
Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Parallel Algorithms

I We will talk about Parallel Algorithms for Scientific Computing
I not from a theoretical point of view but a discussion of some typical

“situations” you may encounter
I focusing on Distributed Memory Layouts
I addressing to possible C and Fortran MPI implementations
I a few advanced MPI concepts will be discussed
I we will show good practice, not always the best practice

I The purpose
I giving ideas for setting up the (MPI) parallelization of your scientific code
I understanding terminology and common techniques well implemented

in the libraries you may want to use

Introduction

I The best serial algorithm is not always the best after parallelization (if
the parallelization is possible at all!)

I Scalability analysis of a CFD RANS solver, simpleFoam (from the
finite-volume OpenFOAM suite)

I the most expensive computing section is the linear solver
I time-step versus number of nodes - Blue Gene/Q architecture
I PCG solver: preconditioned conjugate gradient solver
I GAMG solver: generalised geometric-algebraic multi-grid solver

Introduction / 2

I Another basic concept about performances of parallel programming:
the slowest rules!

I the program ends when the slowest process finishes its work
I if synchronizations are performed (MPI_Barrier), each process

waits for the slowest process at each barrier, the result may be
disastrous

I Beware of serial parts of the code usually performed by rank=0
process (or by all processes)

I remember Amhdal law and speed-up limit

1 +
Parallel Section Time
Serial Section Time

I critical especially for massively parallel applications (e.g., Nprocesses >
100)

Introduction / 3

I Basic principle: each process should perform the same amount of
work

I if each process performs the same computations (Single Program
Multiple Data paradigm) the main task is to split the data among
processes

I Communication issues need to be considered
I minimizing: prefer decomposition where MPI exchanges are small
I balancing: include communication time when estimating the process

work
I optimizing: use efficiently the MPI procedures

I non-blocking communications
I topologies
I Remote Memory Access (RMA)
I patterns
I . . .

Introduction / 4

I If WT is the total work split among N processes, P = 1...N, a global
unbalancing factor may be evaluated as

max
P=1,N

∣∣∣∣WT − N ·WP

WT

∣∣∣∣
I In the pure SPMD case, the amount of work may be roughly

substituted with the amount of processed data
I grid-points, volumes, cells, Fourier modes, particles,. . .

I But including the communication cost may be a good idea especially
when communication time is not negligible

Introduction / 5

I Beware: unbalancing is not a symmetrical concept
I N-1 processes slow, one process fast: it is ok
I N-1 processes fast, one process slow: catastrophic! Unfortunately, it

may happen for the notorious rank=0

Programming models

I Mixing Distributed and Shared memory programming models (Hybrid
programming, e.g. MPI+OpenMP) may help:

I to allow for parallelization up to a larger number of cores
I to reduce communication times
I not a panacea, MPI does not perform real communications when the

data are in the same node
I refer to the next lessons about that

I Heterogeneous computing is today more and more on the rise
I depending on the device, the code need to be significantly modified

(Nvidia GPU)
I or at least massive scalability must be ensured (Intel MIC)
I how to efficiently decompose work among host and devices having

different potentiality?

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Partial Differential Equations

I Consider a set of Partial Differential Equations

du
dt

= f(u)

I where u is a vector function of space x and time t
I f is the forcing term involving time, space and derivatives

∂αu
∂xα

I Depending on PDE features (f, BC, IC, . . .), many algorithms may be
used to numerically solve the equation, e.g.

I finite difference
I finite volumes
I finite elements
I spectral methods

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Finite Difference Time Domain

I Example: 1d convection-diffusion equation

du
dt

= c
du
dx

+ ν
d2u
dx2

I Uniform discretization grid

xi = (i − 1) · dx ; i = 1,N

I Explicit Time advancement (e.g. Euler)

u(n+1)
i − u(n)

i
dt

= c
(

du
dx

)(n)

i
+ ν

(
d2u
dx2

)(n)

i

I Need to evaluate derivatives on grid points

Finite Difference Time Domain

I Using Explicit Finite differences, the derivatives are approximated by
linear combination of values in the “stencil” around node i(

dαu
dxα

)
i
=

∑
k=−l,r

ak ui+k

I Coefficients ak are chosen to optimize the order of accuracy, the
harmonic behaviour,...

I The stencil may be symmetric or not depending on
I the needed numerical properties (e.g. upwind schemes)
I boundary treatment

Finite Difference Time Domain

I Example: 4-th order centered FD:(
du
dx

)
i
=

1/12ui−2 − 2/3ui−1 + 2/3ui+1 − 1/12ui+2

dx

I For points close to boundaries two approaches are common
I use adequate asymmetric stencil (hopefully preserving the numerical

properties), e.g.(
du
dx

)
1
=
−25/12u1 + 4u2 − 3u3 + 4/3u4 − 1/4u5

dx(
du
dx

)
2
= ...

