
Programmazione Avanzata / 2

Francesco Salvadore
CINECA Roma - SCAI Department

Roma, 2014

Outline

Librerie scientifiche

Makefile

HPC development tools

I What do I need to develop my HPC application? At least:
I A compiler, e.g. GNU, Intel, PGI, PathScale, Sun
I Code editor

I Several tools may help you (even for non HPC applications)
I Debugger, e.g. gdb and DDD, TotalView, Allinea DDT
I Profiler, e.g. gprof, Scalasca, Tau, Vampir
I Project management, e.g. make, projects
I Revision control, e.g. svn, git, cvs, mercurial
I Generating documentation, e.g. doxygen
I Source code repository, e.g. sourceforge, github, google.code
I Data repository, currently under significant increase
I and more . . .

Code editor

I You can select the code editor among a very wide range
I from the light and fast text editors, e.g. VIM, emacs
I to the more sophisticated Integrated development environment

(IDE), e.g. Visual Studio, Kdevelop, Ecplise
I or you have intermediate options, e.g. Geany

I The choice obviously depends on the complexity and on the
software tasks

I ...but also on your personal taste

Project management

I Non trivial programs are hosted in several source files and
link libraries

I Different types of files require different compilation
I different optimization flags
I different languages may be mixed, too
I compilation and linking require different flags
I and the code could work on different platforms

I During development (and debugging) several recompilations
are needed, and we do not want to recompile all the source
files but only the modified ones

I How to deal with it?
I use the IDE (with plug-ins) and their project files to manage the

content (e.g. Eclipse)
I use language-specific compiler features
I use external utilities, e.g. Make or CMake

GNU Make

I “Make is a tool which controls the generation of executables
and other non-source files of a program from the program’s
source files”

I Make gets its knowledge from a file called the makefile, which
lists each of the non-source files and how to compute it from
other files

I When you write a program, you should write a makefile for it, so
that it is possible to use Make to build and install the program

I GNU Make has some powerful features for use in makefiles,
beyond what other Make versions have

Preparing and Running Make

I To prepare to use make, you have to write a file that describes:
I the relationships among files in your program
I commands for updating each file

I Typically, the executable file is updated from object files, which
are in turn made by compiling source files

I Once a suitable makefile exists, each time you change some
source files, the command

make -f <makefile_name>

suffices to perform all necessary recompilations
I If -f option is missing, the default names makefile or
Makefile are used

Rules

I A simple makefile consists of “rules”:

target ... : prerequisites ...
recipe
...
...

I a target is usually the name of a file that is generated by a
program; examples of targets are executable or object files. A
target can also be the name of an action to carry out, such as
clean

I a prerequisite is a file that is used as input to create the
target. A target often depends on several files.

I a recipe is an action that make carries out. A recipe may
have more than one command, either on the same line or each
on its own line. Recipe commands must be preceded by a tab
character.

I By default, make starts with the first target (default goal)

My first rule

I A simple rule:

foo.o : foo.c defs.h
gcc -c -g foo.c

I This rule says two things
I how to decide whether foo.o is out of date: it is out of date if it

does not exist, or if either foo.c or defs.h is more recent than it
I how to update the file foo.o: by running gcc as stated. The

recipe does not explicitly mention defs.h, but we presume that
foo.c includes it, and that is why defs.h was added to the
prerequisites.

I Remember the tab character before starting the recipe lines!

A simple example in C

I The main program is in laplace2d.c file
I includes two header files: timing.h and size.h
I calls functions in two source files: update_A.c and copy_A.c

I update_A.c and copy_A.c includes two header files:
laplace2d.h and size.h

I A possible (naive) Makefile
laplace2d_exe: laplace2d.o update_A.o copy_A.o

gcc -o laplace2d_exe laplace2d.o update_A.o copy_A.o

laplace2d.o: laplace2d.c timing.h size.h
gcc -c laplace2d.c

update_A.o: update_A.c laplace2d.h size.h
gcc -c update_A.c

copy_A.o: copy_A.c laplace2d.h size.h
gcc -c copy_A.c

.PHONY: clean
clean:

rm -f laplace2d_exe *.o

How it works

I The default goal is (re-)linking laplace2d_exe
I Before make can fully process this rule, it must process the

rules for the edited files that depends on it, which in this case
are the object files

I The object files, according to their own rules, are recompiled if
the source files, or any of the header files named as
prerequisites, is more recent than the object file, or if the object
file does not exist

I Note: in this makefile .c and .h are not the targets of any rules,
but this could happen it they are automatically generated

I After recompiling whichever object files need it, make decides
whether to relink according to the same “updating” rules.

I Try to follow the path: what happens if, e.g., laplace2d.h is
modified?

