
Programmazione Avanzata / 2

Francesco Salvadore
CINECA Roma - SCAI Department

Roma, 2014

Outline

Floating Point Computing

Why talking about data formats?

I The “numbers” used in computers are different from the “usual”
numbers

I Some differences have known consequences
I size limits
I numerical stability
I algorithm robustness

I Other differences are often misunderstood
I portability
I exceptions
I surprising behaviours with arithmetic

Bits and Integers

I Computers usually handle bits
I An integer number n may be stored as a sequence of bits
I Of course, you have a range

−2r−1 ≤ n ≤ 2r−1 − 1

I Two common sizes
I 32 bit: range −231 ≤ n ≤ 231 − 1
I 64 bit: range −263 ≤ n ≤ 263 − 1

I Languages allow for declaring different flavours of integers
I select the type you need compromizing on avoiding overflow

and saving memory
I Is it difficult to have an integer overflow?

I consider a cartesian discretization mesh (1536× 1536× 1536)
and a linearized index i

0 ≤ i ≤ 3623878656 > 231 = 2147483648

Bits and Integers / 2

I Fortran “officially” does not let you specify the size of declared
data

I you request kind and the language do it for you
I in principle very good, but interoperability must be considered

with attention
I and the underlying types are usually just a few of “well known”

types

I C standard types do not match exact sizes, too
I look for int, long int, unsigned int, . . .
I char is an 8 bit integer
I unsigned integers available, doubling the maximum value

0 ≤ n ≤ 2r − 1

Bits and Reals

I Note: From now on, some examples will consider base 10
numbers just for readability

I Representing reals using bits is not natural
I Fixed size approach

I select a fixed point corresponding to comma
I e.g., with 8 digits and 5 decimal places 36126234 gets

interpreted as 361.26234
I Cons:

I limited range: from 0.00001 to 999.99999, spanning 108

I only numbers having at most 5 decimal places can be exactly
represented

I Pros:
I constant resolution, i.e. the distance from one point to the

closest one (0.00001)

Floating point approach

I Consider scientific notation

n = (−1)s ·m · βe

0.0046367 = (−1)0 · 4.6367 · 10−3

I Represent it using bits
I one digit for sign s
I “p-1” digits for significand (mantissa) m
I “w” digits for exponent e

Exponent and Significand

I Exponent
I unsigned biased exponent
I emin ≤ e ≤ emax
I emin must be equal to (1− emax)

I Mantissa
I precision p, the digits xi are 0 ≤ xi < β

m =

p−1∑
i=0

xi · β−i

I “hidden bit” format used for normal values: 1.xx...x

IEEE Name Format Storage Size w p emin emax
Binary32 Single 32 8 24 -126 +127
Binary64 Double 64 11 53 -1022 +1023
Binary128 Quad 128 15 113 -16382 +16383

Mantissa

I Cons:
I only “some” real numbers are floating point numbers (see later)

I Pros:
I constant relative resolution (relative precision), each number is

represented with the same relative error which is the distance
from one point to the closest one divided by the number (see
later)

I wide range: “normal” positive numbers from 10emin to
9,999..9 · 10emax

I The representation is unique assuming the mantissa is

1 ≤ m < β

i.e. using “normal” floating-point numbers

Resolution

I The distance among “normal” numbers is not constant

I E.g., β = 2, p = 3, emin = −1 and emax = 2:
I 16 positive “normalized” floating-point numbers

e = -1 ; m = 1 + [0:1/4:2/4:3/4] ==> [4/8:5/8:6/8:7/8]
e = 0 ; m = 1 + [0:1/4:2/4:3/4] ==> [4/4:5/4:6/4:7/4]
e = +1 ; m = 1 + [0:1/4:2/4:3/4] ==> [4/2:5/2:6/2:7/2]
e = +2 ; m = 1 + [0:1/4:2/4:3/4] ==> [4/1:5/1:6/1:7/1]

Relative Resolution

I What does it mean “constant relative resolution”?
I Given a number N = m · βe the nearest number has distance