I use halo (ghost) regions to maintain the same internal scheme

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

FDTD: Distributing work

I Distributing work is rather simple because the computations are
mainly “local” (FDTD explicit in time and explicit in space)

I “global” array is an abstraction: there is no global array allocated
anywhere

I beware: there should be no global array allocated anywhere
I For 1d cases, each process stores arrays with size N/NPROC

I if N is not multiple of NPROC , you have to deal with the remainders
I distribute over NPROC − 1 processes and assign the remainder to the

proc NPROC
I split across NPROC processes and assign the remainder r < NPROC one

per process (usually the last r ranks are selected, expecting that
rank = 0 could be already a bit overloaded)

FDTD: Distributing work

I The index of the array is a local index, the global index may be easily
rebuilt

I considering the remainder is zero

i_glob = i+rank*n

I Dynamic memory allocation is needed to avoid recompilation when
changing the number of processes

I In Fortran, you can preserve the global indexing by exploiting the
user-defined array indexing u(istart:iend)

FDTD: Distributing work

I Terminology
I internal points: evolved points not depending on points belonging to

other domains
I boundary points: evolved points depending on points belonging to other

domains
I halo points: points belonging to another domain such that there is a

boundary point which depends on them
I corner points: just a geometrical description for Cartesian grids, may be

halo points or useless points depending on the algorithm

FDTD: Distributing work

I In order to calculate the next state of variables on points, some data
from adjacent processes are needed

I need to communicate these regions at (least at) each time-step: halo
exchange

I Artificial boundaries are created for each process
I BC must be imposed only on original boundaries, artificial boundaries

need to exchange data
I To perform FD derivatives the halo choice allows to preserve results

I anyhow, to decrease communications, asymmetric stencils may be
adopted for small terms of the equations

I Ghost values need to be updated whenever a derivative is
calculated, e.g. to compute ∂

∂x

(
u ∂u
∂x

)
I ghost updating of u to calculate ∂u

∂x
I ghost updating of ∂u

∂x to compute the final result

1D versus 2D/3D decomposition

I Consider Cartesian domain
I 2D-Decomposition increases the number of processes to

communicate with
I But may reduce the amount of communications

I 1D-Decomposition: each process sends and receives 2N data
I 2D-Decomposition: each process sends and receives 4N/

√
NPROC data

I 2D-Decomposition is convenient for massively parallel cases

I Same idea for 3D cases: 3D decomposition may scale up to
thousands of processes

Halo exchange

I Map of Halo exchange for a 2D grid

I From the process point of view, a very asymmetric configuration!
I if periodic boundaries are included, symmetry may be recovered

Cartesian Communicators

I Best practice: duplicate communicator to ensure communications will
never conflict

I required if the code is made into a component for use in other codes
I But there is much more: MPI provides facilities to handle such

Cartesian Topologies
I Cartesian Communicators

I MPI_Cart_create, MPI_Cart_Shift. MPI_Cart_Coords,...
I activating reordering, the MPI implementation may associate processes

to perform a better process placement
I communicating trough sub-communicators (e.g., rows communicator,

columns communicator) may improve performances
I useful also to simplify coding

Clarifying halo exchange

I Let us clarify: boundary nodes are sent to neighbour processes to fill
their halo regions

I Remember: MPI common usage is two sided (the only way until MPI
2)

I if process A sends data to process B, both A and B must be aware of it
and call an MPI routine doing the right job

I one-sided communications (RMA) were introduced in MPI 2, very useful
but probably not crucial for the basic domain decomposition

Heterogeneous decomposition

I Assume your architecture features nodes with 8 cores and 2 GPUs
each

I for your code GPU is RGPU times faster than a single core
I but you do not want to waste the power of CPUs

I You have to devise a non-uniform decomposition, e.g.

I Take care of the possible unbalancing: a small relative unbalancing
for a core may be dramatic wrt GPU performance degradation

I give to CPUs less work than than theoretical optimal values

Heterogeneous decomposition / 2

I Of course, you need to write a code running two different paths
according to its rank

I A naive but effective approach: set NCOREXNODE and NGPUXNODE

GPU = .false.
if(mod(n_rank,NCOREXNODE) .lt. NGPUXNODE) then

call acc_set_device(acc_device_nvidia)
call acc_set_device_num(mod(n_rank,NCOREXNODE),acc_device_nvidia)
print*,’n_rank: ’,n_rank,’ tries to set GPU: ’,mod(n_rank,NCOREXNODE)
my_device = acc_get_device_num(acc_device_nvidia)
print*,’n_rank: ’,n_rank,’ is using device: ’,my_device
print*,’Set GPU to true for rank: ’,n_rank
GPU = .true.

endif
........
if(GPU) then; call var_k_eval_acc(ik) ; else; call var_k_eval_omp(ik) ; endif
if(GPU) then; call update_var_k_mpi_acc() ; else; call update_var_k_mpi_omp() ; endif
if(GPU) then; call bc_var_k_acc() ; else; call bc_var_k_omp() ; endif
if(GPU) then; call rhs_k_eval_acc() ; else; call rhs_k_eval_omp() ; endif
........

I use MPI_Comm_split to be more robust

Pattern SendRecv

I The basic pattern is based on MPI_Sendrecv
I e.g.: send to left and receive from right, and let MPI handling the

circular dependencies
I by the way, MPI_Sendrecv is commonly implemented by
MPI_Isend, MPI_Irecv and a pair of MPI_Wait

I beware: send to left and receive from left cannot work, why?
I For 2d decomposition, at least 4 calls are needed

I send to left and receive from right
I send to right and receive from left
I send to top and receive from bottom
I send to bottom and receive from top

I 4 calls more if you need corners
I send LU and receive from RB
I . . .

