
DEVELOPMENT TOOLS ON FERMI

Introduction to the FERMI Blue Gene/Q,

for users and developers

17 march 2014

a.marani@cineca.it

g.muscianisi@cineca.it

PROFILING & DEBUGGING
ON FERMI

This talk will show the most important tools installed on FERMI for development

purposes, i.e. debugging & profiling tools

FERMI isn’t the proper cluster for development, since its particular architecture,

so profiling and debugging on this machine may not be easy at all. However,

something can still be done!

DISCLAIMER: This is NOT a lecture about how to use

the tools presented, but about how to use them ON

FERMI (compiling, running, etc.). For more

informations about the tools general functionalities,

please consult the documentation linked on the last

slide.

PART I

PROFILING ON FERMI

FERMI PROFILING TOOLS

GPROF

HPC toolkit

Scalasca

GPROF

GNU Profiler – Gprof : The GNU profiler can be

used to determine which parts of a program are

taking most of the execution time.

Gprof can produce the following output styles:

- Flat Profile: The flat profile shows how much time was

spent executing directly in each function.

- Call Graph: The call graph shows which functions called

which others, and how much time each function spent

when its subroutine calls are included.

GPROF – FLAT PROFILE

The flat profile shows the total amount of time your program

spent executing each function.

Note that if a function was not compiled for profiling, and didn't

run long enough to show up on the program counter

histogram, it will be indistinguishable from a function that was

never called.

GPROF – CALL GRAPH

The call graph shows how much time was spent in each function

and its children. With this you may spot functions that may not

have used much time by themselves, but called other functions

that did use unusual amounts of time

1. Compile and link the program with options: -g -pg -qfullpath

-g is for activating debugging specifics, -pg is for profiling ones

-qfullpath is for displaying the fullpath of the source code files in

gprof output

COMPILE, RUN & ANALYZE

2. Run the executable with a jobscript as usual

3. Several files will be generated, named gmon.out.<MPI rank>.

Those are binary files and therefore can’t be read with normal text

editors.

Convert them to text files with the command:

gprof test_gprof.exe gmon.out.0 > gprof.0.txt

DEALING WITH TASKS AND
THREADS

By default, gmon.out files are generated only for ranks 0 - 31. You can

customize the number of profiled ranks by setting the environment variable

BG_GMON_RANK_SUBSET:
BG_GMON_RANK_SUBSET = N -- Generates the gmon.out file for rank N

only

BG_GMON_RANK_SUBSET = N:M -- Generates gmon.out files for from rank

N to M

BG_GMON_RANK_SUBSET = N:M:S -- Generates gmon.out files from rank

from N to M, skipping S. For example, 0:16:8 generates gmon.out.0,

gmon.out.8 and gmon.out.16

By default, thread profiling is not enabled. To enable it, set this environmental variable:

BG_GMON_START_THREAD_TIMERS = all -- enables the SIGPROF timer on all

threads

BG_GMON_START_THREAD_TIMERS = nocomm -- enables the SIGPROF

timer on all threads, except for the ones created to support MPI

- Add a call to the gmon_start_all_thread_timers() function to the program, from

the main thread

- Add a call to the gmon_thread_timer(int start) function on the thread to be

profiled: 1 to start, 0 to stop

IBM® HPC TOOLKIT

HPC toolkit is a collection of tools

created for analyzing performance of

parallel applications written in C or

Fortran on BG/Q systems.

The tools provided by the toolkit provide profile analysis that can be categorized in four

groups of interest:

Hardware Performance Monitor (HPM): measurement of cache misses, number of

floating point instructions executed, branch prediction counts, …

MPI profiling: tracing of MPI calls, communication patterns observation, measurement

of the time spent in each MPI function and the size of the MPI messages

OpenMP profiling: informations about the time spent in OpenMP constructs, overhead

in OpenMP constructs, balancing of the workload across OpenMP threads

I/O profiling: informations about I/O calls made in the application, understanding

of the I/O performance of the application and to identifying possible I/O

performance problems in the application (not treated in this presentation)

To profile with HPM libraries, you have to add to the source code the proper

functions/routines in charge of event countering. It is possible to choose from a

list of sets of hardware counter events to focus on a specific performance area.

HPM LIBRARIES

The main functions are:

- hpmInit() for initializing the instrumentation library.

- hpmTerminate() for generating the reports and performance data files and

shutting down the HPM environment.

- hpmStart() for identifying the start of a section of code in which hardware

performance counter events will be counted.

- hpmStop() for identifying the end of the instrumented section.

hpmStart and hpmStop can be inserted as desidered, but they must be

executed in pairs.

