
www.cineca.it

Applications available
on FERMI

e.rossi@cineca.it

Is my application suitable for Fermi?

What is Fermi best suitable for?

• FERMI has an enormous number of cores
• Fermi cores are not so powerful
• Memory per core quite low (1MB)
• Cores are arranged 16 per node, sharing a 16GB memory
• Cores are dedicated, nodes are dedicated
• Minimum num of nodes/job is 64/128 (1024/2048 cores)
• It is not possible to have a general number of nodes, only given partitions are fine:

• 64 (only on 2 out of 10 racks)
• 128, 256,
• 512 (one midplane)
• 1024 (two MP = 16Kcores)
• 1536 (three MP= 24Kcores)
• 2048 (two racks = 32Kcores)
• …. (not in CINECA)

•Also topology is important …

Is my application suitable for Fermi?

What is Fermi best suitable for?

Largely scalable applications usually imply LARGE physical problems, as those dealing with
at least one of the following aspects:
• large system size
• high resolution (in space)
• long duration of simulations (or high resolution in time)
• large number or set of interconnected systems or degrees of freedom

• FERMI is not really a “general purpose” machine

• IF your application is well suited for the architecture you will get

unprecedented results

• IF your application is not, very poor results, even difficult to install

• A good application for BGQ must be

• Highly scalable (several K at least)

• Not memory demanding (1GB at most per core)

• Hybrid parallelism can help managing the memory

Application stack on FERMI

• For programmers
 Mathematical libraries

 I/O libraries

 Tools for profiling and debugging

• For production
 Scientific Applications

Mathematical libraries on FERMI

• Mathematical libraries
 essl/5.1
 fftw/2.1.5, 3.3.3
 gsl/1.15
 lapack/3.4.1
 petsc/3.3-p2
 scalapack/2.0.2
 blas/2007
 mass/7.3
 papi/4.4.0

• I/O libraries
 netcdf/4.1.3
 hdf5/1.8.9

 szip/2.1
 zlib/1.2.7

• Scientific Applications
 abinit/6.12.3
 cpmd/v3.15.3
 namd/2.9
 amber/12
 crystal09/1.01
 QuantumEspresso/5.0bgq
 bigdft/1.6.0
 dl_poly/4.03
 siesta/3.1
 cp2k/2.3
 gromacs/4.5.5
 vasp/5.2.12, 5.3.2
 cpmd/3.15.3_hfx
 lammps/20120816
 OpenFoam (to be done)

General Info

• All libraries as available as module
module avail
• Help on how to use library in the help of the module
module help <name>

• Loading the module sets environment variables you have
to use in the linking procedure

–L$(*_LIB) and –I$(*_INCLUDE)

• The show command lists all defined variable
module show <name>

• Link sequence important, <file>.o always before the
libraries, sometimes double linking necessary

General Info

[erossi00@fen07 ~]$ module avail

------------ /cineca/prod/modulefiles/profiles ------------

profile/advanced profile/base(default) profile/front-end

------------ /cineca/prod/modulefiles/base/environment ------------

autoload/0.1

------------ /cineca/prod/modulefiles/base/libraries ------------

blas/2007--bgq-xl--1.0(default) mass/7.3--bgq-xl--1.0

essl/5.1 mpi4py/1.3--bgq-gnu--4.4.6

fftw/2.1.5--bgq-xl--1.0 netcdf/4.1.3--bgq-xl--1.0

fftw/3.3.2--bgq-xl--1.0 numpy/1.6.2--bgq-gnu--4.4.6

gsl/1.15--bgq-xl--1.0 papi/4.4.0--bgq-gnu--4.4.6

hdf5/1.8.9_par--bgq-xl--1.0 petsc/3.3-p2--bgq-xl--1.0

hdf5/1.8.9_ser--bgq-xl--1.0 scalapack/2.0.2--bgq-xl--1.0(default)

lapack/3.4.1--bgq-xl--1.0(default) szip/2.1--bgq-xl--1.0

libint/2.0--bgq-xl--1.0(default) zlib/1.2.7--bgq-gnu--4.4.6

libjpeg/8d--bgq-gnu--4.4.6

------------ /cineca/prod/modulefiles/base/compilers ------------

bgq-gnu/4.4.6 bgq-xl/1.0 front-end-gnu/4.6.3 front-end-xl/1.0

------------ /cineca/prod/modulefiles/base/tools ------------

cmake/2.8.8 irods/3.2 tau/2.21.4

globus/5.0.5 scalasca/1.4.2 tgftp/0.5.0

gtransfer/0.0.10a superc/1.0 uberftp/2.6

------------ /cineca/prod/modulefiles/base/applications ------------

abinit/6.12.3 cpmd/v3.15.3 namd/2.9

amber/12(default) crystal09/1.01 qe/5.0bgq

bigdft/1.6.0 dl_poly/4.03(default) siesta/3.1

cp2k/2.3(default) gromacs/4.5.5(default) vasp/5.2.12

cpmd/3.15.3_hfx(default) lammps/20120816 vasp/5.3.2

General Info

[erossi00@fen07 ~]$ module help essl

Module Specific Help for /cineca/prod/modulefiles/base/libraries/essl/5.1:

modulefile "essl/5.1"

essl-5.1

Collections of state-of-the-art mathematical subroutines

--

License type: commercial

Web site: www.ibm.com

Download url: www.ibm.com

--

ESSL and Parallel ESSL are collections of state-of-the-art mathematical subroutines

specifically designed to improve the performance of engineering and scientific

applications on the IBM POWER\u2122 processor-based servers and blades.

PLEASE NOTE

- This library is meant to be linked to a program that will be ran on the compute nodes.

**

libesslbg.a (MPI)

libesslsmpbg.a (MPI & openmp)

Example of usage:

$ module load essl

$ module load bgq-xl

$ mpicc_r -o a.out foo.c -L$ESSL_LIB -lesslbg -lesslsmpbg

$ mpixlf90_r -o a.out foo.f90 -L$ESSL_LIB -lesslbg -lesslsmpbg

d
e
s
c
r

lic
e
n
s
e

e
x
a
m

p
le

General Info

[erossi00@fen07 ~]$ module show essl

/cineca/prod/modulefiles/base/libraries/essl/5.1:

module-whatis Collections of state-of-the-art mathematical subroutines

conflict essl

setenv ESSL_HOME /opt/ibmmath/essl/5.1/

setenv ESSL_LIB /opt/ibmmath/essl/5.1/lib64

setenv ESSL_INC /opt/ibmmath/essl/5.1/include

setenv ESSL_INCLUDE /opt/ibmmath/essl/5.1/include

prepend-path LIBPATH /opt/ibmmath/essl/5.1/lib64 :

prepend-path LD_LIBRARY_PATH /opt/ibmmath/essl/5.1/lib64 :

General Info

• All libraries was compiled with XL compiler for the
compute nodes

-O3 –g –qsimd=auto

• Additional version compiled with the gnu compilers is
sometimes available in the “advanced” profile

• See “module avail” for available versions

• Usually, only the most recent versions are available in the
“base” profile

Sequential Libraries

• Vendor specific libraries
 ESSL

(Engineering and Scientific Subroutine Library), version 5.1

 MASS (IBM Mathematical Acceleration Subsystem)

• Public domain Software
 LAPACK (Linear Algebra PACKage)

 GSL (Gnu Scientific Library)

 BLAS (Basic Linear Algebra Subprograms)

 FFTW (Fast Fourier Transform)

Parallel Libraries

• Threaded Parallelism

 ESSLsmp 5.1

• MPI Parallelism
 ScaLAPACK (Scalable Linear Algebra PACKage)

 FFTW (Fastest Fourier Transform of the West)

 PETSc (scalable solution by partial differential equations)

Math lib: ESSL

ESSL - Engineering and Scientific Subroutine Library (IBM)
(collections of state-of-the-art mathematical subroutines specifically
designed to improve the performance of engineering and scientific
applications on IBM platforms)

• High-performance math libraries
• Tuned for BlueGene/Q
• Can be called from C, C++ and Fortran
• Multi-threaded version (SMP) available
• Can be used together with BLAS or LAPACK libraries

$ module load bgq-xl

$ module load essl

$ mpicc_r -o a.out foo.c -L$ESSL_LIB -lesslsmpbg

$ mpixlf90_r -o a.out foo.f90 -L$ESSL_LIB -lesslbg

libesslbg.a (seriaI)

libesslsmpbg.a (OpenMP)

LAPACK

• Solving dense linear algebra problems efficiently on HPC computers.
• Developed by Argonne National Laboratory, supported by the National Science

Foundation (NSF) and the United States Department of Energy (DOE)
• Performance issues are addressed by incorporating recent algorithmic

improvements for linear algebra computation. Algorithms give nearly optimal
performance.

• Public domain version 3.4.1
• Must be used together with ESSL (or ESSLsmp)
• Some routines already in ESSL
• Attention, some calling sequences are

different!