A simple example in Fortran

I The main program is in laplace2d.f90 file
I uses two modules named prec and timing
I calls subroutines in two source files: update_A.f90 and

copy_A.f90
I update_A.f90 and copy_A.f90 use only prec module
I sources of prec and timing modules are in the prec.f90 and

timing.f90 files
I Beware of the Fortran modules:

I program units using modules require the mod files to exist
I a target may be a list of files: e.g., both timing.o and timing.mod

depend on timing.f90 and are produced compiling timing.f90
I Remember: the order of rules is not significant, except for

determining the default goal

A simple example in Fortran / 2

laplace2d_exe: laplace2d.o update_A.o copy_A.o prec.o timing.o
gfortran -o laplace2d_exe prec.o timing.o laplace2d.o update_A.o copy_A.o

prec.o prec.mod: prec.f90
gfortran -c prec.f90

timing.o timing.mod: timing.f90
gfortran -c timing.f90

laplace2d.o: laplace2d.f90 prec.mod timing.mod
gfortran -c laplace2d.f90

update_A.o: update_A.f90 prec.mod
gfortran -c update_A.f90

copy_A.o: copy_A.f90 prec.mod
gfortran -c copy_A.f90

.PHONY: clean
clean:

rm -f laplace2d_exe *.o *.mod

Phony Targets and clean

I A phony target is one that is not really the name of a file;
rather it is just a name for a recipe to be executed when you
make an explicit request.

I avoid target name clash
I improve performance

I clean: an ubiquitous target

.PHONY: clean
clean:

rm *.o temp

I Another common solution: since FORCE has no prerequisite,
recipe and no corresponding file, make imagines this target to
have been updated whenever its rule is run

clean: FORCE
rm *.o temp

FORCE:

Variables

I The previous makefiles have several duplications
I error-prone and not expressive

I Use variables!
I define
objects = laplace2d.o update_A.o copy_A.o

I and use as $(objects)
objects := laplace2d.o update_A.o copy_A.o

laplace2d_exe: $(objects)
gcc -o laplace2d_exe $(objects)

laplace2d.o: laplace2d.c timing.h size.h
gcc -c laplace2d.c

update_A.o: update_A.c laplace2d.h size.h
gcc -c update_A.c

copy_A.o: copy_A.c laplace2d.h size.h
gcc -c copy_A.c

.PHONY: clean
clean:

rm -f laplace2d_exe *.o

More Variables

I Use more variables to enhance readability and generality
I Modifying the first four lines it is easy to modify compilers and

flags
CC := gcc
CFLAGS := -O2
CPPFLAGS :=
LDFLAGS :=

objects := laplace2d.o update_A.o copy_A.o

laplace2d_exe: $(objects)
$(CC) $(CFLAGS) $(CPPFLAGS) -o laplace2d_exe $(objects) $(LDFLAGS)

laplace2d.o: laplace2d.c timing.h size.h
$(CC) $(CFLAGS) $(CPPFLAGS) -c laplace2d.c

update_A.o: update_A.c laplace2d.h size.h
$(CC) $(CFLAGS) $(CPPFLAGS) -c update_A.c

copy_A.o: copy_A.c laplace2d.h size.h
$(CC) $(CFLAGS) $(CPPFLAGS) -c copy_A.c

.PHONY: clean
clean:

rm -f laplace2d_exe *.o

Implicit rules
I There are still duplications: each compilation needs

the same command except for the file name
I immagine what happens with hundred of files!

I What happens if Make does not find a rule to produce one or
more prerequisite (e.g., and object file)?

I Make searches for an implicit rule, defining default recipes
depending on the processed type

I C programs: n.o is made automatically from n.c with a recipe of
the form

$(CC) $(CPPFLAGS) $(CFLAGS) -c

I C++ programs: n.o is made automatically from n.cc, n.cpp or
n.C with a recipe of the form

$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c

I Fortran programs: n.o is made automatically from n.f, n.F
($(CPPFLAGS) only for .F)

$(FC) $(FFLAGS) $(CPPFLAGS) -c

Pattern rules
I Implicit rules allow for saving many recipe lines

I but what happens is not clear reading the Makefile
I and you are forced to use a predefined structure and variables
I to clarify the types to be processed, you may define
.SUFFIXES variable at the beginning of Makefile

.SUFFIXES:

.SUFFIXES: .o .f

I You may use re-define an implicit rule by writing a pattern rule
I a pattern rule looks like an ordinary rule, except that its target

contains one character %
I usually written as first target, does not become the default target

%.o : %.c
$(CC) -c $(OPT_FLAGS) $(DEB_FLAGS) $(CPP_FLAGS) $< -o $@

I Automatic variables are usually exploited
I $@ is the target
I $< is the first prerequisite (usually the source code)
I $^ is the list of prerequisites (useful in linking stage)