The section identifier label is passed as the parameter to the hpmStart

and the matching hpmStop function.

#include <hpm.h>

int main(int argc, char *argv[]){

float x;

hpmInit();

x=10.0;

hpmStart("Instrumented section 1");

for(int i=0; i<100000; i++){

x=x/1.001;

}

hpmStop("Instrumented section 1");

...

hpmStart("Instrumented section 2");

/* other computation */

...

hpmStop("Instrumented section 2");

hpmTerminate();

}

HPM LIBRARIES
EXAMPLE

#include "f_hpm.h"

integer i

real*4 x

call f_hpminit();

x=10.0

call f_hpmstart('Instrumented section 1', 22)

do i=1,00000

x=x/1.001

enddo

call f_hpmstop('Instrumented section 1', 22)

...

call f_hpmstart('Instrumented section 2', 22)

! other computation

...

call f_hpmstop('Instrumented section 2', 22)

call f_hpmterminate()

end program

COMPILE & RUN

1. Set environment variables: run the setup script

cd /bgsys/ibmhpc/ppedev.hpct

./env_sh (for sh, bash,ksh shell)

source snv_csh (for csh shell)

2. Compile with -g and statically link HPM libraries.

non-threaded application:

mpixlc myprog.c -o myprog -I/bgsys/ibmhpc/ppedev.hpct/include/ \

-L/bgsys/drivers/ppcflor/bgpm/lib/ \

-L/bgsys/ibmhpc/ppedev.hpct/lib64 -lhpc -lbgpm

threaded application:

mpixlc_r myprog.c -o myprog_r -I/bgsys/ibmhpc/ppedev.hpct/include/ \

-L/bgsys/drivers/ppcflor/bgpm/lib/ \

-L/bgsys/ibmhpc/ppedev.hpct/lib64 -lhpc_r -lbgpm -qsmp=omp

3. Run the application as usual.

WARNING:

HPM libraries collect information and compute summaries during run time.

Because of this, there may be overhead if instrumentation sections are inserted

inside inner loops which are executed many times.

PERFORMANCE
DATA FILES

HPM will generate a performance data file for each rank, named hpmCounts_<rank>.txt

There is also a .viz file for visualization with Peekperf (more on this later).

Some environmental variables can control the generation of the HPM files:

HPM_IO_BATCH = set it to yes to reduce the number of output simultaneously opened

by HPM in order to reduce file system impact

HPM_OUTPUT_PROCESS = set it to all if you want that all the MPI task write the

performance data files; set it to root if you want that only root processor writes the

performance data file.

HPM_SCOPE (non-threaded version) = set it to node to aggregate at node level the

sum of the data file produced; set it to process if you want the each task produces a

performance data file.

Default:

HPM_ASC_OUTPUT = no

HPM_VIZ_OUTPUT = yes

HPM_IO_BATCH = no

HPM_OUTPUT_PROCESS = all

HPM_SCOPE = process

MPI PROFILING
LIBRARIES

The libmpitrace library is used for profiling the MPI function calls,

by creating a trace of them;

when an application is linked with such library, it intercepts the

MPI calls in the application, using the Profiled MPI (PMPI)

interface defined by the MPI standard, and obtains the needed

profiling and trace informations.

The library also provides a set of functions that

can be used to control how profiling and trace data is collected

can be used to customize the trace data (see the manual

linked at the documentation slide)

COMPILE & RUN

1. Set environment variables: run the setup script

cd /bgsys/ibmhpc/ppedev.hpct

./env_sh (for sh, bash,ksh shell)

source snv_csh (for csh shell)

2. Compile with -g and statically link libmpitrace library.

mpixlc myprog.c -o myprog \

-I/bgsys/ibmhpc/ppedev.hpct/include/ \

-L/bgsys/ibmhpc/ppedev.hpct/lib64 -lmpitrace

3. Run the application as usual.

PERFORMANCE
DATA FILES

A data file for each rank will be generated: mpi_profile_<world_id>_<world_rank>.txt

There is also a .viz file for visualization with Peekperf (more on this later).

world_id is the MPI world id; world_rank is the MPI task rank of the task that generated

the file.

The file single_trace_<world_id> contains trace data, and can be visualized with

Peekperf.

Default settings:

- number of trace event collected per task = 30000 .

(MAX_TRACE_EVENTS)

- only 4 output files will be generated: for task 0, and for tasks having

maximum, minimum and median total MPI communication time.