Non-blocking communications

I Non-blocking functions may improve performances
I reducing the artificial synchronization points
I but the final performances have to be tested (and compared to the
MPI_Sendrecv ones)

I A possible choice (consider neighbours ordered as
down,right,up,left)

do i=1,n_neighbours
call MPI_Irecv(....)

enddo
do i=1,n_neighbours

call MPI_Send(....)
enddo
call MPI_Waitall(....) ! wait receive non-blocking calls

I Does not perform well in practice. Why?

Non-blocking communications / 2

I Contention at the receiver: the bandwidth is shared among all
processes sending to the same process

I receive do not interfere with Sends
I Sends block and control timing

I Ordering of sends introduces delays
I Bandwidth is being wasted

I How many steps are needed to finish the exchange?
I this is the first one (and the answer is 6)

Non-blocking communications / 3

I Prefer the pattern

do i=1,n_neighbours
call MPI_Irecv(....)

enddo
do i=1,n_neighbours

call MPI_ISend(....)
enddo
call MPI_Waitall(....) ! wait non-blocking send and receive

I This may end in 4 steps (the minimal theoretical limit)

I Actual performances depend on architecture, MPI implementation,...
I Manually controlling the scheduling is a possibility (e.g., Phased

Communication) but consider it only if the current exchange times
are huge

Using buffers

I Halo data are usually not contiguous in memory
I naive approach: use buffers to prepare data to send or receive
I when copying back received data be careful about copying only actually

received buffers (not corresponding to physical boundary conditions)

for(j = 1; j<=mymsize_y; j++) buffer_s_rl[j-1] = T[stride_y+j];
for(j = 1; j<=mymsize_y; j++) buffer_s_lr[j-1] = T[mymsize_x*stride_y+j];
for(i = 1; i<=mymsize_x; i++) buffer_s_tb[i-1] = T[stride_y*i+1];
for(i = 1; i<=mymsize_x; i++) buffer_s_bt[i-1] = T[stride_y*i+mymsize_y];

MPI_Sendrecv(buffer_s_rl, mymsize_y, MPI_DOUBLE, dest_rl, tag,
buffer_r_rl, mymsize_y, MPI_DOUBLE, source_rl, tag,
cartesianComm, &status);

MPI_Sendrecv(buffer_s_lr, mymsize_y, MPI_DOUBLE, dest_lr, tag+1,
buffer_r_lr, mymsize_y, MPI_DOUBLE, source_lr, tag+1,
cartesianComm, &status);

MPI_Sendrecv(buffer_s_tb, mymsize_x, MPI_DOUBLE, dest_tb, tag+2,
buffer_r_tb, mymsize_x, MPI_DOUBLE, source_tb, tag+2,
cartesianComm, &status);

MPI_Sendrecv(buffer_s_bt, mymsize_x, MPI_DOUBLE, dest_bt, tag+3,
buffer_r_bt, mymsize_x, MPI_DOUBLE, source_bt, tag+3,
cartesianComm, &status);

if(source_rl>=0)for(j=1;j<=mymsize_y;j++)T[stride_y*(mymsize_x+1)+j]=buffer_r_rl[j-1];
if(source_lr>=0)for(j=1;j<=mymsize_y;j++)T[j]=buffer_r_lr[j-1];
if(source_tb>=0)for(i=1;i<=mymsize_x;i++)T[stride_y*i+mymsize_y+1]=buffer_r_tb[i-1];
if(source_bt>=0)for(i=1;i<=mymsize_x;i++)T[stride_y*i]=buffer_r_bt[i-1];

Fortran alternative

I Using Fortran, buffers may be automatically managed by
the language

I unlike C counter-parts, Fortran pointers may point to non-contiguous
memory regions

buffer_s_rl => T(1,1:mymsize_y)
buffer_r_rl => T(mymsize_x+1:1:mymsize_y)
call MPI_Sendrecv(buffer_s_rl, mymsize_y, MPI_DOUBLE_PRECISION, dest_rl, tag, &

buffer_r_rl, mymsize_y, MPI_DOUBLE_PRECISION, source_rl, tag, &
cartesianComm, status, ierr)

I Or you can trust the array syntax
I probably the compiler will create the buffers
I and in some cases, it may fail, why?

call MPI_Sendrecv(T(1,1:mymsize_y), mymsize_y, MPI_DOUBLE_PRECISION, dest_rl, tag, &
T(mymsize_x+1:1:mymsize_y), mymsize_y, MPI_DOUBLE_PRECISION, source_rl, tag, &
cartesianComm, status, ierr)

Using Data-types

I It it possible to avoid the usage of buffers?
I in principle yes, data-types are a solution
I type vector is enough for halo regions of Cartesian grids
I or use subarray which is more intuitive
I perform MPI communications sending a MPI vector or subarray as a

single element
I Performances actually depend on the underlying implementation
I Again, try it if you see that buffering times are significant

Hiding communications

I It is possible to devise MPI communication patterns capable of
minimizing the communication times

I First idea: use non-blocking send/recv and perform the part of
algorithm which does need halo values before waiting for the
communication completion

1. start non-blocking send
2. start non-blocking receive
3. advances internal grid points (halo values are not needed)
4. wait for send/recv completion (probably finished when arriving here)
5. advances boundary grid points (halo values are needed now)

I Good idea but, unfortunately the advancement algorithm need to be
split

I hard work for complex codes
I Anything else?

