sure comments and code are agree.
I Don’t comment bad code - rewrite it.

I Use variable names that mean something.
I Don’t over-comment,favor quality not quantity.
I Good comments explain why not how.
I Don’t duplicate code in a comment.
I Format a program to help the reader understand it.
I Indent to show the logical structure of a program.

Comments in the code

I Make sure comments and code are agree.
I Don’t comment bad code - rewrite it.
I Use variable names that mean something.

I Don’t over-comment,favor quality not quantity.
I Good comments explain why not how.
I Don’t duplicate code in a comment.
I Format a program to help the reader understand it.
I Indent to show the logical structure of a program.

Comments in the code

I Make sure comments and code are agree.
I Don’t comment bad code - rewrite it.
I Use variable names that mean something.
I Don’t over-comment,favor quality not quantity.

I Good comments explain why not how.
I Don’t duplicate code in a comment.
I Format a program to help the reader understand it.
I Indent to show the logical structure of a program.

Comments in the code

I Make sure comments and code are agree.
I Don’t comment bad code - rewrite it.
I Use variable names that mean something.
I Don’t over-comment,favor quality not quantity.
I Good comments explain why not how.

I Don’t duplicate code in a comment.
I Format a program to help the reader understand it.
I Indent to show the logical structure of a program.

Comments in the code

I Make sure comments and code are agree.
I Don’t comment bad code - rewrite it.
I Use variable names that mean something.
I Don’t over-comment,favor quality not quantity.
I Good comments explain why not how.
I Don’t duplicate code in a comment.

I Format a program to help the reader understand it.
I Indent to show the logical structure of a program.

Comments in the code

I Make sure comments and code are agree.
I Don’t comment bad code - rewrite it.
I Use variable names that mean something.
I Don’t over-comment,favor quality not quantity.
I Good comments explain why not how.
I Don’t duplicate code in a comment.
I Format a program to help the reader understand it.

I Indent to show the logical structure of a program.

Comments in the code

I Make sure comments and code are agree.
I Don’t comment bad code - rewrite it.
I Use variable names that mean something.
I Don’t over-comment,favor quality not quantity.
I Good comments explain why not how.
I Don’t duplicate code in a comment.
I Format a program to help the reader understand it.
I Indent to show the logical structure of a program.

Avoid magic numbers:example

Conversion of mass mixing ratio in units of g/kg to volume mixing ratio in units of ppmv

......
REAL(8) :: ppmv
REAL(8) :: Mixing_Ratio
REAL(8) :: Molecular_Weight
...
ppmv = 1.0e+03 * Mixing_Ratio * 28.9648 / Molecular_Weight

REAL(8), PARAMETER :: G_TO_KG = 1.0d-03
REAL(8), PARAMETER :: PPV_TO_PPMV = 1.0d+06
REAL(8), PARAMETER :: SCALE_FACTOR = G_TO_KG * PPV_TO_PPMV
REAL(8), PARAMETER :: MW_DRYAIR = 28.9648
...
REAL(8) :: ppmv
REAL(8) :: Mixing_Ratio
REAL(8) :: Molecular_Weight
...
ppmv = SCALE_FACTOR * Mixing_Ratio * MW_DRYAIR / Molecular_Weight

Avoid magic numbers:example

Conversion of mass mixing ratio in units of g/kg to volume mixing ratio in units of ppmv

......
REAL(8) :: ppmv
REAL(8) :: Mixing_Ratio
REAL(8) :: Molecular_Weight
...
ppmv = 1.0e+03 * Mixing_Ratio * 28.9648 / Molecular_Weight

REAL(8), PARAMETER :: G_TO_KG = 1.0d-03
REAL(8), PARAMETER :: PPV_TO_PPMV = 1.0d+06
REAL(8), PARAMETER :: SCALE_FACTOR = G_TO_KG * PPV_TO_PPMV
REAL(8), PARAMETER :: MW_DRYAIR = 28.9648
...
REAL(8) :: ppmv
REAL(8) :: Mixing_Ratio
REAL(8) :: Molecular_Weight
...
ppmv = SCALE_FACTOR * Mixing_Ratio * MW_DRYAIR / Molecular_Weight

Avoid magic number

I Changes can be made more reliably.

I Changes can be made more easily.

I Your code is more readable.

Preventing bugs via Self-checking code

I Checking assumptions.
I "assert" macro.
I Custom "assert" macros.
I Assertions about intermediate values.
I Preconditions,postcondition.

Defensive programming.

Preventing bugs via Self-checking code

I Checking assumptions.
I "assert" macro.
I Custom "assert" macros.
I Assertions about intermediate values.
I Preconditions,postcondition.

Defensive programming.

Checking assumptions

I That an input parameter’s value falls within its expected range
(or an output parameters’ value does)

I That the value of an input-only variable is not changed by a
routine.

I That a pointer is non-NULL.
I That an array or other container passed into a routine can

contain at least X data number of data elements.
I That a table has been initialized to contain real values.
I Etc.

Assertions

I An assertion is a code (usually routine or macro) that allows a
program to check itself as runs.

I When an assertion is true, that means everything is operating
as expected

I When it’s false, that means it has detected an unexpected error
in the code.

I Use error handling code for conditions you expected to occur.

Error handling technique

I Return a neutral value.
I Substitute the closest legal value.
I Log a warning message to a file.
I Return an error code.

I Set a value of a status variable.
I Return status as the function’s return value.
I Throw an exception using the language’s build-in exception

mechanism.
I Display an error message wherever the error is encountered.
I Handle the error in whatever way works best locally.
I Shutdown.

Rules of programming style

From "The Elements of Programming Style" Kernighan and Plauger

I Write clearly don’t be too clever.
I Say what you mean, simply and directly.
I Use library functions whenever feasible.
I Avoid too many temporary variables.
I Write clearly - don’t sacrifice clarity for "efficiency".
I Let the machine do the dirty work.
I Replace repetitive expressions by calls to common functions.
I Parenthesize to avoid ambiguity.
I Choose variables names that won’t be confused.
I Avoid unnecessary branches.

Rules of programming style

I If a logical expression is hard to understand, try transforming it.
I Choose a data representation that makes the program simple.
I Write first in easy-to-understand pseudo language; then translate into whatever

language you have to use.
I Modularize. Use procedures and functions.
I Avoid gotos completely if you keep the program readable.
I Don’t patch bad code - rewrite it.
I Write and test a big program in small pieces.
I Use recursive procedures for recursively-defined data structures.
I Test input for plausibility and validity.
I Make sure input doesn’t violate the limits of the program.

Rules of programming style

I Terminate input by end-of-file marker, not by count.
I Identify bad input; recover if possible.
I Make input easy to prepare and output self-explanatory.
I Use uniform input formats.
I Make input easy to proofread.
I Use self-identifying input. Allow defaults. Echo both on output.
I Make sure all variables are initialized before use.
I Don’t stop at one bug.
I Use debugging compilers.
I Watch out for off-by-one errors.

Rules of programming style

I Take care to branch the right way on equality.
I Avoid multiple exits from the loops.
I Make sure your code does "nothing" gracefully.
I Test programs at their boundary values.
I Check some answers by hand.
I 10.0 times 0.1 is hardly ever 1.0.
I 7/8 is zero while 7.0/8.0 is not zero.
I Don’t compare floating point numbers solely equality.
I Make it right before you make it faster.
I Make it fail-safe before you make faster.

Rules of programming style

I Make it clear before you make it faster.
I Don’t sacrifice clarity for small gains of "efficiency".
I Let your compiler do the simple optimizations.
I Don’t strain to re-use code; reorganize instead.
I Make sure special cases are truly special.
I Keep it simple to make it faster.
I Don’t diddle code to make it faster - find a better algorithm.
I Instrument yout programs. Measure before making "efficiency" changes.
I Make sure comments and code agree.
I Don’t just echo the code with comments - make every comment count.

Rules of programming style

I Don’t comment bad code - rewrite it.
I Use variable names taht mean something.
I Use statement labels that mean something.
I Format a program to help the reader understand it.
I Document your data layouts.
I Don’t over-comment.

Outline

Bugs and Prevention

Testing

Static analysis

Run-time analysis

Testing: a simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tell whether the triangle is:
Scalene
Isosceles
Equilater.

Create a set of test cases for this program.
("The art of sotware testing" G.J. Myers)

Testing: a simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tell whether the triangle is:
Scalene
Isosceles
Equilater.

Create a set of test cases for this program.
("The art of sotware testing" G.J. Myers)

Testing: a simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tell whether the triangle is:
Scalene
Isosceles
Equilater.

Create a set of test cases for this program.

("The art of sotware testing" G.J. Myers)

Testing: a simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tell whether the triangle is:
Scalene
Isosceles
Equilater.

Create a set of test cases for this program.
("The art of sotware testing" G.J. Myers)

Testing: a simple program

Q:1 Do you have a test case with three integers greater than
zero such that the sum of two of the numbers is less than the
third ?

(4,1,2) is an invalide triangle.
(a,b,c) with a > b+c

4

2
1

Define valide triangles a < b + c

Testing: a simple program

Q:1 Do you have a test case with three integers greater than
zero such that the sum of two of the numbers is less than the
third ?
(4,1,2) is an invalide triangle.
(a,b,c) with a > b+c

4

2
1

Define valide triangles a < b + c

Testing: a simple program

Q:2 Do you have a test case with some permutations of
previous test?