(OUTPUT_ALL_RANKS)

- all the MPI calls after MPI_Init() are traced. (TRACE_ALL_EVENTS)

- max 256 MPI tasks are traced (MAX_TRACE_RANK, TRACE_ALL_TASKS)

OPENMP PROFILING
LIBRARIES

The openMP profiling libraries are used for analyzing performance

problems in an OpenMP application.

They help in determining if the OpenMP application properly

structures its processing for achieving the best performance.

They obtain informations about:

- time spent in OpenMP constructs in the application

- overhead in OpenMP constructs

- how is the workload balanced across OpenMP threads in

the application

COMPILE & RUN

1. Set environment variables: run the setup script

cd /bgsys/ibmhpc/ppedev.hpct

./env_sh (for sh, bash,ksh shell)

source snv_csh (for csh shell)

2. Compile with -g and statically link openMP profiling libraries.
mpixlc myprog.c -o myprog -qsmp=omp \

-L/bgsys/ibm_compilers/prod/opt/ibmcmp/xlsmp/bg/3.1/bglib64/ \

-lxlsmp_pomp -L/bgsys/ibmhpc/ppedev.hpct/lib64 -lpompprof_probe \

-lm -g

3. Run the application as usual.

A data file for each MPI rank will be generated:

popenmp_prof_<rank>

There is also a .viz file for visualization with Peekperf

PEEKPERF

Peekperf provides a GUI interface to view application performance data.

It allows to visualize and analyze the collected performance data, collected in the in the

visualization (.viz) files from the various instrumentation libraries.

If more than one visualization file is specified, peekperf combines the data from them

and displays the result.

It also provides filtering and sorting capabilities to help you analyze the data.

/bgsys/ibmhpc/ppedev.hpct/bin/peekperf

SCALASCA

SCALASCA (SCalable performance Analysis of LArge SCale

Applications) is a software tool that supports the performance

optimization of parallel programs by measuring and analyzing

their runtime behavior. The analysis identifies potential

performance bottlenecks – in particular those concerning

communication and synchronization – and offers guidance in

exploring their causes.

Like with HPC toolkit libraries, Scalasca takes advantage of a

process of event tracing: for each thread/task is defined a buffer

that measures the number of calls to functions, the time spent on

each routine and so on. Final results are collected at the end.

PROFILING WITH
SCALASCA

In order to profile an application with Scalasca, you have to

compile and execute your application with the proper setting.

Follow these instructions:

1. module load autoload scalasca (autoload the bgq-xl compiler)

2. Compile with scalasca -instrument (or its alias “skin”):

skin mpixlf90 -openmp -o bar bar.f90

Notice that there are no other specific flags that have to be added

3. Execute in a job script with scalasca -analyze (before the runjob

command)

SCALASCA JOB SCRIPT
EXAMPLE

#!/bin/bash

@ job_name = myjob.$(jobid)

@ output = $(job_name).out

@ error = $(job_name).err

@ environment = COPY_ALL

@ job_type = bluegene

@ wall_clock_limit = 1:00:00

@ bg_size = 128

@ account_no = <Account number>

@ notification = always

@ notify_user = <valid email address>

@ queue

export OMP_NUM_THREADS=4

module load autoload scalasca/1.4.2

scalasca -analyze runjob --np 256 --ranks-per-node 4 --env-all --exe <my_exe>

EPIK ARCHIVE

After the execution, a folder named

epik_<myexe>_<resources> _sum will be created. It contains

the following files:

epik.conf Measurement configuration of the execution

epik.log Output of the instrumented program and measurement system

epik.path Callpath-tree recorded by the measurement system

epitome.cube Intermediate analysis report of the runtime summarization system

summary.cube[.gz] Post-processed analysis report of runtime summarization

EXAMINE RESULTS

The content of the epik folder can be examinated via the

scalasca -examine command:

scalasca -examine epik_<myexe>_<resources>_sum

to examinate the report by GUI

scalasca -examine -s epik_<myexe>_<resources>_sum

to examinate the report by textual score output

(the file epik.score will be added in the epik directory)

Results are displayed using three coupled tree browser showing:

- Metrics (i.e. Performance properties/problems)

- Call-tree or flat region profile

- System location

EXAMINATION BY GUI

METRICS

Time Total CPU allocation time

Visits Number of times a routine/region was executed

Synchronizations Total number of MPI synchronization operations that were
executed

Communications The total number of MPI communication operations,
excluding calls transferring no data (which are considered
Synchronizations)

Bytes transferred The total number of bytes that were sent and received in MPI
communication operations. It depends on the MPI internal
implementation.

MPI file operations Number of MPI file operations of any type.

MPI file bytes transferred Number of bytes read or written in MPI file operations of any
type.