Hiding communications / 2

I Using exchange buffers instead of directly exchanging the evolved
variables may be exploited

I 1st iteration: start non-blocking receive
I Halo updating

I fill send buffer
I start non-blocking send
I waitall receive
I copy from receive buffers
I start non-blocking receive
I waitall send

I Advance from 1st to 2nd iteration
I Halo updating
I Advance from 2st to 3nd iteration
I it works!

Hiding communications / 3

I Before starting optimizing the patterns, check with a profiler
the actual impact of communications in your code

I From a real-world example:
I code for Direct Numerical Simulation of turbulence
I explicit in time and space, 3D Cartesian decomposition
I weak scaling up to 32768 cores with efficiency around 95% using

blocking MPI_Sendrecv and buffers!
I strong scaling is much less efficient: which problem are you

addressing?
I Does it worth while optimizing it?
I Dealing with heterogeneous computing, hiding communications may

require additional effort
I try to hide not only MPI communication costs, but also host/device

communications
I patterns may be tricky and still dependent on programming paradigm

(CUDA, OpenCL,. . .)

Collective and Reductions

I Even in explicit algorithms, exchanging halos is not enough to carry
on the computation

I often, you need to perform “reductions”, requiring collective
communications

I Consider you want to check the behaviour of “residuals” (norm of
field difference among two consecutive time-steps)

I MPI_Allreduce will help you
I The situation is more critical for implicit algorithms

I the impact of collective communications may the actual bottle-neck of
the whole code (see later)

Collective and Reductions / 2

I Up to MPI-2, collective communications were always blocking
I to perform non-blocking collectives you had to use threads (Hybrid

Programming)
I Using MPI-3 non-blocking collective procedures are available

I check if your MPI implementation supports MPI-3
I anyhow, the usage of threads may be still a good option for other

reasons (again, study Hybrid Programming)
I But the problem is that, often, collective operations must be executed

and finished before going on with the computation
I select carefully the algorithm to implement

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Multi-block structured grids

I Compared to single-block structured grids, an improvement in order
to deal with complex geometries

I especially when different geometrical parts need a different treatment,
i.e. different equations, e.g. fluid-structure interaction

I structured grids may be quite easily generated with current grid
generators

I capability of dealing with moving and overlapping grids (CHIMERA)

Multi-block and OO

I Multi-block may be well implemented in Object Oriented
Programming, i.e. a block may a be an object

type, public:: Type_Block
integer(I4P):: Ni=0,Nj=0,Nk=0
integer(I4P):: N_var

contains
procedure:: init => init_block
procedure:: advance => advance_block
procedure:: halo_exchange => halo_exchange_block
procedure:: print => print_block

endtype Type_Block

I And, if needed, organized using lists, trees, hash-tables, . . .
I Plan the code design accurately before starting

Multi-block: Load Balancing

I As always, load balancing is crucial
I First case: just a few of large blocks

I e.g., two blocks where the first one is used to generate the inlet
Boundary Conditions for the second one

I Simplest strategy: decompose each block using all MPI processes
I For each time-step each process sequentially evolves both blocks

Multi-block: Load Balancing / 2

I Two-fold MPI communications: intra-node and extra-node
I non-blocking MPI routines are needed for extra-node communications
do it=1,itmax

! First block:
call update_var_mpi_acc_001() ! MPI: blocking update intra-block halo
call exc_bc_var_acc_001() ! MPI: call non-blocking extra-block halo

! Second block:
call update_var_mpi_acc_002() ! MPI: blocking update intra-block halo
call exc_bc_var_acc_002() ! MPI: call non-blocking extra-block halo

! Wait extra-block exchange var
call exc_wait_var_acc_001() ! MPI: wait to complete extra-block halo
call exc_wait_var_acc_002() ! MPI: wait to complete extra-block halo

! First block: step II
call bc_var_acc_001() ! impose boundary conditions
call rhs_eval_acc_001() ! compute forcing terms
call var_eval_acc_001(ik) ! advance solution

! Second block: step II
call bc_var_acc_002() ! impose boundary conditions
call rhs_eval_acc_002() ! compute forcing terms
call var_eval_acc_002(ik) ! advance solution

enddo

Multi-block: Load Balancing / 3

I Second case
I the number of blocks is a bit larger
I some blocks are too small to be split among all the processors

I Use Multiple Instruction Multiple Data approach: group processes
and assign groups to blocks

I the simplest approach is to give a weight WI to each block depending
on the work-load per point

I and to assign processes to block I having number of points NI

proportionally to its work-load

NP,I =
WI · NI∑
WJ · NJ

NP

Multi-block: Load Balancing / 4

I Manually handling intra-node and extra-node communications may
become a nightmare

I split processes using MPI communicators and use intra-communicator
usual domain decomposition

I and MPI_COMM_WORLD or MPI Inter-Communicators to exchange
data between different groups of processes

Multi-block: Load Balancing / 5

I MPI_Comm_split: split processes in groups
I MPI_Intercomm_create: create intercommunicators among

different groups

/* User code must generate membershipKey in the range [0, 1, 2] */
membershipKey = rank % 3;
/* Build intra-communicator for local sub-group */
MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);
/* Build inter-communicators. Tags are hard-coded. */
if (membershipKey == 0) /* Group 0 communicates with group 1. */
{ MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1, 1, &myFirstComm); }
else if (membershipKey == 1) /* Group 1 communicates with groups 0 and 2. */
{ MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0, 1, &myFirstComm);
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2, 12, &mySecondComm); }

else if (membershipKey == 2) /* Group 2 communicates with group 1. */
{ MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1, 12, &myFirstComm); }
/* Do work ... */
/* Free communicators... */