(1,4,2) (4,1,2)

Fulfill above definition, but are still invalid.

Patch definition of valid triangles:
a < b + c b < a + c and c < a + b

Testing: a simple program

Q:2 Do you have a test case with some permutations of
previous test?

(1,4,2) (4,1,2)

Fulfill above definition, but are still invalid.

Patch definition of valid triangles:
a < b + c b < a + c and c < a + b

Testing: a simple program

Q:3 Do you have a test case with three integers greater than
zero such that the sum of two numbers is equal to the third?

(4,2,2) is invalid triangle with equal sum.

4

2 2

Fulfill above definition, but is invalid:
a< b+c and b < a+c and c < a+b

Testing: a simple program

Q:3 Do you have a test case with three integers greater than
zero such that the sum of two numbers is equal to the third?
(4,2,2) is invalid triangle with equal sum.

4

2 2

Fulfill above definition, but is invalid:
a< b+c and b < a+c and c < a+b

Testing: a simple program

Do you have a test case:

4. with some permutations of previous test? (2,4,2) (2,2,4)

5. that represents a valid scalene triangle? (3,4,5)

6. that represents a valid equilateral triangle? (3,3,3)

7. that represents a valid isosceles triangle? (4,3,3)

8. with some permutations of previous test? (3,4,3) (3,3,4)

9. in which one side has a zero value? (0,4,3)

10. in which one side has a negative value? (-1,4,3)

11. in which all sides are zero? (0,0,0)

12. specifying at least one noninteger value? (2,2.5,4)

13. specifying the wrong number of values? (2,3) or (2,3,5,4)

Q:14 For each test case did you specify the expected output from the
program in addition to the input values?

About the example

I A set of test case that satisfies these conditions does not
guarantee that all possibile errors would be found.

I An adeguate test of this program should expose at least these
errors.

I Higly qualified professional programmers score, on the
average, 7.8 out of a possibile 14.

Classification of errors

Syntax

I Definition: errors in grammar (violations of the "rules" for
forming legal language statements).

I Examples: undeclared identifiers, mismatched parentheses in
an expression, an opening brace without a matching closing
brace, etc.

I Occur: an error that is caught in the process of compiling the
program.

The easiest errors to spot by a compiler or some aid in
checking the syntax.
As you get more practice using a language, you naturally make
fewer errors, and will be able to quickly correct those that do
occur.

Classification of errors

Syntax

I Definition: errors in grammar (violations of the "rules" for
forming legal language statements).

I Examples: undeclared identifiers, mismatched parentheses in
an expression, an opening brace without a matching closing
brace, etc.

I Occur: an error that is caught in the process of compiling the
program.
The easiest errors to spot by a compiler or some aid in
checking the syntax.
As you get more practice using a language, you naturally make
fewer errors, and will be able to quickly correct those that do
occur.

Classification of errors

Runtime

I Definition: "Asking the computer to do the impossible!"
I Examples: division by zero, taking the square root of a

negative number, referring to the 101th on a list of only 100
items, deferencing a null pointer, etc.

I Occur: an error that is not detected until the program is
executed, and then causes a processing error to occur.

They are not easy to spot because they are not syntax or
grammar errors, they are subtle errors and develop in the
course of program’s execution.
Avoiding exceptions and correcting program behaviour is also
largely a matter of experience.
To prevent use defensive programming.

Classification of errors

Runtime

I Definition: "Asking the computer to do the impossible!"
I Examples: division by zero, taking the square root of a

negative number, referring to the 101th on a list of only 100
items, deferencing a null pointer, etc.

I Occur: an error that is not detected until the program is
executed, and then causes a processing error to occur.
They are not easy to spot because they are not syntax or
grammar errors, they are subtle errors and develop in the
course of program’s execution.
Avoiding exceptions and correcting program behaviour is also
largely a matter of experience.
To prevent use defensive programming.

Classification of errors

Logic (semantic, meaning)

I Definition: the program compiles (no syntax errors) and runs to
a normal completion (no runtime erros), but the output is
wrong. A statement may be syntactically correct, but mean
something other than what we intended. Therefore it has a
different effect, causing the program output to be wrong.

I Examples: improper initialization of variables, performing
arithmetic operations in the wrong order, using an incorrect
formula to compute a value, etc.

I Occur: an error that affect how the code works.

It is a type of error that only the programmer can
recognize.Finding and correcting logic errors in a program is
known as debugging.

Classification of errors

Logic (semantic, meaning)

I Definition: the program compiles (no syntax errors) and runs to
a normal completion (no runtime erros), but the output is
wrong. A statement may be syntactically correct, but mean
something other than what we intended. Therefore it has a
different effect, causing the program output to be wrong.

I Examples: improper initialization of variables, performing
arithmetic operations in the wrong order, using an incorrect
formula to compute a value, etc.

I Occur: an error that affect how the code works.
It is a type of error that only the programmer can
recognize.Finding and correcting logic errors in a program is
known as debugging.

Outline

Bugs and Prevention

Testing

Static analysis
Compiler options
Static analyzer

Run-time analysis

Definitions

Static analysis refers to a method of examinig software that
allows developers to discover dangerous programming pratices
or potential errors in source code, without actually run the code.

I Using compiler options.

I Using static analyzer.

Definitions

Static analysis refers to a method of examinig software that
allows developers to discover dangerous programming pratices
or potential errors in source code, without actually run the code.

I Using compiler options.

I Using static analyzer.

Compiler and errors

Source Program =⇒ Compiler =⇒ Target program

⇓
Status Messages and/or Warning Messages and/or Error Messages

Compiler checks:
I Syntax.
I Semantic.

Compiler and errors

Source Program =⇒ Compiler =⇒ Target program

⇓
Status Messages and/or Warning Messages and/or Error Messages

Compiler checks:
I Syntax.
I Semantic.

Lexical (Syntactic) errors

I Characters in the source that aren’t in the alphabet of the
language.

I Words in the source that aren’t in the vocabulary of the
language.

Syntactic errors

I Comment delimiters that have been put in wrong place or
omitted.

I Literal delimiters that have been put in wrong place or omitted.
I Keywords that have been misspelled.
I Required punctuation that is missing.
I Construct delimiters such as parentheses or braces that have

been missplaced.
I Blank or tab characters that are missing.
I Blank or tab characters that shouldn’t occur where they’re

found.

Semantic errors

I Names that aren’t declared.
I Operands of the wrong type for the operator they’re used with.
I Values that have the wrong type for the name to which they’re

assigned.
I Procedures that are invoked with the wrong number of

arguments.
I Procedures that are invoked with the wrong type of arguments.
I Function return values that are the wrong type for the context

in which they’re used.

Semantic errors

I Code blocks that are unreachable.
I Code blocks that have no effect.
I Local variables that are used before being initialized or

assigned.
I Local variables that are initialized or assigned but not used.
I Procedures that are never invoked.
I Procedures that have no effect.
I Global variables that are used before being initialized or

assigned.
I Global variables that are initialized or assigned, but not used.

Compilers

I Not all compilers find the same defects.

I The more information a compilers has, the more defects it can
find.

I Some compilers operate in "forgiving" mode but have "strict" or
"pedantic" mode, if you request it.

Outline

Bugs and Prevention

Testing

Static analysis
Compiler options
Static analyzer

Run-time analysis

Static analysis:example 1 part one

1 #include <stdio.h>
2 i n t main (void)
3 {
4 printf ("Two plus two is %f\n", 4);
5 return 0;
6 }

<ruggiero@shiva ~/CODICI>gcc bad.c

<ruggiero@shiva ~/CODICI>./a.out

Two plus two is 0.000000

Static analysis:example 1 part one

1 #include <stdio.h>
2 i n t main (void)
3 {
4 printf ("Two plus two is %f\n", 4);
5 return 0;
6 }

<ruggiero@shiva ~/CODICI>gcc bad.c

<ruggiero@shiva ~/CODICI>./a.out

Two plus two is 0.000000

Static analysis:example 1 part two

<ruggiero@shiva ~/CODICI>gcc -Wall bad.c

bad.c: In function main:
bad.c:4: warning: format ’%f’ expects type ’double’,
but argument 2 has type ’int’

1 #include <stdio.h>
2 i n t main (void)
3 {
4 printf ("Two plus two is %

fd

\n", 4);
5 return 0;
6 }

Static analysis:example 1 part two

<ruggiero@shiva ~/CODICI>gcc -Wall bad.c

bad.c: In function main:
bad.c:4: warning: format ’%f’ expects type ’double’,
but argument 2 has type ’int’

1 #include <stdio.h>
2 i n t main (void)
3 {
4 printf ("Two plus two is %f

d

\n", 4);
5 return 0;
6 }

Static analysis:example 1 part two

<ruggiero@shiva ~/CODICI>gcc -Wall bad.c

bad.c: In function main:
bad.c:4: warning: format ’%f’ expects type ’double’,
but argument 2 has type ’int’

1 #include <stdio.h>
2 i n t main (void)
3 {
4 printf ("Two plus two is %

f

d\n", 4);
5 return 0;
6 }

gcc options

-Wall
turns on the most commonly-used compiler warnings option
-Waddress -Warray-bounds (only with -O2) -Wc++0x-compat -Wchar-subscripts

-Wimplicit-int -Wimplicit-function-declaration -Wcomment -Wformat -Wmain (only for