Running make targets

I It is possible to select a specific target to be updated,
instead of the default goal (remember clean)

make copy_A.o

I of course, it will update the chain of its prerequisite
I useful during development when the full target has not been

programmed, yet

I And it is possible to set target-specific variables as (repeated)
target prerequisites

I Consider you want to write a Makefile considering both GNU
and Intel compilers

I Use a default goal which is a help to inform that compiler must
be specified as target

C example
CPPFLAGS :=
LDFLAGS :=

objects := laplace2d.o update_A.o copy_A.o

.SUFFIXES :=

.SUFFIXES := .c .o

%.o: %.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c $<

help:
@echo "Please select gnu or intel compilers as targets"

gnu: CC := gcc
gnu: CFLAGS := -O3
gnu: $(objects)

$(CC) $(CFLAGS) $(CPPFLAGS) -o laplace2d_gnu $(objects) $(LDFLAGS)

intel: CC := icc
intel: CFLAGS := -fast
intel: $(objects)

$(CC) $(CFLAGS) $(CPPFLAGS) -o laplace2d_intel $(objects) $(LDFLAGS)

laplace2d.o: laplace2d.c timing.h size.h
update_A.o : update_A.c laplace2d.h size.h
copy_A.o : copy_A.c laplace2d.h size.h

.PHONY: clean
clean:

rm -f laplace2d_gnu laplace2d_intel $(objects)

Fortran example

LDFLAGS :=
objects := prec.o timing.o laplace2d.o update_A.o copy_A.o
.SUFFIXES:
.SUFFIXES: .f90 .o .mod

%.o: %.f90
$(FC) $(FFLAGS) -c $<

%.o %.mod: %.f90
$(FC) $(FFLAGS) -c $<

help:
@echo "Please select gnu or intel compilers as targets"

gnu: FC := gfortran
gnu: FCFLAGS := -O3
gnu: $(objects)

$(FC) $(FCFLAGS) -o laplace2d_gnu $^ $(LDFLAGS)
intel: FC := ifort
intel: FCFLAGS := -fast
intel: $(objects)

$(FC) $(CFLAGS) -o laplace2d_intel $^ $(LDFLAGS)

prec.o prec.mod: prec.f90
timing.o timing.mod: timing.f90
laplace2d.o: laplace2d.f90 prec.mod timing.mod
update_A.o: update_A.f90 prec.mod
copy_A.o: copy_A.f90 prec.mod

.PHONY: clean
clean:

rm -f laplace2d_gnu laplace2d_intel $(objects) *.mod

Defining variables
I Another way to support different compilers or platforms is to

include a platform specific file (e.g., make.inc) containing the
needed definition of variables

include make.inc

I Common applications feature many
make.inc.<platform_name> which you have to select and copy
to make.inc before compiling

I When invoking make, it is also possible to set a variable

make OPTFLAGS=-O3

I this value will override the value inside the Makefile
I unless override directive is used
I but override is useful when you want to add options to the user

defined options, e.g.

override CFLAGS += -g

Variable Flavours
I The variables considered until now are called simply

expanded variables, are assigned using := and work like
variables in most programming languages.

I The other flavour of variables is called recursively expanded,
and is assigned by the simple =

I recursive expansion allows to make the next assignments
working as expected

CFLAGS = $(include_dirs) -O
include_dirs = -Ifoo -Ibar

I but may lead to unpredictable substitutions or even impossibile
circular dependencies

CFLAGS = $(CFLAGS) -g

I You may use += to add more text to the value of a variable
I acts just like normal = if the variable in still undefined
I otherwise, exactly what += does depends on what flavor of

variable you defined originally
I Use recursive variables only if needed

Wildcards
I A single file name can specify many files using wildcard

characters: *, ? and [...]
I Wildcard expansion depends on the context

I performed by make automatically in targets and in prerequisites
I in recipes, the shell is responsible for
I what happens typing make print in the example below?

(The automatic variable $? stands for files that have changed)
print: *.c

lpr -p $?
touch print

I if you define
objects = *.o
foo : $(objects)

gcc -o foo $(objects)

it is expanded only when is used and it is not expanded if no .o
file exists: in that case, foo depends on a oddly-named .o file

I use instead the wildcard function:
objects := $(wildcard *.o)

Conditional parts of Makefile

I Environment variables are automatically transformed into
make variables

I Variables could be not enough to generalize rules
I e.g., you may need non-trivial variable dependencies

I Immagine your application has to be compiled using GNU on
your local machine mac_loc, and Intel on the cluster mac_clus

I You can catch the hostname from shell and use a conditional
statement ($SHELL is not exported)
SHELL := /bin/sh
HOST := $(shell hostname)
ifeq ($(HOST),mac_loc)

CC := gcc
CFLAGS := -O3

endif
ifeq ($(HOST),mac_clus)

CC := icc
CFLAGS := -fast

endif

I Be careful on Windows systems!