Multi-block: Load Balancing / 5

I Third case
I the number of blocks is large
I and the sizes may be different

I Common strategy
I avoid intra-block MPI parallelization
I if possible, use a shared-memory (OpenMP) intra-node parallelization

I Group blocks and assign groups to processes
I obviously, the number of blocks must be greater or equal than the

number of processes
I in any case, to ensure a proper load balancing an algorithm has to be

devised

Multi-block: Load Balancing / 6

I Load Balancing Naive Algorithm
I sort the block in descending order according to their work-loads
I assign each block to a process until each process has one block
I assign each of the remaining blocks to the most unloaded block

I Consider an unlucky case
I 4 blocks having 1 million points each and 1 block having 2 million points
I the best strategy results into the very unbalanced distribution
(1m+1m)-2m-1m-1m

Multi-block: Load Balancing / 7

I Improve algorithm allowing block splitting
I iterative algorithm: at each iteration sort and assign blocks to less

loaded processes and check if the unbalancing factor is less than the
goal tolerance

I if not, split the largest block of the most unbalanced process along the
largest direction and restart the algorithm until the required balancing is
achieved

I consider possible constraints: e.g., if using multi-grid schemes you
require that each block has enough power of 2 after block splitting

I devising a robust algorithm is not trivial

Multi-block: Load Balancing / 8

I Can you do better?
I include communication costs when estimating work load
I especially significant when dealing with overlapping grids
I use a graph representation with weighted edges

Multi-block: Exchanging halo data

I Considering the “many blocks per process” configuration
I before starting, store the blocks and process owners to communicate

with (send and/or receive)
I at each time step exchange data using adequate patterns
I no simple sendrecv structure may be used (sender and receivers are

not symmetrically distributed)
I A possible pattern

1. copy from arrays to send buffers
2. non-blocking recv from all relevant processes to buffers
3. non-blocking send to all relevant processes to buffers
4. loop over messages to receive

4.a waitany catches the first arrived message
4.b copy received buffers to variables

5. waitall send

Multi-block: Exchanging halo data

! 1. copy from arrays to send buffers
!
! 2. non-blocking recv from all relevant processes to buffers

do i_id=1,maxrecvid_num
recvid = myrecvid(i_id)
call receiveblockdata_fromid(receivearray(1,1,i_id),recvid, &

numrecv(i_id)*sendrecv_datasize,receiverequests(i_id))
enddo

! 3. non-blocking send to all relevant processes to buffers
do i_id=1,maxsendid_num

sendid = mysendid(i_id)
call sendblockdata_toid(sendarray(1,1,i_id),sendid, &

numsend(i_id)*sendrecv_datasize,sendrequests(i_id))
enddo

! 4. loop over messages to receive
do i_id=1,maxrecvid_num

4.a waitany catches the first arrived message
call waitanymessages(receiverequests,maxrecvid_num,reqnum)
4.b copy received buffers to variables
do i_in_id=1,numrecv(reqnum)

a = receiveindices(i_in_id,1,reqnum)
b = receiveindices(i_in_id,2,reqnum)
iq1 = receiveindices(i_in_id,3,reqnum)
imax1 = receiveindices(i_in_id,4,reqnum)
jmax1 = receiveindices(i_in_id,5,reqnum)
call copyqreceivedata(imax1,jmax1,a,b,q(iq1),receivearray,i_in_id,reqnum)

enddo
enddo

! 5. waitall send
call waitallmessages(sendrequests,maxsendid_num)

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Particle tracking

I Consider you want to track particles moving according to the values
of the velocity on your grid-points

I e.g., evolve Eulerian flow field advancing Navier-Stokes equation
I and simulate pollutant dispersion evolving Lagrangian particle paths

I If velocity values are known at grid points, to get the value of velocity
of the particle you have to interpolate from surrounding points

I Beware: we are only going to deal with non-interacting particles
I particle dynamics may be much much richer, we are not discussing

molecular dynamics here
I and the issues arising in different contexts may be much different and

complex

Particle and processes

I Considering multi-dimensional decompositions, it is clear that particle
tracking is one of the case for which corner data are required

I When considering domain decomposition, at least three issues must
be considered with care

I load balancing including particles cost
I changes in processes owning particles
I dynamic memory layouts for particle storing

Particle and processes / 2

I Particle data need to be communicated from one process to another
I reasonings about blocking/non-blocking communications and MPI

patterns still apply
I If the cost of particle computing is high, the symmetry of Cartesian

load balancing could be not enough anymore
I in the simplest cases, symmetrically assigning a different amount of

points to processes may solve the problem (see heterogeneous
decomposition example)

I in the worst cases, e.g., when particle clustering occurs, no simple
symmetry is still available and the Cartesian Communicator is not the
right choice

I graph topology? multi-block? unstructured grid?

Particle and processes / 3

I Consider a simple domain decomposition with 2 processes
(1st=blue, 2nd=red)

I Try to follow a particle from A to F positions
I the process owning this particle has to change to access velocity field

values
I it is clear that process 1 should own the particle when passing trough A

and F, while process 2 owns the particle for C and D positions

Particle and processes / 4

I What about B and E positions?
I the first idea is to consider an artificial line in the middle of the process

boundaries and assign particles wrt this edge
I with this approach, in the sketched case both B and E would belong to

the first process

I Consider, however, an unlucky case provided on the right
I many particle communications would be needed
I is it possible to devise something better?