C/ObjC and unless -ffreestanding) -Wmissing-braces -Wnonnull -Wparentheses

-Wpointer-sign -Wreorder -Wreturn-type -Wsequence-point -Wsign-compare (only in

C++) -Wstrict-aliasing -Wstrict-overflow=1 -Wswitch -Wtrigraphs -Wuninitialized

-Wunknown-pragmas -Wunused-function -Wunused-label -Wunused-value

-Wunused-variable -Wvolatile-register-var

Oher compilers

[ruggiero@matrix1 ~]$ pgcc bad.c

[ruggiero@matrix1 ~]$ icc bad.c

bad.c(4): warning #181: argument is incompatible
with corresponding format string conversion

printf ("Two plus two is %f\n", 4);
^

Oher compilers

[ruggiero@matrix1 ~]$ pgcc bad.c

[ruggiero@matrix1 ~]$ icc bad.c

bad.c(4): warning #181: argument is incompatible
with corresponding format string conversion

printf ("Two plus two is %f\n", 4);
^

check.c:source

1 #include <stdio.h>
2

3 i n t main (void)
4 {
5 return 0;
6 }
7 void checkVal(unsigned i n t n) {
8 i f (n < 0) {
9 /* Do something... */

10 }
11 else i f (n >= 0) {
12 /* Do something else... */
13 }
14 }

check.c:compilation

<ruggiero@shiva:~> gcc -Wall check.c

<ruggiero@shiva:~> gcc -Wall -Wextra check.c

check.c: In function ?checkVal?:
check.c:8: warning: comparison of unsigned expression < 0 is always false
check.c:11: warning: comparison of unsigned expression >= 0 is always true

check.c:compilation

<ruggiero@shiva:~> gcc -Wall check.c

<ruggiero@shiva:~> gcc -Wall -Wextra check.c

check.c: In function ?checkVal?:
check.c:8: warning: comparison of unsigned expression < 0 is always false
check.c:11: warning: comparison of unsigned expression >= 0 is always true

gcc options

-Wextra (-W)
reports the most common programming errors and less-serious but potential problem

-Wclobbered -Wempty-body
-Wignored-qualifiers -Wmissing-field-initializers
-Wmissing-parameter-type (C only) -Wold-style-declaration (C only)
-Woverride-init -Wsign-compare
-Wtype-limits -Wuninitialized (only with -O1 and above)
-Wunused-parameter (only with -Wunused or -Wall)

check1.c:source

1 #include <stdio.h>
2 i n t main (void)
3 {
4 double x = 10.0;
5 double y = 11.0;
6 double z = 0.0;
7 i f (x == y) {
8 z = x * y;
9 }

10 return 0;
11 }

<ruggiero@shiva:~> gcc -Wall -Wextra check1.c

<ruggiero@shiva:~> gcc -Wall -Wextra -Wfloat-equal check1.c

check1.c: In function main:
check1.c:8: warning: comparing floating point
with == or != is unsafe

check1.c:source

1 #include <stdio.h>
2 i n t main (void)
3 {
4 double x = 10.0;
5 double y = 11.0;
6 double z = 0.0;
7 i f (x == y) {
8 z = x * y;
9 }

10 return 0;
11 }

<ruggiero@shiva:~> gcc -Wall -Wextra check1.c

<ruggiero@shiva:~> gcc -Wall -Wextra -Wfloat-equal check1.c

check1.c: In function main:
check1.c:8: warning: comparing floating point
with == or != is unsafe

gcc: other compiler options

-Wno-div-by-zero -Wsystem-headers -Wfloat-equal -Wtraditional (C only)

-Wdeclaration-after-statement (C only) -Wundef -Wno-endif-labels -Wshadow

-Wlarger-than-len -Wpointer-arith -Wbad-function-cast (C only) -Wcast-align

-Wwrite-strings -Wconversion -Wsign-compare -Waggregate-return -Wstrict-prototypes

(C only) -Wold-style-definition (C only) -Wmissing-prototypes (C only)

-Wmissing-declarations (C only) -Wcast-qual -Wmissing-field-initializers

-Wmissing-noreturn -Wmissing-format-attribute -Wno-multichar

-Wno-deprecated-declarations -Wpacked -Wpadded -Wredundant-decls

-Wnested-externs (C only) -Wvariadic-macros -Wunreachable-code -Winline

-Wno-invalid-offsetof (C++ only) -Winvalid-pch -Wlong-long -Wdisabled-optimization

-Wno-pointer-sign

testinit.c:source
1 i n t main() {
2 i n t v[16];
3 i n t i,j,k;
4 j=i;
5 v[i]= 42;
6 return 0 ;
7 }

ruggiero@shiva:~> gcc -Wall -Wextra testinit.c

ruggiero@shiva:~> gcc -O1 -Wall -Wextra -Wuninitialized testinit.c

testinit.c: In function main
testinit.c:4: warning: unused variable k
testinit.c:5: warning: i is used uninitialized
in this function

[ruggiero@matrix1 ~]$ icc testinit.c

testinit.c(5): warning #592: variable "i" is used
before its value is set j=i;

testinit.c:source
1 i n t main() {
2 i n t v[16];
3 i n t i,j,k;
4 j=i;
5 v[i]= 42;
6 return 0 ;
7 }

ruggiero@shiva:~> gcc -Wall -Wextra testinit.c

ruggiero@shiva:~> gcc -O1 -Wall -Wextra -Wuninitialized testinit.c

testinit.c: In function main
testinit.c:4: warning: unused variable k
testinit.c:5: warning: i is used uninitialized
in this function

[ruggiero@matrix1 ~]$ icc testinit.c

testinit.c(5): warning #592: variable "i" is used
before its value is set j=i;

testinit.c:source
1 i n t main() {
2 i n t v[16];
3 i n t i,j,k;
4 j=i;
5 v[i]= 42;
6 return 0 ;
7 }

ruggiero@shiva:~> gcc -Wall -Wextra testinit.c

ruggiero@shiva:~> gcc -O1 -Wall -Wextra -Wuninitialized testinit.c

testinit.c: In function main
testinit.c:4: warning: unused variable k
testinit.c:5: warning: i is used uninitialized
in this function

[ruggiero@matrix1 ~]$ icc testinit.c

testinit.c(5): warning #592: variable "i" is used
before its value is set j=i;

testinit.c:source
1 i n t main() {
2 i n t v[16];
3 i n t i,j,k;
4 j=i;
5 v[i]= 42;
6 return 0 ;
7 }

ruggiero@shiva:~> gcc -Wall -Wextra testinit.c

ruggiero@shiva:~> gcc -O1 -Wall -Wextra -Wuninitialized testinit.c

testinit.c: In function main
testinit.c:4: warning: unused variable k
testinit.c:5: warning: i is used uninitialized
in this function

[ruggiero@matrix1 ~]$ icc testinit.c

testinit.c(5): warning #592: variable "i" is used
before its value is set j=i;

Compilation: default options

program par
i m p l i c i t none
integer ,parameter :: hacca=10

c a l l sub(hacca)

end

subroutine sub(hacca)
i m p l i c i t none
integer hacca

hacca=hacca+1
write(*,*) hacca

return

end

Compilation: default options

> xlf par.f -o par.x

> ./par.x

11

<ruggiero@ife2 ~>ifort par.f -o par.x

<ruggiero@ife2 ~> ./par.x

forrtl: severe (174): SIGSEGV, segmentation fault occurred
Image PC Routine Line Source
par.x 0000000000402688 Unknown Unknown Unknown
par.x 0000000000402670 Unknown Unknown Unknown
par.x 000000000040262A Unknown Unknown Unknown
libc.so.6 00000036FF81C40B Unknown Unknown Unknown
par.x 000000000040256A Unknown Unknown Unknown

Compilation: default options

> xlf par.f -o par.x

> ./par.x

11

<ruggiero@ife2 ~>ifort par.f -o par.x

<ruggiero@ife2 ~> ./par.x

forrtl: severe (174): SIGSEGV, segmentation fault occurred
Image PC Routine Line Source
par.x 0000000000402688 Unknown Unknown Unknown
par.x 0000000000402670 Unknown Unknown Unknown
par.x 000000000040262A Unknown Unknown Unknown
libc.so.6 00000036FF81C40B Unknown Unknown Unknown
par.x 000000000040256A Unknown Unknown Unknown

Compilation: default options

> xlf par.f -o par.x

> ./par.x

11

<ruggiero@ife2 ~>ifort par.f -o par.x

<ruggiero@ife2 ~> ./par.x

forrtl: severe (174): SIGSEGV, segmentation fault occurred
Image PC Routine Line Source
par.x 0000000000402688 Unknown Unknown Unknown
par.x 0000000000402670 Unknown Unknown Unknown
par.x 000000000040262A Unknown Unknown Unknown
libc.so.6 00000036FF81C40B Unknown Unknown Unknown
par.x 000000000040256A Unknown Unknown Unknown

Compilation: default options

<ruggiero@ife2 ~> man ifort

? -assume noprotect_constants

Tells the compiler to pass a copy of a constant actual argument.
This copy can be modified by the called routine, even though
the Fortran standard prohibits such modification. The calling
routine does not see any modification to the constant. The default
is -assume protect_constants, which passes the constant actual
argument. Any attempt to modify it results in an error.