ESSL must be linked also after LAPACK to resolve references

module load essl

module load lapack

mpixlf_r name.f

 –L$ESSL_LIB –lesslbg

 -L$LAPACK_LIB –llapack

 -lesslbg

ScaLAPACK

• Scalable Linear Algebra PACKage, or Scalable LAPACK
• Includes a subset of LAPACK routines redesigned for distributed memory MIMD

parallel computers.
Matrices are laid out in a two-dimensional block cyclic decomposition.

• Univ. of Knoxville, Oak Ridge National Lab, Univ. of Berkeley
• The BLACS is now part of ScaLAPACK, and is compiled into the ScaLAPACK library.

It is no longer necessary to link against BLACS libraries.
• The current release 2.0.2 does no longer include sequential LAPACK routines

needed, thus an LAPACK library has to be linked together with ScaLAPACK

$ module load scalapack

$ module load essl

$ module load lapack

$ module load bgq-xl

$ mpixlf90_r -o a.out foo.f90

 -L$SCALAPACK_LIB -lscalapack -L$ESSL_LIB -lesslbg

 -L$LAPACK_LIB -llapack -lesslbg

Use of libraries and compilers on FERMI

Scientific Applications on FERMI

• Applications installed on FERMI if suitable for BGQ architecture

• All available through the “module” environment
• Both licensed and open-source applications. Even if licensed, normally users are

allowed to use them freely (site licenses)
• We normally maintain the applications installing new releases as available and

stay in touch with providers.

Available applications today:
electronic structure

• Abinit: periodic systems,
 DFT with planewave & pseudopotentials

• BigDFT: molecules,
 DFT with planewave & pseudopotentials

• CP2K: molecular simulation of solids, liquids, bio sys.tem
 DFT with GPW

• Crystal09: periodic systems,
 Quantum Chemistry

• NwChem: molecules and periodic solids ,
 Quantum Chemistry

• Octopus: molecules,

 TDDFT

• VASP atomic scale material modelling
 DFT, HF, hybrid functional, planewave

Available applications today:
ab-initio Molecular Dynamics

• CPMD: DFT with planewave & pseudopotentials, with Plumed

• NwChem: molecules and periodic solids ,
 mixed Quantum-Molecular mechanics

• Quantum molecules,
ESPRESSO: DFT with planewave & pseudopotentials

• Siesta: molecular simulation of solids, liquids, bio sys.

 DFT with GPW

• Vasp: Quanrtum-mechanical molecular dynamics from firt principle
 plane wave, ultrasoft pseudo potentials

Available applications today:
classical Molecular Dynamics

• Namd: classical molecular dynamics

• Amber classical molecular dynamics

• Gromacs classical molecular dynamics

• DL_Poly classical molecular dynamics

• Lammps classical molecular dynamics code that models an ensemble of
 particles in a liquid, solid, or gaseous state.

• OpenFOAM (Open Field Operation and Manipulation) CFD Toolbox

Use of applications on FERMI

• Data refers to February

• Only 30% of the cpu-h are spent in module-loading jobs

benchmark

• We report benchmarks on some application installed on FERMI

• Some of them have been executed on FERMI

• Others refer to the “Unified European Application Benchmark
Suite” (UEABS) of PRACE;
 12 applications in different scientific fields

 Particle Physics (1): QCD

 Classical MD (2): NAMD, GROMACS

 Quantum MD (3): Quantum Espresso, CP2K, GPAW

 CFD (2): Code_Saturne, ALYA

 Earth Sciences (2): NEMO, SPECFEM3D

 Plasma Physics (1): GENE

 Astrophysics (1): GADGET

 For procurement purposes

 To assist users when choosing the system

 To provide conversion between systems

CP2K

NAMD Scalable molecular dynamics
• CP2K is a freely available (GPL) program to perform atomistic and molecular simulations

of solid state, liquid, molecular and biological systems. It provides a general framework
for different methods such as e.g. density functional theory (DFT) using a mixed
Gaussian and plane waves approach (GPW), and classical pair and many-body potentials.

• It is very well and consistently written, standards-conforming Fortran 95, parallelized
with MPI and in some parts with hybrid OpenMP+MPI as an option.

• CP2K provides state-of-the-art methods for
efficient and accurate atomistic
simulations, sources are freely available
and actively improved. It has an active
international development team, with the
unofficial head quarters in the University of
Zürich.

• Test Case B The Tier-0 dataset is a 216 LiH
system with Hartree-Fock Exchange (PRACE
benchmarks on Juqueen)

Gromacs

• GROMACS is a versatile package to perform molecular dynamics, i.e. simulate
the Newtonian equations of motion for systems with hundreds to millions of
particles.