Computational imbalance This simple heuristic allows to identify computational load
imbalances and is calculated for each (call-path,
process/thread) pair.

MANUAL SOURCE CODE
INSTRUMENTATION

Region or phase annotations manually inserted in source file can

augment or substitute automatic instrumentation, and can improve

the structure of the analysis reports to make them more

comprehensible to read

These annotations can be used to mark any sequence or block of

statements, such as functions, phases, loop nests, etc., and can

be nested, provided that every enter has matching exit

If automatic compiler instrumentation is not used, it is typically

desiderable to manually instrument at least the main

function/program and perhaps its major phases (e.g. initialization,

core/body, finalization).

#include “epik_user.h”

…

void foo(){

… … // local declarations

… … // more declarations

EPIK_FUNC_START();

… … // executable statements

if(...){

EPIK_FUNC_END();

return;

} else {

EPIK_USER_REG (r_name,

“region”);

EPIK_USER_START (r_name);

… …

… …

EPIK_USER_END (r_name);

}

… … // executable statements;

EPIK_FUNC_END();

return;

}

#include “epik_user.inc”

…

subroutine bar()

EPIK_FUNC_REG(“bar”)

EPIK_USER_REG (r_name,

“region”)

… … ! local declarations

EPIK_FUNC_START();

… … ! executable statements

if(...) then

EPIK_FUNC_END()

return

else

EPIK_USER_START (r_name)

… …

… …

EPIK_USER_END (r_name)

endif

… … ! executable statements

EPIK_FUNC_END()

return

end subroutine bar

MANUAL INSTRUMENTATION
EXAMPLE

PART II

DEBUGGING ON FERMI

DEBUGGING ON FERMI…

Debugging on FERMI is no easy task!

Error messages are often vague, and core files may be

rather incomprehensible…

However, there are some useful tools that can help on the task!

Before that, let’s see some general advice for the setting of a

debug session

COMPILING FOR A DEBUG
SESSION

3 flags are required for compiling a program that can be

analyzed by debugging tools:

-g : integrates debugging symbols on your code, making them

“human readable” when analyzed from debuggers

-O0 : avoids any optimization on your code, making it execute

the instructions in the exact order they’re implemented

-qfullpath : Causes the full name of all source files to be added

to the debug informations

OTHER USEFUL FLAGS

-qcheck Helps detecting some array-bound violations, aborting

with SIGTRAP at runtime

-qflttrap Helps detecting some floating-point exceptions, aborting

with SIGTRAP at runtime

-qhalt=<sev> Stops compilation if encountering an error of the

specified lever of severity

-qformat Warns of possible problems with I/O format specification

(C/C++) (printf,scanf…)

-qkeepparm ensures that function parameters are stored on

the stack even if the application is optimized.

FERMI DEBUGGING TOOLS

GDB

addr2line

Totalview

GDB

On FERMI, GDB is available both for

front-end and back-end applications

Front-end: gdb <exe>

Back-end: /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gdb <exe>

Back-end shortcut: module load gdb

be-gdb <exe>

It is possible to make a post-mortem analysis of the binary core
files generated by the job:
module load gdb

be-gdb <exe> <corefile>

To generate binary core files, add the following envs to runjob:
--envs BG_COREDUMPONEXIT=1

--envs BG_COREDUMPBINARY=*

‘*’ means “all the processes”. It is possible to indicate which

ranks generate their core by specifying their number

GDB – REMOTE ACCESS

The Blue Gene/Q system includes support for using GDB

real-time with applications running on compute nodes.

IBM provides a simple debug server called gdbserver. Each
running instance of GDB is associated with one process or
rank (also called GDB client).

Each instance of a GDB client can connect to and debug one
process. To debug multiple processes at the same time, run
multiple GDB tools at the same time. A maximum of four GDB
tools can be run on one job.

…so, how to do that?

USING GDB ON RUNNING
APPLICATIONS

1) First of all, submit your job as usual;
llsubmit <jobscript>

2) Then, get your job ID;
llq -u $USER

3) Load the GDB module; it contains the shortcut for the back-
end GDB and the script for the environment setting
module load gdb

4) Launch the “gdb-setup” script. It will print the instructions for
the next steps

gdb-setup -j <jobid> -r <rank #>

5) Launch GDB! (back-end version);
be-gdb ./myexe

6) Connect remotely to your job process (the value of <IP
address> was printed on the screen after step 4);
(gdb) target remote <IP address>:10000

7) Start debugging!!!