<ruggiero@ife2 ~>ifort par.f -assume noprotect_constants -o par.x

<ruggiero@ife2 ~>./par.x

11

Compilation: default options

<ruggiero@ife2 ~> man ifort

? -assume noprotect_constants

Tells the compiler to pass a copy of a constant actual argument.
This copy can be modified by the called routine, even though
the Fortran standard prohibits such modification. The calling
routine does not see any modification to the constant. The default
is -assume protect_constants, which passes the constant actual
argument. Any attempt to modify it results in an error.

<ruggiero@ife2 ~>ifort par.f -assume noprotect_constants -o par.x

<ruggiero@ife2 ~>./par.x

11

Compilation: default options

<ruggiero@ife2 ~> man ifort

? -assume noprotect_constants

Tells the compiler to pass a copy of a constant actual argument.
This copy can be modified by the called routine, even though
the Fortran standard prohibits such modification. The calling
routine does not see any modification to the constant. The default
is -assume protect_constants, which passes the constant actual
argument. Any attempt to modify it results in an error.

<ruggiero@ife2 ~>ifort par.f -assume noprotect_constants -o par.x

<ruggiero@ife2 ~>./par.x

11

Outline

Bugs and Prevention

Testing

Static analysis
Compiler options
Static analyzer

Run-time analysis

splint

I Open Source Static Analysis Tool developed at University of
Virginia by Professor Dave Evans

I Based on Lint

I www.splint.org

I splint [-option -option ...] filename [filename ...]

splint can detect with just source code...

I Unused declarations.
I Type inconsistencies.
I Variables used before being assigned.
I Function return values that are ignored.
I Execution paths with no return.
I Switch cases that fall through.
I Apparent infinite loops.

splint can detect with annotation information

I Dereferencing pointers with possible null values.
I Using storage that is undefined or partly undefined.
I Returning storage that is undefined or partly defined.
I Type mismatches.
I Using deallocated storage.

splint can detect with annotation information

I Memory leaks.
I Inconsistent modification of caller visible states.
I Violations of information hiding.
I Undefined program behaviour due to evaluation order,

incomplete logic, infinite loops, statements with no effect, and
so on.

I Problematic uses of macros.

Static analysis:example 1 part one

1 #include <stdio.h>
2 i n t main (void)
3 {
4 printf ("Two plus two is %f\n", 4);
5 return 0;
6 }

<ruggiero@shiva ~/CODICI>gcc bad.c

<ruggiero@shiva ~/CODICI>./a.out

Two plus two is 0.000000

check.c:source

1 #include <stdio.h>
2

3 i n t main (void)
4 {
5 return 0;
6 }
7 void checkVal(unsigned i n t n) {
8 i f (n < 0) {
9 /* Do something... */

10 }
11 else i f (n >= 0) {
12 /* Do something else... */
13 }
14 }

splint:examples

<ruggiero@shiva:~> splint-3.1.2/bin/splint bad.c

Finished checking --- no warnings

<ruggiero@shiva:~> splint-3.1.2/bin/splint check.c

splint 3.1.2 --- 28 Mar 2008
check.c: (in function checkVal)
check.c:8:15: Comparison of unsigned value involving zero: n < 0
An unsigned value is used in a comparison with zero in a way that is either
a bug or confusing. (Use -unsignedcompare to inhibit warning)

check.c:11:22: Comparison of unsigned value involving zero: n >= 0
Finished checking --- 2 code warnings

splint:examples

<ruggiero@shiva:~> splint-3.1.2/bin/splint bad.c

Finished checking --- no warnings

<ruggiero@shiva:~> splint-3.1.2/bin/splint check.c

splint 3.1.2 --- 28 Mar 2008
check.c: (in function checkVal)
check.c:8:15: Comparison of unsigned value involving zero: n < 0
An unsigned value is used in a comparison with zero in a way that is either
a bug or confusing. (Use -unsignedcompare to inhibit warning)

check.c:11:22: Comparison of unsigned value involving zero: n >= 0
Finished checking --- 2 code warnings

check1.c:source

1 #include <stdio.h>
2 i n t main (void)
3 {
4 double x = 10.0;
5 double y = 11.0;
6 double z = 0.0;
7 i f (x == y) {
8 z = x * y;
9 }

10 return 0;
11 }

<ruggiero@shiva:~> gcc -Wall -Wextra check1.c

<ruggiero@shiva:~> gcc -Wall -Wextra -Wfloat-equal check1.c

check1.c: In function main:
check1.c:8: warning: comparing floating point
with == or != is unsafe

splint:examples

<ruggiero@shiva:~> splint-3.1.2/bin/splint check1.c

Splint 3.1.2 --- 28 Mar 2008

check1.c: (in function main)
check1.c:8:14: Dangerous equality comparison involving
double types: x == y Two real (float, double, or long double)
values are compared directly using == or != primitive. This
may produce unexpected results since floating point representations
are inexact. Instead, compare the difference to FLT_EPSILON
or DBL_EPSILON. (Use -realcompare to inhibit warning)

Finished checking --- 1 code warning

check1.c: rewritten

1 i n t main (void)
2 {
3 double x = 10.0;
4 double y = 11.0;
5 double z = 0.0;
6 double norma=0.1e-16;
7 double epsilon;
8 epsilon=x-y;
9 i f (epsilon < norma) {

10 z = x * y;
11 }
12

13 return 0;
14 }

average.c: source

1 #include <stdio.h>
2 i n t main (void) {
3 i n t size = 5;
4 i n t a;
5 f l o a t total;
6 f l o a t art[size];
7

8 for(a = 0 ; a < size; ++ a) {
9 art[a] = (f l o a t) a;

10 total += art[a]; }
11 printf(" %f\n" , total / (f l o a t) size);
12 return 0;
13 }

average.c: compilation e run

<ruggiero@shiva:~> gcc -Wall -Wextra average.c

<ruggiero@shiva:~> ./a.out

1.999994

<ruggiero@shiva:~> gcc -Wall -Wextra -O2 average.c

average.c: In function main:
average.c:5: warning: total may be used uninitialized
in this function

<ruggiero@shiva:~> ./a.out

nan

average.c: compilation e run

<ruggiero@shiva:~> gcc -Wall -Wextra average.c

<ruggiero@shiva:~> ./a.out

1.999994

<ruggiero@shiva:~> gcc -Wall -Wextra -O2 average.c

average.c: In function main:
average.c:5: warning: total may be used uninitialized
in this function

<ruggiero@shiva:~> ./a.out

nan

average.c: splint

<ruggiero@shiva:~> splint-3.1.2/bin/splint average.c

Splint 3.1.2 --- 28 Mar 2008

average.c: (in function main)
average.c:10:4 Variable total used before definition
An rvalue is used that may not be initialized to a value
on some execution path. (Use -usedef to inhibit warning)
average.c:11:20: Variable total used before definition

Finished checking --- 2 code warnings

average.c: new version

1 #include <stdio.h>
2 i n t main (void) {
3 i n t size = 5;
4 i n t a;
5 f l o a t total;
6 f l o a t art[size];
7 total=0;
8 for(a = 0 ; a < size; ++ a) {
9 art[a] = (f l o a t) a;

10 total += art[a]; }
11 printf(" %f\n" , total / (f l o a t) size);
12 return 0;
13 }

assign.c: source and compilation

1 #include <stdio.h>
2 main()
3 {
4 i n t a=0;
5 while (a=1)
6 printf("hello\n");
7 return 0;
8 }

<ruggiero@shiva:~> gcc -Wall -Wextra assign.c

assigna.c:3: warning: return type defaults to int
assign.c: In function main:
assign.c:5: warning: suggest parentheses around assignment used as
truth value

assign.c: source and compilation

1 #include <stdio.h>
2 main()
3 {
4 i n t a=0;
5 while (a=1)
6 printf("hello\n");
7 return 0;
8 }

<ruggiero@shiva:~> gcc -Wall -Wextra assign.c

assigna.c:3: warning: return type defaults to int
assign.c: In function main:
assign.c:5: warning: suggest parentheses around assignment used as
truth value

assign.c: splint

<ruggiero@shiva:~>splint-3.1.2/bin/splint assign.c

Splint 3.1.2 --- 28 Mar 2008
assign.c: (in function main)
assign.c:5:14: Test expression for while is assignment expression:a=1
The condition test is an assignment expression. Probably, you mean
to use == instead of =. If an assignment is intended, add an extra
parentheses nesting (e.g., if ((a = b)) ...) to suppress this message.
(Use -predassign to inhibit warning)
assign.c:5:14: Test expression for while not boolean, type int: a=1
Test expression type is not boolean or int. (Use -predboolint
to inhibit warning)
Finished checking --- 2 code warnings

memory.c: source and compilation

1

2 #include <stdlib.h>
3 i n t main()
4 {
5 i n t *p = malloc(5*sizeof(i n t));
6

7

8

9 *p = 1;
10 free(p);
11 return 0;
12 }

<ruggiero@shiva:~> gcc -Wall -Wextra memory.c

memory.c: source and compilation

1

2 #include <stdlib.h>
3 i n t main()
4 {
5 i n t *p = malloc(5*sizeof(i n t));
6

7

8

9 *p = 1;
10 free(p);
11 return 0;
12 }

<ruggiero@shiva:~> gcc -Wall -Wextra memory.c

memory.c: splint

<ruggiero@shiva:~> splint-3.1.2/bin/splint memory.c

Splint 3.1.2 --- 28 Mar 2008

memory.c: (in function main)
memory.c:9:10: Dereference of possibly null pointer p: *p
A possibly null pointer is dereferenced. Value is either
the result of a function which may return null (in which
case, code should check it is not null), or a global,
parameter or structure field declared with the null
qualifier. (Use -nullderef to inhibit warning)
memory.c:5:18: Storage p may become null