• It is primarily designed for biochemical molecules such as proteins, lipids and
nucleic acids that have a lot of complicated bonded interactions, but since
GROMACS is extremely fast at calculating the non-bonded interactions (that
usually dominate simulations) many groups also use it for research on non-
biological systems, e.g. polymers.

• GROMACS provides extremely high performance compared to all other
programs. A lot of algorithmic optimizations have been introduced in the
code. The innermost loops are written in assembly with optimized kernels
for most common CPU

• GROMACS is written in C and can be run in parallel, using standard MPI
communication. Hybrid-MPI/OpenMP implementation is able to push the
scaling limits for small to medium systems.

Gromacs

• Test Case B: A model of cellulose and lignocellulosic biomass in an aqueous

solution.
• This system of 3.3M atoms is inhomogeneous. This system uses reaction-field

electrostatics instead of PME and therefore should scale well.

NAMD 2.9

NAMD Scalable molecular dynamics
• parallel molecular dynamics code designed for high-performance simulation of large biomolecular

systems.
• scales to hundreds of processors on high-end parallel platforms
• Compiled with XL compilers, mixed parallelism MPI + multi-threads, uses FFTW2 (single-precision),

BG/Q optimised by developers
• Benchmarks use STMV (virus) (1,066,628 atoms, periodic, PME), as defined on the NAMD web-site

• Graphic 1: the NAMD performance
(simulation time in ns/day) is reported
vs. the increasing number of nodes
(fixed ranks-per-node=4 and ppn=4)

• bg_size = from 64 to 2048
• ranks-per-node = 4
• ppn =4

• num. of core =
from 1.024 to 32.768

NAMD 2.9

The datasets are based on the original "Satellite Tobacco Mosaic Virus (STMV)"

dataset from official NAMD site.

Test Case B: This is a 3x3x3 replication of the STMV dataset.

LAMMPS

• classical molecular dynamics code that models an ensemble of particles in a liquid,
solid, or gaseous state. It can model atomic, polymeric, biological, metallic,
granular, and coarse-grained systems using a variety of force fields and boundary
conditions.

• LAMMPS runs in parallel using MPI and a spatial-decomposition of the simulation
domain. Each MPI task can distribute work over several OpenMP threads.

 • Benchmarks use two different
kinds of input
 Protein: Rhodopsin

protein in solvated lipid
bilayer

 Lennard Jones: atomic
fluid with Lennard-Jones
potential

• For both types, input
dimension range from 32K to
2M atoms

LAMMPS – 2012.08.16

Lennard-Jones (2M atoms)

nthreads=1

0

20

40

60

80

100

120

140

160

0 64 128 192 256

MPI procs

s
e
c

1

linear

Lennard-Jones (32K atoms)

nthreads=1

0

2

4

6

8

10

12

14

16

18

0 32 64

MPI procs

s
e
c

1

linear

• LAMMPS execution time (sec) is

reported vs. the increasing number MPI

tasks (no OpenMP).

• Scalability is nearly perfect for all the

tested cases (small and large,

LennardJones and Rhodopsin)

QuantumEspresso

• Quantum ESPRESSO is an integrated suite of computer codes for electronic-
structure calculations and materials modeling at the nanoscale. It is based on
DFT, plane waves, and pseudopotentials.

• It is written in Fortran/C and is parallelised at different levels (mixed
parallelism MPI + OpenMP)

QuantumEspresso

• QUANTUM ESPRESSO is written mostly in Fortran90, and parallelised using MPI
and OpenMP.

• Test Case B This test case is based on two iterations of a SCF calculation on a
functionalised carbon nanotube with a total of 1532 atoms.

VASP

• Vienna Ab initio Simulation Package: a computer program for
atomic scale materials modelling (electronic structure calculations
and quantum-mechanical molecular dynamics, from first principles)

• Based on DFT or HF and hybrid functionals, Green's functions
methods and many-body perturbation theory

• Uses plane wave basis sets, norm-conserving or ultrasoft
pseudopotentials (projector-augmented-wave metod)

• Fortran code, parallelisation via MPI library

VASP

• Test performed within a Prace project. It shows a quite good speedup
up to 1 K processors.

• Scalability depends on
the method and input
data.

• Memory is critical:
for large cases it is
better to use
ranks-per-nodes= 8
or lower

• Modifying input
parameters allow for
important gains in
performance (50-80%).

documentation

• www.hpc.cineca.it/

Information
and

announcements