R = β−(p−1)βe

I E.g., given 3.536 · 10−6, the nearest (larger) number is
3.537 · 10−6 having distance 0.001 · 10−6

I The relative resolution is (nearly) constant (considering
1 ≤ m < β)

β−p <
R
N

=
β−(p−1)

m
≤ β−(p−1)

Intrinsic Error

I Not any real number can be expressed as a floating point
number

I because you would need a larger exponent
I or because you would need a larger precision

I The resolution is directly related to the intrinsic error
I if p = 4, 3.472 may approximate numbers between 3.4715 and

3.4725, its intrinsic error is 0.0005
I the instrinsic error is (less than) (β/2)β−pβe

I the relative intrinsic error is

(1/2)β−p <
(β/2)β−p

m
≤ (β/2)β−p = ε

I The intrinsic error ε is also called “machine epsilon” or “relative
precision”

Measuring error

I When performing calculations, floating-point error may
propagate and exceed the intrinsic error

real value = 3.14145
correctly rounded value = 3.14
current value = 3.17

I The most natural way to measure rounding error is in “ulps”,
i.e. units in the last place

I e.g., the error is 3 ulps
I Another interesting possibility is using “machine epsilon”, which

is the relative error corresponding to 0.5 ulps
error = 3.17-3.14145 = 0.02855
machine epsilon = 10/2*0.001 = 0.005
relative error = 5.71 ε

Handling errors
I Featuring a constant relative precision is very useful when

dealing with rescaled equations
I Beware:

I 0.1 has just one decimal digit using radix 10, but is periodic
using radix 2

I the exact binary representation would have a "1100" sequence
continuing endlessly:
e = −4; s = 1100110011001100110011001100110011...

I When rounded to 24 bits this becomes
e = −4; s = 110011001100110011001101, which is actually
0.100000001490116119384765625 in decimal.

I periodicity arises when the fractional part has prime factors not
belonging to the radix

I by the way, in Fortran if a is double precision, a=0.2 is badly
approximated (use a=0.2d0 instead)

I Beware overflow!
I you think it will not happen with your code but it may happen
I exponent range is symmetric: if possibile, perform calculations

around 1 is a good idea

Types features

IEEE Name min max ε C Fortran
Binary32 1.2E-38 3.4E38 5.96E-8 float real
Binary64 2.2E-308 1.8E308 1.11E-16 double real(kind(1.d0))

Binary128 3.4E-4932 1.2E4932 9.63E-35 long double real(kind=...)

I There are also “double extended” type and parametrized types
I Extended and quadruple precision devised to limit the

round-off during the double calculation of trascendental
functions and increase overflow

I Extended and quad support depends on architecture and
compiler: often emulated and, hence, slow!

I Decimal with 32, 64 and 128 bits are defined by standards, too
I FPU are usually “conformant” but not “compliant”
I To be safe when converting binary to text specify 9 decimals for

single precision and 17 decimal for double

Error propagation

I Assume p = 3 and you have to compute the difference
1.01 · 101 − 9.93 · 100

I To perform the subtraction, usually a shift of the smallest
number is performed to have the same exponent

I First idea: compute the difference exactly and then round it to
the nearest floating-point number

x = 1.01 · 101 ; y = 0.993 · 101

x − y = 0.017 · 101 = 1.70 · 10−2

I Second idea: compute the difference with p digits

x = 1.01 · 101 ; y = 0.99 · 101

x − y = 0.02 · 101 = 2.00 · 10−2

the error is 30 ulps!

Guard digit

I A possibile solution: use the guard digit (p+1 digits)

x = 1.010 · 101

y = 0.993 · 101

x − y = 0.017 · 101 = 1.70 · 10−2

I Theorem: if x and y are floating-point numbers in a format with
parameters β and p, and if subtraction is done with p + 1 digits
(i.e. one guard digit), then the relative rounding error in the
result is less than 2 ε.