Finished checking --- 1 code warning

memory.c: new version

1 #include <stdlib.h>
2 #include <stdio.h>
3 i n t main()
4 {
5 i n t *p = malloc(5*sizeof(i n t));
6 if (p == NULL) {
7 fprintf(stderr, "error in malloc");
8 exit(EXIT_FAILURE);
9 } else *p = 1;

10 free(p);
11 return 0;
12 }

out_b.c: source

1 #include<stdio.h>
2 #define N 5
3 i n t main (void)
4 {
5 i n t t[N];
6 i n t i;
7

8 i=6;
9 t[i] = i+1;

10

11 return 0;
12 }

out_b.c: splint

<ruggiero@shiva:~> splint-3.1.2/bin/splint out_b.c

<ruggiero@shiva:~> splint-3.1.2/bin/splint +bounds out_b.c

Splint 3.1.2 --- 28 Mar 2008

out_b.c: (in function main)
out_b.c:9:9: Likely out-of-bounds store: t[i]

Unable to resolve constraint:
requires 4 >= 6
needed to satisfy precondition:
requires maxSet(t @ out_b.c:9:9) >= i @ out_b.c:9:11

A memory write may write to an address beyond the allocated buffer. (Use
-likelyboundswrite to inhibit warning)

Finished checking --- 1 code warning

out_b.c: splint

<ruggiero@shiva:~> splint-3.1.2/bin/splint out_b.c

<ruggiero@shiva:~> splint-3.1.2/bin/splint +bounds out_b.c

Splint 3.1.2 --- 28 Mar 2008

out_b.c: (in function main)
out_b.c:9:9: Likely out-of-bounds store: t[i]

Unable to resolve constraint:
requires 4 >= 6
needed to satisfy precondition:
requires maxSet(t @ out_b.c:9:9) >= i @ out_b.c:9:11

A memory write may write to an address beyond the allocated buffer. (Use
-likelyboundswrite to inhibit warning)

Finished checking --- 1 code warning

error.f: source

1 REAL FUNCTION COMPAV(SCORE,COUNT)
2 INTEGER SUM,COUNT,J,SCORE(5)
3 DO 30 I = 1,COUNT
4 SUM = SUM + SCORE(I)
5 30 CONTINUE
6 COMPAV = SUM/COUNT
7 write(*,*) compav
8 END
9 PROGRAM AVENUM

10 PARAMETER(MAXNOS=10)
11 INTEGER I, COUNT
12 REAL NUMS(MAXNOS), AVG
13 COUNT = 0
14 DO 80 I = 1,MAXNOS
15 READ (5,*,END=100) NUMS(I)
16 COUNT = COUNT + 1
17 80 CONTINUE
18 100 AVG = COMPAV(NUMS, COUNT)
19 END

error.f: compilation

<ruggiero@ife2 /ftnchek>gfortran -Wall -Wextra -O2 error.f

In file error.f:2

INTEGER SUM,COUNT,J,SCORE(5)
1

CWarning: Unused variable j declared at (1)
error.f: In function compav:
error.f:2: warning: sum may be used uninitialized in this function

error.f: compilation

<ruggiero@ife2/ftnchek>pgf90 -Minform=inform error.f

PGF90-I-0035-Predefined intrinsic sum loses intrinsic property (error.f: 5)
PGF90-I-0035-Predefined intrinsic count loses intrinsic property (error.f: 16)

error.f: compilation

<ruggiero@ife2 /ftnchek>ifort -warn all error.f

fortcom: Warning: error.f, line 4: This name has not been given an explicit type. [I]
DO 30 I = 1,COUNT

-------------------^
fortcom: Info: error.f, line 2: This variable has not been used. [J]

INTEGER SUM,COUNT,J,SCORE(5)
-------------------------------^
fortcom: Warning: error.f, line 13: This name has not been given an explicit type. [MAXNOS]

PARAMETER(MAXNOS=10)
---------------------^
fortcom: Warning: error.f, line 21: This name has not been given an explicit type. [COMPAV]
100 AVG = COMPAV(NUMS, COUNT)
------------------^

error.f: compilation

<ruggiero@ife2 /ftnchek>g95 -Wall -Wextra error.f

In file error.f:6

30 CONTINUE
1

Warning (142): Nonblock DO statement at (1) is obsolescent
In file error.f:1

REAL FUNCTION COMPAV(SCORE,COUNT)
1

Warning (163): Actual argument ’score’ at (1) does not have an INTENT
In file error.f:1

REAL FUNCTION COMPAV(SCORE,COUNT)
1

Warning (163): Actual argument ’count’ at (1) does not have an INTENT
In file error.f:2

INTEGER SUM,COUNT,J,SCORE(5)
1

Warning (137): Variable ’j’ at (1) is never used and never set

error.f: compilation

In file error.f:20

80 CONTINUE
1

Warning (142): Nonblock DO statement at (1) is obsolescent
In file error.f:21

100 AVG = COMPAV(NUMS, COUNT)
1

Warning (165): Implicit interface ’compav’ called at (1)
In file error.f:15

REAL NUMS(MAXNOS), AVG
1

Warning (112): Variable ’avg’ at (1) is set but never used
In file error.f:21

100 AVG = COMPAV(NUMS, COUNT)
1

In file error.f:1

REAL FUNCTION COMPAV(SCORE,COUNT)
2

Warning (155): Inconsistent types (REAL(4)/INTEGER(4))
in actual argument lists at (1) and (2)

www.dsm.fordham.edu/ftnchek/

<ruggiero@ife2/ftnchek>./bin/ftnchek error.f

FTNCHEK Version 3.3 November 2004

File error.f:
7 COMPAV = SUM/COUNT

^
Warning near line 7 col 21 file error.f:
integer quotient expr SUM/COUNT converted to real

Warning in module COMPAV in file error.f:
Variables declared but never referenced:

J declared at line 2 file error.f

Warning in module COMPAV in file error.f:
Variables may be used before set:

SUM used at line 5 file error.f
SUM set at line 5 file error.f

Warning in module AVENUM in file error.f:
Variables set but never used:

AVG set at line 21 file error.f

www.dsm.fordham.edu/ftnchek

0 syntax errors detected in file error.f
4 warnings issued in file error.f

Warning: Subprogram COMPAV argument data type mismatch at position 1:
Dummy arg SCORE in module COMPAV line 1 file

error.f is type intg
Actual arg NUMS in module AVENUM line 21 file

error.f is type real

Warning: Subprogram COMPAV argument arrayness mismatch at position 1:
Dummy arg SCORE in module COMPAV line 1 file

error.f has 1 dim size 5
Actual arg NUMS in module AVENUM line 21 file

error.f has 1 dim size 10

Static analyzer for Fortran

I Forcheck can handle up Fortran 95 and some Fortran 2003.
item Cleanscape FortranLint can handle up to Fortran 95.

I plusFORT is a multi-purpose suite of tools for analyzing and
improving Fortran programs.

I ...

Static analyzer: errors and warnings

I 40% false positive reports of correct code.
I 40% multiple occurence of same problem.
I 10% minor or cosmetic problems.
I 10% serious bugs, very hard to find by other methods.

From "The Developer’s Guide to Debugging" T. Grotker, U.
Holtmann, H. Keding, M. Wloka

Static analyzer: Lessons learned

I Do not ignore compiler warnings, even if they appear to be
harmless.

I Use multiple compilers to check the code.
I Familiarize yourself with a static checker.
I Reduce static checker errors to (almost) zero.
I Rerun all test cases after a code cleanup.
I Doing regular sweeps of the source code will pay off in long

term.

From "The Developer’s Guide to Debugging" T. Grotker, U.
Holtmann, H. Keding, M. Wloka

Outline

Bugs and Prevention

Testing

Static analysis

Run-time analysis
Memory checker

Runtime signals

I When a job terminates abnormally, it usually tries to send a
signal (exit code) indicating what went wrong.

I The exit code from a job is a standard OS termination status.
I Typically, exit code 0 (zero) means successful completion.
I Your job itself calling exit() with a non-zero value to terminate

itself and indicate an error.
I The specific meaning of the signal numbers is

platform-dependent.

Runtime signals

You can find out why the job was killed using:
[ruggiero@matrix1 ~]$ kill -l

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
....

Runtime signals

To find out what all the "kill -l" words mean:
[ruggiero@matrix1 ~]$ man 7 signal

.....
Signal Value Action Comment
--
SIGHUP 1 Term Hangup detected on controlling terminal

or death of controlling process
SIGINT 2 Term Interrupt from keyboard
SIGQUIT 3 Core Quit from keyboard
SIGILL 4 Core Illegal Instruction
SIGABRT 6 Core Abort signal from abort(3)
......

Action description

Term Default action is to terminate the process.
Ign Default action is to ignore the signal.
Core Default action is to terminate the process and dump the core.
Stop Default action is to stop the process.
Cont Default action is to continue the process if is currently stopped.