Particle and processes / 5

I Conceive a dynamical domain decomposition
I the region among “left” and “right” points does not statically belongs to a

process
I Particle coming from the left still belong to left process as long as

they are in the inter-region
I the same for the right side

I With this approach, even in the unlucky case, the amount of
communications is small

Particle and processes / 6

I A non trivial problem is devising a memory structure able to host
particle data migrating from one process to another one

I the problem: the particles to be exchanged are not known a priori

typedef struct particle {
double pos [3]; double mass;
int type;
int number; // char name [80];

} particle;

I A linked list is a common solution
I deleting an element from a list is easy moving pointers
I include a name or a number tagging a particle to follow it when moving

across processes

struct particle_list {
particle p;
struct particle_list * next;

};

Particle and processes / 7

I Using lists may be not efficient as you like when performing loops
I or you are more familiar with arrays and you do not want to change

particle p[max_loc_particles];

I The array must be able to host new particles coming from other
processes

I add a field to particle struct (or use a special tag, e.g. 0) for empty
places

I work only on active “particles”
I To efficiently fill that places, you need to define and update

I the number of free places for each process
I an auxiliary array pointing to the empty places

int n_free_places;
particle free_places[max_loc_particles];

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Parallel-by-point algorithms

I Explicit space/time FD are “parallel-by-point” algorithms
I the computations can be done at each grid point

independently of the computations at the other grid points

I explicit FD is parallel-by-point:

ui ⇒
(
∂u
∂x

)
i

do i=istart,iend
du_dx(i) = 1./(2.*dx)*(u(i+1)-i(i-1))

enddo

I explicit time advancement is parallel-by-point:

u(n)
i ⇒ u(n+1)

i = c
(

du
dx

)(n)

i
+ ν

(
d2u
dx2

)(n)

i

I By the way, these algorithms allow easy shared-memory
parallelizations

I core vectorization, using SSE or AVX units
I multi-core thread parallelization (pThread or OpenMP)

Finite Volumes

I A conservation law problem

∂u
∂t

+∇ · f(u) = q

may be discretized by integrating over each cell i of the mesh

dui

dt
+

1
Vi

∫
Si

f(u) · ndS =
1
Vi

∫
Vi

qdV

I ui stands for the mean value

ui =
1
Vi

∫
Vi

udV

I Compared to FD, one of the main advantages is the possibility to
handle unstructured grids

I Vertex-centered or Cell-centered (or mixed) configurations exist

Finite Volumes / 2

I To obtain a linear system, integrals must be expressed
in terms of mean values

I For Volume integrals, midpoint rule is the basic option

qi =
1
Vi

∫
Vi

qdV ' q(xi)

I For Surface integrals

1
Vi

∑
k

∫
Si,k

f(u) · nkdS

interpolation is needed to obtain the functions values at quadrature
points (face value ff) starting from the values at computational nodes
(cell values fP and fN)

ff = D · fP + (1− D) · fN

Finite Volumes / 3

I Finite Volume space discretization is parallel-by-point (but often time
advancement is not)

I Interpolation is the most critical point wrt parallelism
I Consider a simple FVM domain decomposition: each cell belongs

exactly to one processor
I no inherent overlap for computational points

I Mesh faces can be grouped as follows
I Internal faces, within a single processor mesh
I Boundary faces
I Inter-processor boundary faces: faces used to be internal but are now

separate and represented on 2 CPUs. No face may belong to more
than 2 sub-domains

Finite Volumes / 4

I The challenge it to efficiently implement the treatment of
inter-processor boundaries

I Note: domain decomposition not trivial for complex (unstructured)
geometries to achieve load balancing

I Two common choices
I Halo Layer approach
I Zero Halo Layer approach

FV: Halo Layer approach

I Considering
ff = D · fP + (1− D) · fN

in parallel, fP and fN may live on different processors
I Traditionally, FVM parallelization uses halo layer approach (similar to

FD approach): data for cells next to a processor boundary is
duplicated

I Halo layer covers all processor boundaries and is explicitly updated
through parallel communications calls

I Pro: Communications pattern is prescribed, only halo information is
exchanged

I Con: Major impact on code design, all cell and face loops need to
recognise and handle the presence of halo layer

FV: Zero Halo Layer approach

I Use out-of-core addressing to update boundaries
I Object-Oriented programming is of a great help (virtual functions)
I Assuming fP is local, fN can be fetched trough communication
I Note that all processors perform identical duties: thus, for a

processor boundary between domain A and B, evaluation of face
values can be done in 3 steps:

1 Collect a subset internal cell values from local domain and send the
values to the neighbouring processor

2 Receive neighbour values from neighbouring processor
3 Evaluate local processor face value using interpolation

I Pro: Processor boundary update encapsulates communication to do
evaluation: no impact in the rest of the code

I Con: requires strong knowledge about OO, and, what about
performance?