Cancellation

I When subtracting nearby quantities, the most significant digits
in the operands match and cancel each other

I There are two kinds of cancellation: catastrophic and benign
I benign cancellation occurs when subtracting exactly known

quantities: according to the previous theorem, if the guard digit
is used, a very small error results

I catastrophic cancellation occurs when the operands are subject
to rounding errors

I For example, consider b = 3.34, a = 1.22, and c = 2.28.
I the exact value of b2 − 4ac is 0.0292
I but b2 rounds to 11.2 and 4ac rounds to 11.1, hence the final

answer is 0.1 which is an error by 70ulps
I the subtraction did not introduce any error, but rather exposed

the error introduced in the earlier multiplications.

Cancellation / 2
I The expression x2 − y2 is more accurate when rewritten as

(x − y)(x + y) because a catastrophic cancellation is
replaced with a benign one

I replacing a catastrophic cancellation by a benign one may be
not worthwhile if the expense is large, because the input is often
an approximation

I Eliminating a cancellation entirely may be worthwhile even if
the data are not exact

I Consider second-degree equations

x1 =
−b +

√
b2 − 4ac

2a

I if b2 >> ac then b2 − 4ac does not involve a cancellation
I but, if b > 0 the addition in the formula will have a catastrophic

cancellation.
I to avoid this, multiply the numerator and denominator of x1 by
−b −

√
b2 − 4ac to obtain x1 = (2c)/(−b −

√
b2 − 4ac) where

no catastrophic cancellation occurs

Rounding and IEEE standards

I The IEEE standards requires correct rounding for:
I addition, subtraction, mutiplication, division, remainder, square

root
I conversions to/from integer

I The IEEE standards recommends correct rounding for:
I ex , ex − 1, 2x , 2x − 1, logα(φ), 1/

√
(x), sin(x), cos(x), tan(x),....

I Remember: “No general way exists to predict how many extra
digits will have to be carried to compute a transcendental
expression and round it correctly to some preassigned number
of digits” (W. Kahan)

Special values

I Zero: signed

I Infinity: signed
I overflow, divide by 0
I Inf-Inf, Inf/Inf, 0 · Inf→ NaN (indeterminate)
I Inf op a→ Inf if a is finite
I a / Inf→ 0 if a is finite

I NaN: not a number!
I Quiet NaN or Signaling NaN
I e.g.

√
a with a < 0

I NaN op a→ NaN or exception
I NaNs do not have a sign: they aren’t a number
I The sign bit is ignored
I NanS can “carry” information

Zero and Denormals

I Considering positve numbers, the smallest ”normal” floating
point number is nsmallest = 1.0 · βemin

I In the previous example it is 1/2

I At least we need to add the zero value
I there are two zeros: +0 and -0

I When a computation result is less than the minimum value, it
could be rounded to zero or to the minimum value

Zero and Denormals / 2

I Another possibility is to use denormal (also called subnormal)
numbers

I decreasing mantissa below 1 allows to decrease the floating
point number, e.g. 0.99 · βemin , 0.98 · βemin ,. . . , 0.01 · βemin

I subnormals are linearly spaced and allow for the so called
“gradual underflow”

I Pro: k/(a− b) may be safe (depending on k) even is
a− b < 1.0 · βemin

I Con: performance of denormals are significantly reduced
(dramatic if handled only by software)

I Some compilers allow for disabling denormals
I Intel compiler has -ftz: denormal results are flushed to zero
I automatically activated when using any level of optimization!