Common runtime signals

Signal name OS signal name Description

Floating point exception SIGFPE The program attempted

an arithmetic operation

with values that

do not make sense

Segmentation fault SIGSEGV The program accessed

memory incorrectly

Aborted SIGABRT Generated by the runtime

library of the program

or a library it uses,

after having detecting

a failure condition.

FPE example

1 main()
2 {
3 i n t a = 1.;
4 i n t b = 0.;
5 i n t c = a/b;
6 }

[ruggiero@matrix1 ~]$ gcc fpe_example.c

[ruggiero@matrix1 ~]$./a.out

Floating exception

FPE example

1 main()
2 {
3 i n t a = 1.;
4 i n t b = 0.;
5 i n t c = a/b;
6 }

[ruggiero@matrix1 ~]$ gcc fpe_example.c

[ruggiero@matrix1 ~]$./a.out

Floating exception

SEGV example

1 main()
2 {
3 i n t array[5]; i n t i;
4 for(i = 0; i < 255; i++) {
5 array[i] = 10;}
6 return 0;
7 }

[ruggiero@matrix1 ~]$ gcc segv_example.c

[ruggiero@matrix1 ~]$./a.out

Segmentation fault

SEGV example

1 main()
2 {
3 i n t array[5]; i n t i;
4 for(i = 0; i < 255; i++) {
5 array[i] = 10;}
6 return 0;
7 }

[ruggiero@matrix1 ~]$ gcc segv_example.c

[ruggiero@matrix1 ~]$./a.out

Segmentation fault

ABORT example

1 #include <assert.h>
2 main()
3 {
4 i n t i=0;
5 assert(i!=0);
6 }

[ruggiero@matrix1 ~]$ gcc abort_example.c

[ruggiero@matrix1 ~]$./a.out

a.out: abort_example.c:5: main: Assertion ‘i!=0’ failed.
Abort

ABORT example

1 #include <assert.h>
2 main()
3 {
4 i n t i=0;
5 assert(i!=0);
6 }

[ruggiero@matrix1 ~]$ gcc abort_example.c

[ruggiero@matrix1 ~]$./a.out

a.out: abort_example.c:5: main: Assertion ‘i!=0’ failed.
Abort

Common runtime errors

I Allocation Deallocation errors (AD).
I Array conformance errors (AC).
I Array Index out of Bound (AIOB).
I Language specific errors (LS).
I Floating Point errors (FP).
I Input Output errors (IO).
I Memory leaks (ML).
I Pointer errors (PE).
I String errors (SE).
I Subprogram call errors (SCE).
I Uninitialized Variables (UV).

Useful link

I Iowa State University’s High Performance Computing Group

I Run Time Error Detection Test Suites for Fortran, C, and C++

I http://rted.public.iastate.edu

Grading Methodology: score

I 0.0: is given when the error was not detected.
I 1.0: is given for error messages with the correct error name.
I 2.0: is given for error messages with the correct error name

and line number where the error occurred but not the file name
where the error occurred.

I 3.0: is given for error messages with the correct error name,
line number and the name of the file where the error occurred.

I 4.0: s given for error messages which contain the information
for a score of 3.0 but less information than needed for a score
of 5.0 .

I 5.0: is given in all cases when the error message contains all
the information needed for the quick fixing of the error.

Grading Methodology : an example

!***
! copyright (c) 2005 Iowa State University, Glenn Luecke, James Coyle,
! James Hoekstra, Marina Kraeva, Olga Taborskaia, Andre Wehe, Ying Xu,
! and Ziyu Zhang, All rights reserved.
! Licensed under the Educational Community License version 1.0.
! See the full agreement at http://rted.public.iastate.edu/ .
!***
!***
!
! Name of the test: F_H_1_1_b.f90
!
! Summary: allocation/deallocation error
!
! Test description: deallocation twice
! for allocatable array in a subroutine
! contains in a main program
!
! Support files: Not needed
!
! Env. requirements: Not needed
!
! Keywords: deallocation error
! subroutine contains in a main program

Grading Methodology: an example

!
! Last modified: 1/17/2005
!
! Programmer: Ying Xu, Iowa State Univ.
!***

program tests
i m p l i c i t none
integer :: n=10, m=20
double precision :: var

c a l l sub(n,m,var)
pr in t *,var
contains

subroutine sub(n,m,var)
integer , in tent(in) :: n,m
double precision, in tent(inout) :: var
double precision, al locatable :: arr(:,:) ! DECLARE

Grading Methodology: an example

integer :: i,j
al locate(arr(1:n,1:m))
do i=1,n

do j=1,m
arr(i,j) = dble(i*j)

enddo
end do
var = arr(n,m)
deallocate(arr)
deallocate(arr) ! deallocate second time here. ERROR
return

end subroutine sub
end program tests

Grading Methodology: an example

Real message (grade 1.0)

Fortran runtime error: Internal: Attempt to DEALLOCATE
unallocated memory.

Ideal message (grade 5.0)

ERROR: unallocated array
At line 52 column 17 of subprogram ’sub’
in file ’F_H_1_1_b.f90’, the argument
’arr’ in the DEALLOCATE statement is an
unallocated array. The variable is declared
in line 41 in subprogram ’sub’ in file ’F_H_1_1_b.f90’.

Fortran Results

Compiler AC A D AIOB LS FP IO

gcc-4.3.2 1 0.981481 3.40025 2.88235 0 2.33333
gcc-4.3.2 1 1.38889 3.40025 2.88235 0 2.33333
gcc-4.4.3 1 1.38889 3.40025 2.88235 0 2.33333
gcc-4.6.3 1 1.27778 0.969504 0.94117 0 2.33333
gcc-4.7.0 1 1.38889 0.969504 0.94117 0.714286 2.33333
g95.4.0.3 0.421053 1.22222 3.60864 3.82353 0.571428 2.66667
intel-10.1.021 0.421053 1.42593 3.45362 2.82353 0.571428 2.11111
intel-11.0.074 0.421053 1.68519 3.446 2.82353 0.571428 2.11111
intel-11.1 1 1.90741 3.47649 2.88235 1.42857 2.33333
intel-12.0.2 0.421053 1.62963 3.44727 2.82353 0.571428 2.11111
intel-14.0.1 0.421053 1.62963 3.44854 2.82353 0.571428 2.11111
open64.4.2.3 3 0.888889 2.63405 3 0 1
pgi-7.2-5 0.421053 0.388889 3.8526 3.82353 0 2.44444
pgi-8.0-1 0.421053 0.388889 3.8526 3.82353 0 2.44444
pgi-10.3 0.421053 0.388889 3.8526 3.82353 0 2.44444
pgi-11.8 0.421053 0.388889 3.8526 3.82353 0 2.44444
pgi-12.8 1 1 3.8831 3.82353 1 2.61111
pgi-13.10 1 1 3.8831 3.82353 1 2.72222
pgi-14.1.0 0.421053 0.5 3.8526 3.82353 0 2.61111
sun.12.1 3 2.77778 3.00381 3 2 2.16667
sun.12.1+bcheck 3 2.77778 3.03431 3 0.285714 2.16667

Fortran Results

Compiler ML PE SE SCE UV

gcc-4.3.2 0 3.49609 3.25 0 0.0159236
gcc-4.3.2 0 3.49609 3.25 0 0.0286624
gcc-4.4.3 0 3.49609 3.25 0 0.0286624
gcc-4.6.3 0 1 3.25 0.166667 0.22293
gcc-4.7.0 0 1 3.25 0.166667 0.130573
g95.4.0.3 1 3 3.43333 0 0.0159236
intel-10.1.021 0 3.5625 0 0.166667 0.286624
intel-11.0.074 0 3.55469 0 0.166667 0.299363
intel-11.1 1 3.55469 1 1 1.07643
intel-12.0.2 0 3.55469 0 0.166667 0.292994
intel-14.0.1 0 3.55469 0 0.166667 0.292994
open64.4.2.3 0 3.3625 0 0.0833333 0.286624
pgi-7.2-5 0 4 0 0 0.022293
pgi-8.0-1 0 4 0 0 0.022293
pgi-10.3 0 4 0 0 0.0254777
pgi-11.8 0 4 0 0 0.0127389
pgi-12.8 1 4 1 1 1
pgi-13.10 1 4 1 1 1
pgi-14.1.0 0 4 0 0 0.143312
sun.12.1 0 3.03125 3 0 0.022293
sun.12.1+bcheck 1.25 3.03125 3 1 0.640127

C Results

Compiler AD AIoB LS FP IO

gcc-4.3.2 0.44 0.00925926 0.0416667 0.2 0.0666667
gcc-4.4.3 0.44 0.00925926 0.0416667 0.2 0.0666667
gcc-4.6.3 0.44 0.00925926 0.0416667 0.2 0.2
gcc-4.7.0 0.44 0.00925926 0.0416667 0.2 0.2
intel-10.1.021 0.52 0.00925926 0.0416667 0 0.2
intel-11.0.074 0.52 0.00925926 0.0416667 0 0.2
intel-11.1 0.68 1 1 1 1
intel-12.0.2 0.44 0.00925926 0.0416667 0 0.2
intel-14.0.1 0.4 0.00925926 0.0416667 0 0.2
open64-4.2.3 0.52 0.00925926 0.0416667 0 0.2
pgi-7.2-5 0.44 0.00925926 0.0416667 0 0.2
pgi-8.0-1 0.44 0.00925926 0.0416667 0 0.2
pgi-10.3 0.44 0.00925926 0.0416667 0 0.2
pgi-11.8 0.44 0.00925926 0.0416667 0 0.2
pgi-12.8 0.68 2.40741 2.16667 0 1
pgi-13.10 0.68 2.40741 2.16667 0 1
pgi-14.1-0 0.48 1.93519 1.625 0 0.2
sun-12.1 0.44 0.00925926 0 0 0.2
sun-12.1+bcheck 0.16 0 0 0 0