(Although you aren’t completely free…for example, command ‘run’
does not work)

USING GDB ON RUNNING
APPLICATIONS

ADDR2LINE

If nothing is specified, an unsuccesful job generates a text core

file for the processes that caused the crash…

…however, those core files are all but easily readable!

addr2line is an utility that allows to get from this file

informations about where the job crashed

CORE FILES

Blue Gene core files are lightweight text files

Hexadecimal addresses in section STACK describe function
call chain until program exception. It’s the section delimited by
tags: +++STACK / ---STACK

In particular, “Saved Link Reg” column is the one we need!

USING ADDR2LINE

From the core file output, save only the addresses in the Saved
Link Reg column:

Replace the first eight 0s with 0x:

If you load the module “superc”, a simple script called “a2l-translate” is capable of
doing the replacement for you:

module load superc

a2l-translate corefile

Lauch addr2line:
addr2line -e ./myexe 0x018b2678

addr2line -e ./myexe < addresses.txt

TOTALVIEW

TotalView is a GUI-based source code

defect analysis tool that gives you control

over processes and thread execution and

visibility into program state and variables.

It allows you to debug one or many processes and/or threads with

complete control over program execution.

It is by far the most versatile and user-friendly debugger on our

clusters!!

REMOTE CONNECTION
MANAGER (RCM)

Launching Totalview on FERMI is complicated, since it involves

working with a GUI during a working execution. Thus you need to

see what’s inside the computing nodes, that aren’t very “graphical-

friendly”

There are some workarounds for this issue, one of them involves

estabilishing a VNC connection and use it for SSH tunneling to

your local workstation

The easiest, however, is to use the Remote Connection

Manager devolped by CINECA!!

USING TOTALVIEW:
PREPARATION

1) Download the version of RCM that suits your Operative
System: http://www.hpc.cineca.it/services/remote-visualisation

2) For Windows users, an X server like Xming
may be needed:

http://sourceforge.net/projects/xming/ .
Download and launch it.

3) Launch RCM and fill the boxes as in the
picture (type the credentials you use for
accessing FERMI)

4) Select “new display”. A job (budget-free) in the special “visual”
queue will create a remote display for 12 hours

http://www.hpc.cineca.it/services/remote-visualisation
http://sourceforge.net/projects/xming/

USING TOTALVIEW: JOB SCRIPT
SETTING

5) Inside your job script, you have to load the proper module and
export the DISPLAY environment variable:
module load totalview

export DISPLAY=fen<no>:xx

where xx and <no> are as you can see in the name of the
remote display window (as in the picture)

6) Totalview execution line (inside your LoadLeveler script) will be

as follows:
totalview runjob -a <runjob arguments: --np, --exe, --args…>

7) Launch the job. When it will start running, you will find a

Totalview window opened on your remote display!

Closing Totalview will also kill the job.

Using Totalview: start debugging

Select “BlueGene” as a parallel

system, and a number of tasks

and nodes according to the

arguments you gave to runjob

during submission phase.

Click “Go” (the green arrow) on

the next screen and your

application will start running.

WARNING: due to license issues, you are NOT allowed to run

Totalview sessions with more than 1024 tasks simultaneously!!!

WARNING: The BG/Q version of Totalview doesn’t

implement Replay Engine yet.

DOCUMENTATION
PROFILING:

GPROF

http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html

HPC TOOLKIT (ON BG\Q)

http://community.hartree.stfc.ac.uk/access/content/group/admin/HPC%20Training/BG_Q

%20training%20course%20February%202013/Reference/hpct_guide_bgq_V1.1.1.0.pdf

SCALASCA

http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/docs/UserGuide.pdf

DEBUGGING: http://www.hpc.cineca.it/sites/default/files/Debug%20guide_0.pdf

GDB

https://sourceware.org/gdb/current/onlinedocs/gdb/

TOTALVIEW

http://www.roguewave.com/portals/0/products/totalview-

family/totalview/docs/8.13/html/index.html#page/User_Guides/totalviewug-title.html

The course “Introduction to HPC Scientific Programming: tools and techniques”

may also prove useful!

http://www.hpc.cineca.it/content/hpc-scientific-programming

http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://community.hartree.stfc.ac.uk/access/content/group/admin/HPC Training/BG_Q training course February 2013/Reference/hpct_guide_bgq_V1.1.1.0.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/docs/UserGuide.pdf
http://www.hpc.cineca.it/sites/default/files/Debug guide_0.pdf
https://sourceware.org/gdb/current/onlinedocs/gdb/
http://www.roguewave.com/portals/0/products/totalview-family/totalview/docs/8.13/html/index.htmlpage/User_Guides/totalviewug-title.html
http://www.hpc.cineca.it/content/hpc-scientific-programming