Walking Through

I Double precision: w=11 ; p=53

0x0000000000000000 +zero
0x0000000000000001 smallest subnormal
...
0x000fffffffffffff largest subnormal
0x0010000000000000 smallest normal
...
0x001fffffffffffff
0x0020000000000000 2 X smallest normal
...
0x7fefffffffffffff largest normal
0x7ff0000000000000 +infinity

Walking Through

0x7ff0000000000001 NaN
...
0x7fffffffffffffff NaN
0x8000000000000000 -zero
0x8000000000000001 negative subnormal
...
0x800fffffffffffff ’largest’ negative subnormal
0x8010000000000000 ’smallest’ negative normal
...
0xfff0000000000000 -infinity
0xfff0000000000001 NaN
...
0xffffffffffffffff NaN

Error-Free Transformations

I An error-free transformation (EFT) is an algorithm which
determines the rounding error associated with a floating-point
operation

I E.g., addition/subtraction

a + b = (a⊕ b) + t

where ⊕ is a symbol for floating-point addition
I Under most conditions, the rounding error is itself a

floating-point number
I An EFT can be implemented using only floating-point

computations in the working precision

EFT for Addition

I FastTwoSum: compute a + b = s + t where

|a| ≥ |b|

s = a⊕ b

void FastTwoSum(const double a, const double b,
double* s, double* t) {

// No unsafe optimizations !
*s = a + b;
*t = b - (*s - a);
return;

}

EFT for Addition / 2

I No requirements on |a| or |b|
I Beware: avoid compiler unsafe optimizations!

void TwoSum(const double a, const double b,
double* s, double* t) {

// No unsafe optimizations !
*s = a + b;
double z = *s - b;
*t = (a-z)+(b-(*s-z));
return;

}

Summation techniques

I Condition number
Csum =

∑
|ai |

|
∑

ai |
I If Csum is “ not too large”, the problem is not ill conditioned and

traditional methods may suffice
I But if it is “too large”, we want results appropriate to higher

precision without actually using a higher precision
I But if higher precision is available, consider to use it!

I beware: quadruple precision is nowadays only emulated

Traditional summation

s =
n∑

i=0

xi

double Sum(const double* x, const int n) {
int i;
for (i = 0; i < n; i++) {

Sum += x[i];
}
return Sum;

}

I Traditional Summation: what can go wrong?
I catastrophic cancellation

I magnitude of operands nearly equal but signs differ
I loss of significance

I small terms encountered when running sum is large
I the smaller terms don’t affect the result
I but later large magnitude terms may reduce the running sum

Sorting and Insertion

I Reorder the operands; sort by
I Increasing magnitude value

I Insertion
I First sort by magnitude
I Remove the first two item and compute their sum
I Insert the result on the list, keeping list sorted
I Repeat until only one element is left on the list

I Many variations

Kahan summation

I Based on FastTwoSum and TwoSum techniques
I Knowledge of the exact rounding error in a floating-point

addition is used to correct the summation
I Compensated Summation

double Kahan(const double* a, const int n) {
double s = a[0]; // sum
double t = 0.0; // correction term
for(int i=1; i<n ; i++) {

double y = a[i] - t; // next term "plus" correction
double z = s + y; // add to accumulated sum
t = (z - s) - y; // t <- -(low part of y)
s = z; // update sum

}
return s;

}

More

I Many variations known (Knutht, Priest,...)

I Sort the values and sum starting from smallest values (for
positive numbers)

I Other techniques (distillation)

I Use a greater precision or emulate it (long accumulators)

I Similar problems for Dot Product, Polynomial evaluation,...

Exceptions (IEEE 754-2008)

I Underflow
I Absolute value of a non zero result is less than the minimum

value (i.e., it is subnormal or zero)
I Overflow

I Magnitude of a result greater than the largest finite value
I Result is ±∞

I Division by zero
I a/b where a is finite and non zero and b=0

I Inexact
I Result, after rounding, is not exact

I Invalid
I an operand is sNaN, square root of negative number or

combination of infinity

Handling exceptions

I Let us say you may produce a NaN
I What do you want to do in this case?

I First scenario: go on, there is no error and my algorithm is
robust

I E.g., the function maxfunc compute the maximum value of a
scalar function f (x) testing each function value corresponding
to the grid points g(i)

call maxfunc(f,g)

I to be safe I should pass the domain of f but it could be difficult
to do

I I may prefer to check each grid point g(i)
I if the function is not defined somewhere, I will get a NaN (or

other exception) but I do not care: the maximum value will be
correct

Handling exceptions / 2

I Second scenario: ops, something went wrong during the
computation...