C Results

Compiler ML PE SE SCE UV

gcc-4.3.2 0.0166667 0.0166667 0.05 0 0
gcc-4.4.3 0.0166667 0.0166667 0.05 0 0
gcc-4.6.3 0.0166667 0.0166667 0.05 0 0
gcc-4.7.0 0.0166667 0.0166667 0.05 0 0
intel-10.1.021 0.0666667 0.0166667 0.05 0 0
intel-11.0.074 0.0666667 0.0166667 0.05 0 0
intel-11.1 1 1 1 1 1
intel-12.0.2 0.0666667 0.0166667 0.05 0 0
intel-14.0.1 0.133333 0.0166667 0.05 0 0
open64-4.2.3 0.0666667 0.0166667 0.05 0 0
pgi-7.2-5 0.0666667 0.0166667 0.05 0 0
pgi-8.0-1 0.0666667 0.0166667 0.05 0 0
pgi-10.3 0.0666667 0.0166667 0.05 0 0
pgi-11.8 0.0666667 0.0166667 0.05 0 0
pgi-12.8 1 1 1 1 1
pgi-13.10 1 1 1 1 1
pgi-14.1-0 0.133333 0.0166667 0.05 0 0
sun-12.1 0.0666667 0.0166667 0.05 0 0
sun-12.1+bcheck 1.13333 0.025 0 0 0

C++ Results

Compiler AD AIoB FP IO ML PE SE UV

gcc-4.3.2 0.44 0.00925926 0 0 0.0666667 0.0166667 0.05 0
gcc-4.4.3 0.44 0.00925926 0 0 0.0666667 0.0166667 0.05 0
gcc-4.6.3 0.44 0.00925926 0 0.2 0.0666667 0.0166667 0.05 0
gcc-4.7.0 0.44 0.00925926 0 0.2 0.0666667 0.0166667 0.05 0
intel-10.1.021 0.330275 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
intel-11.0.074 0.330275 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
intel-11.1 0.926606 1 1 1 1 1 1 1
intel-12.0.2 0.311927 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
intel-14.1.0 0.4 0.00925926 0 0.2 0.133333 0.0166667 0.05 0
open64-4.2.3 0.330275 0.00903614 0 0 0.047619 0.0254777 0.05 0
pgi-7.2.5 0.311927 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
pgi-8.0.1 0.311927 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
pgi-10.3 0.311927 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
pgi-11.8 0.311927 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
pgi-12.8 0.926606 2.23795 1 1 1 1 1 1
pgi-13.1 0.926606 2.23494 1 1 1 1 1 1
pgi-14.1-0 0.321101 1.69277 0 0.0714286 0.0714285 0.0254777 0.05 0
sun-12.1 0.311927 0.00903614 0 0 0.047619 0.0254777 0.05 0
sun-12.1+bcheck 0.247706 0.0150602 0 0 1.16667 0.0191083 0 0

Grading Methodology: Used options

Fortran
gcc -frange-check -O0 -fbounds-check -g -ffpe-trap=invalid,zero,overflow -fdiagnostics-show-location=every-line
g95 -O0 -fbounds-check -g -ftrace=full
intel -O0 -C -g -traceback -ftrapuv -check
open64 -C -g -O0
pgi -C -g -Mchkptr -O0
sun -g -C -O0 -xs -ftrap=%all -fnonstd -xcheck=%all

C
gcc -O0 -g -fbounds-check -ftrapv
intel -O0 -C -g -traceback
open64 -g -C -O0
pgi -g -C -Mchkptr -O0
sun -g -C -O0 -xs -ftrap=%all -fnonstd -xcheck=%all

C++
gcc -O0 -g -fbounds-check -ftrapv
intel -O0 -C -g -traceback
open64 -g -C -O0
pgi -g -C -Mchkptr -O0
sun -g -C -O0 -xs -ftrap=%all -fnonstd -xcheck=%all

Outline

Bugs and Prevention

Testing

Static analysis

Run-time analysis
Memory checker

Fixing memory problems

I Memory leaks are data structures that are allocated at runtime,
but not deallocated once they are no longer needed in the
program.

I Incorrect use of the memory management is associated with
incorrect calls to the memory management: freeing a block of
memory more than once, accessing memory after freeing...

I Buffer overruns are bugs where memory outside of the
allocated boundaries is overwritten, or corrupted.

I Uninitialized memory bugs: reading uninitialized memory.

Valgrind

I Open Source Software, available on Linux for x86 and
PowerPc processors.

I Interprets the object code, not needed to modify object files or
executable, non require special compiler flags, recompiling, or
relinking the program.

I Command is simply added at the shell command line.
I No program source is required (black-box analysis).

www.valgrind.org

Valgrind:tools

I Memcheck: a memory checker.
I Callgrind: a runtime profiler.
I Cachegrind: a cache profiler.
I Helgrind: find race conditions.
I Massif: a memory profiler.

Why should I use Valgrind?

I Valgrind will tell you about tough to find bugs.
I Valgrind is very through.
I You may be tempted to think that Valgrind is too picky, since

your program may seem to work even when valgrind
complains. It is users’ experience that fixing ALL Valgrind
complaints will save you time in the long run.

But...
Valgrind is kind-of like a virtual x86 interpeter. So your program
will run 10 to 30 times slower than normal.
Valgrind won’t check static arrays.

Why should I use Valgrind?

I Valgrind will tell you about tough to find bugs.
I Valgrind is very through.
I You may be tempted to think that Valgrind is too picky, since

your program may seem to work even when valgrind
complains. It is users’ experience that fixing ALL Valgrind
complaints will save you time in the long run.

But...
Valgrind is kind-of like a virtual x86 interpeter. So your program
will run 10 to 30 times slower than normal.
Valgrind won’t check static arrays.

Use of uninitialized memory:test1.c

I Local Variables that have not been initialized.
I The contents of malloc’s blocks, before writing there.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t p,t,b[10];
5 i f (p==5)

ERROR

6 t=p+1;
7 b[p]=100;

ERROR

8 return 0;
9 }

Use of uninitialized memory:test1.c

I Local Variables that have not been initialized.
I The contents of malloc’s blocks, before writing there.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t p,t,b[10];
5 i f (p==5)

ERROR

6 t=p+1;
7 b[p]=100;

ERROR

8 return 0;
9 }

Use of uninitialized memory:test1.c

I Local Variables that have not been initialized.
I The contents of malloc’s blocks, before writing there.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t p,t,b[10];
5 i f (p==5) ERROR
6 t=p+1;
7 b[p]=100; ERROR
8 return 0;
9 }

Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t1

==7879== Memcheck, a memory error detector.
....

==7879== Conditional jump or move depends on uninitialised value(s)
==7879== at 0x8048399: main (test1.c:5)
==7879==
==7879== Use of uninitialised value of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== Invalid write of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879== Address 0xCEF8FE44 is not stack’d, malloc’d or (recently) free’d
==7879==
==7879== Process terminating with default action of signal 11 (SIGSEGV)
==7879== Access not within mapped region at address 0xCEF8FE44
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 3 from 1)
==7879== malloc/free: in use at exit: 0 bytes in 0 blocks.
==7879== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==7879== For counts of detected errors, rerun with: -v
==7879== All heap blocks were freed -- no leaks are possible.
Segmentation fault

Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t1

==7879== Memcheck, a memory error detector.
....

==7879== Conditional jump or move depends on uninitialised value(s)
==7879== at 0x8048399: main (test1.c:5)
==7879==
==7879== Use of uninitialised value of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== Invalid write of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879== Address 0xCEF8FE44 is not stack’d, malloc’d or (recently) free’d
==7879==
==7879== Process terminating with default action of signal 11 (SIGSEGV)
==7879== Access not within mapped region at address 0xCEF8FE44
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 3 from 1)
==7879== malloc/free: in use at exit: 0 bytes in 0 blocks.
==7879== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==7879== For counts of detected errors, rerun with: -v
==7879== All heap blocks were freed -- no leaks are possible.
Segmentation fault

Illegal read/write test2.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i,a;
5 p=malloc(10*sizeof(i n t));
6 p[11]=1;

ERROR

7 a=p[11];

ERROR

8 free(p);
9 return 0;

10 }

Illegal read/write test2.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i,a;
5 p=malloc(10*sizeof(i n t));
6 p[11]=1; ERROR
7 a=p[11]; ERROR
8 free(p);
9 return 0;

10 }

Illegal read/write: output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t2

.....
==8081== Invalid write of size 4
==8081== at 0x804840A: main (test2.c:6)
==8081== Address 0x417B054 is 4 bytes after a block of size 40 alloc’d
==8081== at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8081== by 0x8048400: main (test2.c:5)
==8081==
==8081== Invalid read of size 4
==8081== at 0x8048416: main (test2.c:7)
==8081== Address 0x417B054 is 4 bytes after a block of size 40 alloc’d
==8081== at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8081== by 0x8048400: main (test2.c:5)
==8081==
==8081== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 3 from 1)
==8081== malloc/free: in use at exit: 0 bytes in 0 blocks.
==8081== malloc/free: 1 allocs, 1 frees, 40 bytes allocated.
==8081== For counts of detected errors, rerun with: -v
==8081== All heap blocks were freed -- no leaks are possible.