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Compact Finite Differences

I Is the space discretization always parallel-by-point? No, consider
“implicit finite differences” usually called “compact”

I Explicit FD:
I a single derivative value depends on values over a stencil(

dαu
dxα

)
i
=

∑
k=−l,r

ak ui+k

I matrix form
dαu
dxα

= A u

I Compact FD:
I the derivative values over a stencil depends on values over a (possibly

different) stencil ∑
K=−L,R

(
dαu
dxα

)
i+K

=
∑

k=−l,r

ak ui+k

I matrix form
B

dαu
dxα

= A u ⇒
dαu
dxα

= B−1 A u

Compact Finite Differences

I Matrices A and B are banded (tridiagonal, pentadiagonal,...)
I Thomas algorithm is the best serial choice to invert such matrices

a xi−1 + bi xi + ci xi+1 = di

I Forward and backward substitution are the core of the algorithm
I forward sweep (i = 1, ..., n)

c′i =
ci

bi − c′i−1ai
; d ′i =

di − d ′i−1ai

bi − c′i−1ai

I back substitution (i = n − 1, .., 1)

xn = d ′n ; xi = d ′i − c′i xi+1

I The order of loops is crucial since each iteration depends on the
previous one: how to handle parallelization?

Compact Finite Differences / 2

I Considering a 3D problem, use a 2D domain decomposition
I When deriving along one direction, e.g. x-direction, transpose data

so that the decomposition acts on the other two directions, e.g. y and
z

I For each y and z, the entire x derivatives may be evaluated in
parallel by Thomas algorithm

I Compact FD is an example of “parallel-by-line” algorithm
I Transpose data, i.e. MPI_Alltoall, has a (significant) cost:

I may be slow
I is only “out of place”, beware of memory usage

I Other possibilities?
I use another algorithm instead of Thomas one: e.g., cyclic reduction

may be better parallelized
I compare the performances with the Transpose+Thomas choice

Spectral Methods

I Another class of methods, based on (Fast) Fourier Transform
I may be very accurate
I some equations get strongly simplified with this approach

I Considering 3D problems, a 3D-FFT is performed sequentially
transforming x , y and z direction

I Since FFT usually employs a serial algorithm, a 3D-FFT is another
example of “parallel-by-line” algorithm

I Transposition of data is the common way to handle parallelization of
FFT

I Study carefully your FFT library
I FFTW is the widespread library, also providing MPI facilities and a

specialized MPI transpose routine capable of handling in-place data
I often vendors FFTs perform better

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Time advancement

I Explicit Time advancement algorithms are widely used
I multi-stage (e.g. Runge-Kutta)
I multi-step (e.g. leap-frog)
I Lax-Wendroff
I . . .

I ...and are the best choice wrt parallelization
I However, implicit algorithms may be preferable for several reasons,

e.g. to enlarge stability limits and achieve a faster convergence of
steady-state problems

I “implicit” means that Right Hand Side has to be evaluated using the
“new” time

I e.g., Poisson equation with Crank-Nicolson method (unconditionally
stable)

u(n+1) − u(n)

Dt
=

1
2

(∂2u
∂x2

)(n+1)

+

(
∂2u
∂y2

)(n+1)

+

(
∂2u
∂x2

)(n)

+

(
∂2u
∂y2

)(n)

Time advancement

I Adopting the matrix form

A u(n+1) = B u(n)

it results that a linear system has to be solved
I Thomas algorithm is not applicable because the bands of matrix are

not contiguous
I The direct solution is costly, while an efficient approximate solutions

may be obtained using iterative methods, e.g. conjugate gradient
method

I Anyhow, the shape of A may be simple, how to exploit it?

ADI

I Some numerical schemes strongly simplify the parallelization
I Alternating direction implicit method (ADI)

u(n+1/2) − u(n)

Dt
= 0.5

[(
∂2u
∂x2

)(n+1/2)

+

(
∂2u
∂y2

)(n)]

u(n+1) − u(n+1/2)

Dt
= 0.5

[(
∂2u
∂x2

)(n+1/2)

+

(
∂2u
∂y2

)(n+1)]
I The system is symmetric and tridiagonal and may be solved using

Thomas algorithm
I handling parallelization is not difficult transposing data

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Unstructured meshes

I Probably the most widespread strategy to handle complex
geometries

I but not the only one, e.g. AMR, immersed-boundary, . . .
I Idea: discretize the computational domain using polyhedron cells

I in 3D, each cell has vertexes, edges, faces
I according to the algorithm (FVM, FEM,...) you have to handle variables

located on different zones of the cells
I cells are usually tetrahedrons, hexahedrons or prisms

UM: CSR

I When parallelizing codes running on unstructured meshes, an
important issue is to decompose cells between processes

I when dealing with huge meshes, mesh creation should be performed in
parallel, too (e.g., snappyHexMesh tool provided by OpenFOAM)

I Let us detail how to describe the mesh topology: Compressed
Sparse Row Format

UM: decomposition

I From the connectivity topological description, it is possible to build
the dual graph based on cell centers or on cell vertexes

I To describe the dual graph, it is possible to list all the adjacent cells
(or vertexes) for each cell (or vertex)

Dual center graph
(dual graph)
2 5
1 3
2 4 6
3 5
1 4
3

Dual vertex graph
(nodal graph)
2 4
1 7 3
2 4 7 8 5
1 3 6
3 6 8
4 5
2 3 8 9
5 3 7 10
7 10
8 9

UM: decomposition

I The goal of graph decomposition: given a graph G(V, E), with
vertices V (which can be weighted) and edges E (which can also be
weighted), partition the vertices into k disjoint sets such that each set
contains the same vertex weight and such that the cut-weight, i.e. the
total weight of edges cut by the partition, is minimised.