I (Bad) solution: complete your run and check the results and, if
you see NaN, throw it away

I (First) solution: trap exceptions using compiler options (usually
systems ignore exception as default)

I Some compilers allow to enable or disable floating point
exceptions

I Intel compiler: -fpe0: Floating-point invalid, divide-by-zero,
and overflow exceptions are enabled. If any such exceptions
occur, execution is aborted.

I GNU compiler:
-ffpe-trap=zero,overflow,invalid,underflow

I very useful, but the performance loss may be material!
I use only in debugging, not in production stage

Handling exceptions / 3

I (Second) solution: check selectively
I each Ncheck time-steps
I the most dangerous code sections

I Using language features to check exceptions or directly special
values (NaNs,...)

I the old print!
I Fortran (2003): from module ieee_arithmetic,
ieee_is_nan(x), ieee_is_finite(x)

I C: from <math.h>, isnan or isfinite, from C99 look for
fenv.h

I do not use old style checks (compiler may remove them):

int IsFiniteNumber(double x) {
return (x <= DBL_MAX && x >= -DBL_MAX);

}

Floating-point control

I Why doesn’t my application always give the same answer?
I inherent floating-point uncertainty
I we may need reproducibility (porting, optimizing,...)
I accuracy, reproducibility and performance usually conflict!

I Compiler safe mode: transformations that could affect the
result are prohibited, e.g.

I x/x = 1.0, false if x = 0.0,∞,NaN
I x − y = −(y − x) false if x = y , zero is signed!
I x − x = 0.0 ...
I x ∗ 0.0 = 0.0 ...

Floating-point control / 2

I An important case: reassociation is not safe with floating-point
numbers

I (x + y) + z = x + (y + z) : reassociation is not safe
I compare

−1.0+1.0e−13+1.0 = 1.0−1.0+1.0e−13 = 1.0e−13+1.0−1.0

I a ∗ b/c may give overflow while a ∗ (b/c) does not
I Best practice:

I select the best expression form
I promote operands to the higher precision (operands, not results)

Floating-point control / 3

I Compilers allow to choose the safety of floating point semantics
I GNU options (high-level):

-f[no-]fast-math

I It is off by default (different from icc)
I Also sets abrupt/gradual underflow (FTZ)
I Components control similar features, e.g. value safety

(-funsafe-math-optimizations)

I For more detail
http://gcc.gnu.org/wiki/FloatingPointMath

http://gcc.gnu.org/wiki/FloatingPointMath

Floating-point control / 4

I Intel options:
-fp-model <type>

I fast=1: allows value-unsafe optimizations (default)
I fast=2: allows additional approximations
I precise: value-safe optimizations only
I strict: precise + except + disable fma

I Also pragmas in C99 standard
#pragma STDC FENV_ACCESS etc

Endianness

I Which is the ordering of bytes in memory? E.g.,
-1267006353 ===> 10110100011110110000010001101111

I Big endian: 10110100 01111011 00000100 01101111
I Little endian: 01101111 00000100 01111011 10110100
I Other exotic layouts (VAX,...) nowadays unusual
I Limits portability

I Possibile solutions
I conversion binary to text and text to binary
I compiler extensions(Fortran):

- HP Alpha, Intel: -convert big_endian | little_endian
- PGI: -byteswapio
- Intel, NEC: F_UFMTENDIAN (variabile di ambiente)

I explicit reoredering
I conversion libraries

C and Fortran data portability

I For C Standard Library a file is written as a stream of byte
I In Fortran file is a sequence of records:

I each read/write refer to a record
I there is record marker before and after a record (32 or 64 bit

depending on file system)
I remember also the different array layout from C and Fortran

I Possible portability solutions:
I read Fortran records from C
I perform the whole I/O in the same language (usually C)
I use Fortran 2003 access=’stream’
I use I/O libraries

Which precision do I need?