Directories for Prerequisites

I For large systems, it is often desirable to put sources and
headers in separate directories from the binaries

I Using Make, you do not need to change the individual
prerequisites, just the search paths

I A vpath pattern is a string containing a % character.
I %.h matches files that end in .h

vpath %.c foo
vpath % blish
vpath %.c bar

will look for a file ending in .c in foo, then blish, then bar
I using vpath without specifying directory clears all search paths

associated with patterns

Directories for Prerequisites / 2

I When using directory searching, recipe generalizing is
mandatory

vpath %.c src
vpath %.h ../headers
foo.o : foo.c defs.h hack.h

gcc -c $< -o $@

I Again, automatic variables solve the problem
I And implicit or pattern rules may be used, too
I Directory search also works for linking libraries using

prerequisites of the form -lname

I make will search for the file libname.so and, if not found, for
libname.a first searching in vpath and then in system directory

foo : foo.c -lcurses
gcc $^ -o $@

Advanced topics

I Functions, also user-defined
I e.g., define objects as the list of file which will be produced from

all .c files in the directory

objects := $(patsubst %.c,%.o,$(wildcard *.c))

I e.g., sorts the words of list in lexical order, removing duplicate
words

headers := $(sort math.h stdio.h timer.h math.h)

I Recursive make, i.e. make calling chains of makes
I MAKELEVEL variable keeps the level of invocation

Standard Targets (good practice)

I all→ Compile the entire program. This should be
the default target

I install→ Compile the program and copy the executables,
libraries, and so on to the file names where they should reside
for actual use.

I uninstall→ Delete all the installed files
I clean→ Delete all files in the current directory that are

normally created by building the program.
I distclean→ Delete all files in the current directory (or created

by this makefile) that are created by configuring or building the
program.

I check→ Perform self-tests (if any).
I install-html/install-dvi/install-pdf/install-ps→ Install

documentation
I html/dvi/pdf/ps→ Create documentation

Much more...

I Compiling a large application may require several hours
I Running make in parallel can be very helpful, e.g. to use 8

processes

make -j8

I but not completely safe (e.g., recursive make compilation)

I There is much more you could know about make
I this should be enough for your in-house application
I but probably not enough for understanding large projects you

could encounter

http:
//www.gnu.org/software/make/manual/make.html

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html

Hands-on
I Write a Makefile managing a simple mixed C/Fortran project
I Sources are in c_src and f90_src directories
I How to compile and build is described in the README file:

target all_c ==> Main and functions in C:
gcc avg_main.c avg_fun.c

target all_f90 ==> Main and functions in Fortran:
gfortran avg_fun.f90 avg_main.f90

target main_f90_fun_c ==> Fortran Main and C functions:
gcc -c avg_fun.c
gfortran avg_fun.o mod_wrapC.f90 avg_main.f90

target main_c_fun_f90 ==> C Main and Fortran functions:
gcc -c avg_main.c
gfortran avg_main.o avg_fun.f90 mod_wrapF.f90

I Use vpath, implicit rules, a default help target, and be careful
about Fortran modules

Hands-on: solution

SHELL := /bin/sh
FC := gfortran
CC := gcc
CFLAGS := -O3
FCFLAGS := -O3

.SUFFIXES :=

.SUFFIXES := .c .f90 .o

vpath %.c c_src
vpath %.f90 f90_src

%.o: %.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c $<

%.o: %.f90
$(FC) $(FFLAGS) -c $<

help:
@echo "Please specify a valid target:"
@echo "all_c/all_f90/main_f90_fun_c/main_c_fun_90"

..............

Hands-on: solution / 2

..............

all_c: avg_main_c.o avg_fun_c.o
$(CC) $(CFLAGS) -o $@ $^ $(LDFLAGS)

all_f90: avg_main_f90.o avg_fun_f90.o
$(FC) $(FCFLAGS) -o $@ $^ $(LDFLAGS)

main_f90_fun_c: avg_fun_c.o mod_wrapC.o avg_main_f90.o
$(FC) $(FCFLAGS) -o $@ $^ $(LDFLAGS)

main_c_fun_f90: avg_main_c.o mod_wrapF.o avg_fun_f90.o
$(FC) $(FCFLAGS) -o $@ $^ $(LDFLAGS)

avg_main_f90.o: statistics.mod
mod_wrapF.o: statistics.mod
statistics.mod: avg_fun_f90.o mod_wrspC.o

.PHONY: clean
clean:

rm -f all_c all_f90 main_f90_fun_c main_c_fun_f90
rm -f *.o *.mod

Rights & Credits

These slides are c©CINECA 2013 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written
permission from the copyright owner. For more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

	Makefile