I More sophisticated goals may be required, e.g.:
I each set hosts only connected cells
I optimization for heterogeneous machines
I subdomain interfaces properties

Libraries and METIS

I Decomposition algorithms may be not trivial: use libraries! E.g.,
METIS, Scotch

I for huge meshes, mesh decomposition should be parallelized, too
I again, use libraries! E.g., ParMETIS, Scotch-PT

I Decomposition libraries usually provide stand-alone utilities or APIs
I METIS library allows to convert mesh to dual or nodal graph

I while other libraries usually lack of this feature

I Best METIS decomposition
algorithm is usually the
multilevel k-way partitioning
algorithm

I combines global and local
optimization approaches

Scotch

I Implements multilevel banded diffusion scheme

I Compared to METIS, it limits the subdomain area and shape
irregularity (useful to fasten iterative convergence)

I may result in slightly better performances compared to METIS
I The diffusion algorithm is highly scalable (PT-Scotch)

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Adaptive Mesh Refinement

I A sophisticated method to handle complex configurations or, in
general, useful when a very large range of scales need to be
simulated (e.g., CFD, Astrophysics)

I Consider it when non-uniform Cartesian or curvilinear meshes are
not enough

I non-uniform meshes allow decreasing the amount of grid points but the
Cartesian (or other) structure limits the achievable reduction

AMR: flavours

I Idea: start with a very coarse mesh and refine it where required: high
gradients, close to boundary, . . .

I Different flavours: based on points/patches/blocks
I point based

I patch based

(The figures are Courtesy of Dr. Andrea Mignone, University of Turin)

AMR and trees

I A common implementation relies on trees (quad-tree or oct-tree)
I probably not the most efficient: study hash-tables to do better

I Block based tree example

I Hard implementation effort is
required

I managing ghost cells
I synchronization of patches at

the same refinement level
I interpolation/averaging

between different levels
I evolve only finest grid or all

levels
I block ordering

AMR: block ordering

I An additional block ordering algorithm is strongly recommended
I to optimize the usage of cache memory
I to optimize ghost cells communications between processes

I Space-filling curves allow to do that
I Morton or Hilbert algorithms are common choices

AMR: load balancing

I Using space-filling curves helps when splitting the work-load
between processes

I consecutive points along the curve are physically close
I the work-load decomposition becomes a one-dimensional

decomposition along the curve

AMR: libraries

I Before re-inventing the wheel check if one of the existing AMR
libraries is to your satisfaction

I PARAMESH - http://www.physics.drexel.edu/ olson/paramesh

I SAMRAI - https://computation.llnl.gov/casc/SAMRAI/

I p4est - http://www.p4est.org/

I Chombo - https://commons.lbl.gov/display/chombo/Chombo

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

Static vs Dynamic Balancing

I Static load balancing may be not enough
I e.g., Adaptive Mesh Refinement, global and local amounts of grid

points change over time
I When the work-load is unpredictable and synchronizing tasks may

become impossible, the master-slave approach may be preferable
I the master process organizes tasks assigning these to the slave

processes
I the communications occur (only) trough master process

Master-slave example

I The master process:
I reads from a file a task to be performed
I waits until a slave process sends a message communicating that it is

ready
I by the way, testing the message (without receiving it) may be useful,
MPI_Probe allows to do it

MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

I sends the infos about the task to the selected ready slave process

I A slave process:
I receives infos about the task to be performed
I performs its task
I when finished sends back a message to the master

Outline

Parallel Algorithms for Partial Differential Equations
Introduction
Partial Differential Equations
Finite Difference Time Domain
Domain Decomposition
Multi-block grids
Particle tracking
Finite Volumes
Parallel-by-line algorithms: Compact FD and Spectral Methods
Implicit Time algorithms and ADI
Unstructured meshes
Adaptive Mesh Refinement
Master-slave approach
A few references

References

I Algorithms: “Introduction to Algorithms”, T.H. Cormen, Charles E.
Lesiserson et Al.

I Finite-Difference: http://www.dtic.mil/dtic/tr/fulltext/u2/a227105.pdf

I Advanced MPI: http://www.training.prace-ri.eu/uploads/tx_pracetmo/advancedMPI.pdf

I Multi-block: http://www.nas.nasa.gov/assets/pdf/techreports/2003/nas-03-007.pdf

I Finite-volumes (OpenFOAM): http://www.linksceem.eu/ls2/images/stories/.....

.....Handling_Parallelisation_in_OpenFOAM_-_Cyprus_Advanced_HPC_Workshop_Winter_2012.pdf

I Unstructured grids: http://www.hector.ac.uk/cse/reports/unstructured_partitioning.pdf

I METIS Library: http://glaros.dtc.umn.edu/gkhome/views/metis

I Scotch Library: http://www.labri.fr/perso/pelegrin/scotch/

Rights & Credits

These slides are c©CINECA 2013 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Creative
Commons license, version 3.0.

Uses not allowed by the above license need explicit, written
permission from the copyright owner. For more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

	Parallel Algorithms for Partial Differential Equations
	Introduction
	Partial Differential Equations
	Finite Difference Time Domain
	Domain Decomposition
	Multi-block grids
	Particle tracking
	Finite Volumes
	Parallel-by-line algorithms: Compact FD and Spectral Methods
	Implicit Time algorithms and ADI
	Unstructured meshes
	Adaptive Mesh Refinement
	Master-slave approach
	A few references