I Single, Double or Quad?
I maybe single is too much!
I computations get (much) slower when increasing precision,

storage increases and power supply too
I Famous story

I Patriot missile incident (2/25/91) . Failed to stop a scud missile
from hitting a barracks, killing 28

I System counted time in 1/10 sec increments which doesn’t have
an exact binary representation. Over time, error accumulates.

I The incident occurred after 100 hours of operation at which
point the accumulated errors in time variable resulted in a 600+
meter tracking error.

I Wider floating point formats turn compute bound
problems into memory bound problems!

Which precision do I need?/2

I Programmers should conduct mathematically rigorous analysis
of their floating point intensive applications to validate their
correctness

I Training of modern programmers often ignores numerical
analysis

I Useful tricks
I Repeat the computation with arithmetic of increasing precision,

increasing it until a desired number of digits in the results agree
I Repeat the computation in arithmetic of the same precision but

rounded differently, say Down then Up and perhaps Towards
Zero, then compare results

I Repeat computation a few times in arithmetic of the same
precision but with slightly different input data, and see how
widely results vary

Interval arithmetic
I A “correct” approach
I Interval number: possible values within a closed set

x ≡ [xL, xR] := {x ∈ R|xL ≤ x ≤ xR}

I e.g., 1/3=0.33333 ; 1/3 ∈ [0.3333,0.3334]
I Operations: let x = [a,b] and y = [c,d]

I Addition x + y = [a, b] + [c, d] = [a + c, b + d]
I Subtraction x - y = [a, b] - [c, d] = [a -d, b -c]
I . . .

I Properties are interesting and can be applied to equations
I Interval Arithmetic has been tried for decades, but often

produces bounds too loose to be useful
I A possible future

I chips supporting variable precision and uncertainty tracking
I runs software at low precision, tracks accuracy and reruns

computations automatically if the error grows too large.

References

I N.J. Higham, Accuracy and Stability of Numerical Algorithms
2nd ed., SIAM, capitoli 1 e 2

I D. Goldberg, What Every Computer Scientist Should Know
About Floating-Point Arithmetic, ACM C.S., vol. 23, 1, March
1991 http://docs.oracle.com/cd/E19957-01/806-
3568/ncg_goldberg.html

I W. Kahan http://www.cs.berkeley.edu/ wkahan/
I Standards: http://grouper.ieee.org/groups/754/

Hands-on: Compensated sum

I The code in summation.cpp/f90 initializes an array with an
ill-conditioned sequence of the order of

100,-0.001,-100,0.001,.....

I Simple and higher precision summation functions are
implemented

I Implement Kahan algorithm in C++ or Fortran
I Compare the accuracy of the results

Hands-on: C++ Solution

REAL_TYPE summation_kahan(const REAL_TYPE a[],
const size_t n_values)

{
REAL_TYPE s = a[0]; // sum
REAL_TYPE t = 0; // correction term
for(int i = 1; i < n_values; i++) {

REAL_TYPE y = a[i] - t; // next term "plus" correction
REAL_TYPE z = s + y; // add to accumulated sum
t = (z - s) - y; // t <- -(low part of y)
s = z; // update sum

}
return s;

}

Summation simple : 35404.96093750000000000
Summation Kahan : 35402.85156250000000000
Summation higher : 35402.85546875000000000

Hands-on: Fortran Solution

function sum_kahan(a,n)
integer :: n
real(my_kind) :: a(n)
real(my_kind) :: s,t,y,z

s=a(1) ! sum
t=0._my_kind ! correction term
do i=2,n

y = a(i) - t ! next term "plus" correction
z = s + y ! add to accumulated sum
t = (z-s) - y ! t <- -(low part of y)
s = z ! update sum

enddo
sum_kahan = s

end function sum_kahan

Summation simple: -13951.87109375000000
Summation Kahan: -13951.91113281250000
Summation Higher: -13951.91210937500000

Rights & Credits

These slides are c©CINECA 2013 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written
permission from the copyright owner. For more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

	Floating Point Computing