Invalid free:test3.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 free(p);
9 free(p);

ERROR

10 return 0;
11 }

Invalid free:test3.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 free(p);
9 free(p); ERROR

10 return 0;
11 }

Invalid free: output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t3

.....
==8208== Invalid free() / delete / delete[]
==8208== at 0x40231CF: free (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8208== by 0x804843C: main (test3.c:9)
==8208== Address 0x417B028 is 0 bytes inside a block of size 40 free’d
==8208== at 0x40231CF: free (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8208== by 0x8048431: main (test3.c:8)
==8208==
==8208== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 3 from 1)
==8208== malloc/free: in use at exit: 0 bytes in 0 blocks.
==8208== malloc/free: 1 allocs, 2 frees, 40 bytes allocated.
==8208== For counts of detected errors, rerun with: -v
==8208== All heap blocks were freed -- no leaks are possible.

Mismatched use of functions:test4.cpp

I If allocated with malloc,calloc,realloc,valloc or memalign,
you must deallocate with free.

I If allocated with new[], you must dealloacate with delete[].
I If allocated with new, you must deallocate with delete.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=(i n t*)malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 delete(p);

ERROR

9 return 0;
10 }

Mismatched use of functions:test4.cpp

I If allocated with malloc,calloc,realloc,valloc or memalign,
you must deallocate with free.

I If allocated with new[], you must dealloacate with delete[].
I If allocated with new, you must deallocate with delete.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=(i n t*)malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 delete(p);

ERROR

9 return 0;
10 }

Mismatched use of functions:test4.cpp

I If allocated with malloc,calloc,realloc,valloc or memalign,
you must deallocate with free.

I If allocated with new[], you must dealloacate with delete[].
I If allocated with new, you must deallocate with delete.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=(i n t*)malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 delete(p); ERROR
9 return 0;

10 }

Mismatched use of functions: output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t4

.....
==8330== Mismatched free() / delete / delete []
==8330== at 0x4022EE6: operator delete(void*) (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8330==by 0x80484F1: main (test4.c:8)
==8330==Address 0x4292028 is 0 bytes inside a block of size 40 alloc’d
==8330==at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8330==by 0x80484C0: main (test4.c:5)
==8330==
==8330==ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 3 from 1)
==8330==malloc/free: in use at exit: 0 bytes in 0 blocks.
==8330==malloc/free: 1 allocs, 1 frees, 40 bytes allocated.
==8330==For counts of detected errors, rerun with: -v
==8330==All heap blocks were freed -- no leaks are possible.

Invalid system call parameter:test5.c

1 #include <stdlib.h>
2 #include <unistd.h>
3 i n t main()
4 {
5 i n t *p;
6 p=malloc(10);
7 read(0,p,100);

ERROR

8 free(p);
9 return 0;

10 }

Invalid system call parameter:test5.c

1 #include <stdlib.h>
2 #include <unistd.h>
3 i n t main()
4 {
5 i n t *p;
6 p=malloc(10);
7 read(0,p,100); ERROR
8 free(p);
9 return 0;

10 }

Invalid system call parameter: output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t5

...
==18007== Syscall param read(buf) points to unaddressable byte(s)
==18007== at 0x4EEC240: __read_nocancel (in /lib64/libc-2.5.so)
==18007== by 0x40056F: main (test5.c:7)
==18007== Address 0x517d04a is 0 bytes after a block of size 10 alloc’d
==18007== at 0x4C21168: malloc (vg_replace_malloc.c:236)
==18007== by 0x400555: main (test5.c:6)
...

Memory leak detection:test6.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(5*sizeof(i n t));
6 for(i=0; i<5;i++)
7 p[i]=i;
8

free(p);

9 return 0;
10 }

Memory leak detection:test6.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(5*sizeof(i n t));
6 for(i=0; i<5;i++)
7 p[i]=i;
8 free(p);
9 return 0;

10 }

Memory leak detection: output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t6

.....
==8237== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 3 from 1)

==8237== malloc/free: in use at exit: 20 bytes in 1 blocks.
==8237== malloc/free: 1 allocs, 0 frees, 20 bytes allocated.
==8237== For counts of detected errors, rerun with: -v
==8237== searching for pointers to 1 not-freed blocks.
==8237== checked 65,900 bytes.
==8237==
==8237== 20 bytes in 1 blocks are definitely lost in loss record 1 of 1
==8237== at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)

==8237== by 0x80483D0: main (test6.c:5)
==8237==
==8237== LEAK SUMMARY:
==8237== definitely lost: 20 bytes in 1 blocks.
==8237== possibly lost: 0 bytes in 0 blocks.
==8237== still reachable: 0 bytes in 0 blocks.
==8237== suppressed: 0 bytes in 0 blocks.

What won’t Valgrind find?

1 i n t main()
2 {
3 char x[10];
4 x[11]=’a’;
5 }

I Valgrind doesn’t perform bound checking on static arrays (allocated on stack).
I Solution for testing purposes is simply to change static arrays into dinamically

allocated memory taken from the heap, where you will get bounds-checking, though
this could be a message of unfreed memory.

What won’t Valgrind find?

1 i n t main()
2 {
3 char x[10];
4 x[11]=’a’;
5 }

I Valgrind doesn’t perform bound checking on static arrays (allocated on stack).
I Solution for testing purposes is simply to change static arrays into dinamically

allocated memory taken from the heap, where you will get bounds-checking, though
this could be a message of unfreed memory.

sum.c: source

1 #include <stdio.h>
2 #include <stdlib.h>
3 i n t main (i n t argc, char* argv[]) {
4 const i n t size=10;
5 i n t n, sum=0;
6 i n t* A = (i n t*)malloc(sizeof(i n t)*size);
7

8 for(n=size; n>0; n--)
9 A[n] = n;

10 for(n=0; n<size; n++)
11 sum+=A[n];
12 printf("sum=%d\n", sum);
13 return 0;
14 }

sum.c: compilation and run

ruggiero@shiva:~> gcc -O0 -g -fbounds-check -ftrapv sum.c

ruggiero@shiva:~> ./a.out

sum=45

Valgrind:example

ruggiero@shiva:~> valgrind --leak-check=full --tool=memcheck ./a.out

==21579== Memcheck, a memory error detector.
...
==21791==Invalid write of size 4
==21791==at 0x804842A: main (sum.c:9)
==21791==Address 0x417B050 is 0 bytes after a block of size 40 alloc’d
==21791==at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==21791==by 0x8048410: main (sum.c:6)
==21791==Use of uninitialised value of size 4
==21791== at 0x408685B: _itoa_word (in /lib/libc-2.5.so)
==21791==by 0x408A581: vfprintf (in /lib/libc-2.5.so)
==21791==by 0x4090572: printf (in /lib/libc-2.5.so)
==21791==by 0x804846B: main (sum.c:12)
==21791==
==21791==Conditional jump or move depends on uninitialised value(s)
==21791==at 0x4086863: _itoa_word (in /lib/libc-2.5.so)
==21791==by 0x408A581: vfprintf (in /lib/libc-2.5.so)
==21791==by 0x4090572: printf (in /lib/libc-2.5.so)
==21791==by 0x804846B: main (sum.c:12)
==21791==40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==21791==at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==21791==by 0x8048410: main (sum.c:6)
==21791==

outbc.c

1 #include <stdio.h>
2 #include<stdlib.h>
3 i n t main (void)
4 {
5 i n t i;
6 i n t *a = (i n t*) malloc(9*sizeof(i n t));
7

8 for (i=0; i<=9; ++i){
9 a[i] = i;

10 printf ("%d\n ", a[i]);
11 }
12

13 free(a);
14 return 0;
15 }

outbc.c: compilation and run

ruggiero@shiva:~> icc -C -g outbc.c

ruggiero@shiva:~> ./a.out

0
1
2
3
4
5
6
7
8
9

outbc.c: compilation and run

ruggiero@shiva:~> pgcc -C -g outbc.c

ruggiero@shiva:~> ./a.out

0
1
2
3
4
5
6
7
8
9

Electric Fence

I Electric Fence (efence) stops your program on the exact
instruction that overruns (or underruns) a malloc() memory
buffer.

I GDB will then display the source-code line that causes the bug.
I It works by using the virtual-memory hardware to create a

red-zone at the border of each buffer - touch that, and your
program stops.

I Catch all of those formerly impossible-to-catch overrun bugs
that have been bothering you for years.

Electric Fence

ruggiero@shiva:~> icc -g outbc.c libefence.a -o outbc -lpthread

ruggiero@shiva:~> ./outbc

0
1
2
3
4
5
6
7
8
Segmentation fault

Esercitazione:Run time errors

I http://rted.public.iastate.edu/Serial/tests.html
I Nella directory RTED leggere il file Readme
I Modificare il compilatore e le relative opzioni per cercare di

ottenere il valore piu’ alto possibile
I Posso migliorare i risultati usando valgrind?

	Bugs and Prevention
	Testing
	Static analysis
	Compiler options
	Static analyzer

	Run-time analysis
	Memory checker

