

BG/Q Architecture

Carlo Cavazzoni Mirko Cestari

HPC department, CINECA

What is BG

□ The Blue Gene family of supercomputers: evolution and challenges

Overview of Blue Gene/Q architecture

FERMI configuration
Basic concepts: packaging hierarchy, partitions and compute blocks

□ <u>A closer look</u>

Inside the processor and the chipThe QUAD FPU

□ BG is a massively parallel supercomputer

□ It holds different types of nodes (and networks)

□ It is designed to have high energy-efficiency (performance/power)

BLUE GENE EVOLUTION

	Total		Biggest Config	Per rack		
	Performance [PF]	Efficiency [MF/W]	Max # of racks	Performance [TF]	Efficiency	# of cores
BG/L	0.596	210	104	5.7	2.02	2048
BG/P	1	357	72	13.9	4.96	4096
BG/Q	20	2000	96	209	20.83	16384

Towards higher and higher:

- Performance
- Efficiency
- Density of cores per rack

Blue Gene/Q

Features:

- among the most powerful architectures
- among the most "green"
- multi-core/multi-threaded computing
- Has an innovative design (system-on-a-chip)

... and objectives:

- Laying groundwork for Exascale computing
- Reduce total cost of ownership

PARTNERSHIP FOR Advanced Computing IN EUROPE

TOP500 November 2013

1	Tianhe-2- TH-IVB-FEP, Xeon E5-2692 2.20 GHz, TH Express-2, Intel Xeon Phi
2	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x
3	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom
4	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect
5	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom
6	Piz Daint – Cray XC30, Xeon E5-2670 8C 2.60GHz, Aries Interconnect, NVIDIA K20x
7	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi
8	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect
9	Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect
10	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR

16 Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom Interconnect

http://www.top500.org

PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

FERMI @ CINECA PRACE Tier-0 System

Architecture: 10 BGQ Frame Model: IBM-BG/Q Processor Type: IBM PowerA2, 1.6 GHz Computing Cores: 163840 Computing Nodes: 10240 RAM: 1 GByte / core Internal Network: 5D Torus Disk Space: 2 PByte of scratch space Peak Performance: 2 PFlop/s Power Consumption: 1 MWatt

Point-to-point fiber cables, attaching the 8 I/O nodes (on top of rack) to compute nodes (on 8 node cards)

4D torus fiber cables, connecting the midplane to other midplanes (in same and other racks)

BG/Q I/O architecture

External, independent and dynamic I/O system

- I/O nodes in separate drawers/rack with private interconnections and full Linux support
- PCI-Express Gen 2 on every node with full sized PCI slot

•BlueGene Classic I/O with GPFS clients on the logical I/O nodes

- ·Similar to BG/L and BG/P
- •Uses InfiniBand switch
- •Uses DDN RAID controllers and File Servers
- •BG/Q I/O Nodes are not shared between compute partitions
 - IO Nodes are bridge data from function-shipped I/O calls to parallel file system client

•Components balanced to allow a specified minimum compute partition size to saturate entire storage array I/O bandwidth

I/O nodes – node cards ratio

Blue Gene/Q has a Flexible I/O nodes – node cards ratio

8 I/O nodes per I/O drawer4 I/O drawers per rack (maximum)

up to 32 I/O nodes per rack = 1 I/O node per 512 compute cores

FERMI configuration:2 racks with 16 I/O nodes (1024 cores per I/O node)8 racks with 8 I/O nodes (2048 cores per I/O node)

Ok, but... why should I care?

The number of I/O nodes per rack constraints:

-I/O bandwidth to/from compute racks (each I/O node has 2 links (4GB/s in 4GB/s out))

-The minimum partition allocatable on a BG/Q system ("small block" jobs) For FERMI: bg_size=64 (jobs running on R11 and R31)

bg_size=128 (jobs running on the other racks)

MidPlane in FERMI RACK: R11, R31

Example: N08 - N09 = 64 Compute Cards (2x2x4x2x2)

MidPlane in FERMI / {R11 R31}

Example:

N08 - N09 - N10 - N11 = 128 Compute Cards (2x2x4x4x2)

Compute blocks on Fermi

Small blocks:

- contains one or more node boards within a single midplane
- always multiple of 32 nodes

Large blocks:

- contains one or more complete midplanes
- always multiple of 512 nodes

•New Network architecture:

- 5 D torus architecture sharing several embedded Virtual Network/topologies
 - 5D topology for point-to-point communication
 - 2 GB/s bidirectional bandwidth on all (10+1) links
 - Bisection bandwidth of 65TB/s (26PF/s) / 49 TB/s (20 PF/s) BGL at

LLNL is 0.7 TB/s

- Collective and barrier networks embedded in 5-D torus network.
- Floating point addition support in collective network
- 11th port for auto-routing to IO fabric

FERMI Configuration

Rack with 8 IO Nodes

10 racks

- 5 rows
- 2 columns

20 midplanes

• 2 midplanes for each rack

Racks	MP	Row	Col	Α	В	С	D
10	20	5	2	1	5	2	2

CINECA

Midplanes CABLING

B dimension

- connection among 2 midplanes goes down a column of racks
- on Fermi the number of the cables on the B dim is 5

C dimension

- connection among 2 midplanes goes down a row of racks
- on Fermi the number of the cables on the C dim is 2

D dimension

- connection among 2 midplanes in the same rack
- on Fermi the number of the cables on the D dim is 2

A dimension

- the remaining direction, which can go down a row or column (or both). When two sets of cables go down a row or column, the longest cables define the A dimension
- on Fermi the number of the cables along the A dim is 1 and it is not rapresented

Racks	MP	Row	Col	Α	В	С	D
10	20	5	2	1	5	2	2
				X	T THU	*	

FERMI Size in MidPlanes

SHAPE of FERMI =

number of midplanes in A, B, C, D directions

$1 \times 5 \times 2 \times 2 = 20$ MidPlanes

CINECA

- For **large block jobs** (>= 1MP) two connectivity between midplanes are provided:
 - Torus : periodic boundary conditions (e.g. "close line") in all the dimensions A, B, C and D.
 - Mesh : almost one dimension is not like a "close line"

 1 Midplane is the minimum TORUS available on a BlueGene/Q system

5-D torus wiring in a Midplane

The 5 dimensions are denoted by the letters A, B, C, D, and E. The latest dimension E is always 2, and is contained entirely within a midplane.

Each nodeboard is 2x2x2x2x2 Arrows show how dimensions A,B,C,D span across nodeboards

- Dimension E does not extend across nodeboards
- The nodeboards combine to form a 4x4x4x4x2 torus
- Note that nodeboards are paired in dimensions A,B,C and D as indicated by the arrows

5-D torus in a Midplane

Network topology | Mesh versus torus

# Node Boards	# Nodes	Dimensions	Torus (ABCDE)
1	32	2x2x2x2x2	00001
2 (adjacent pairs)	64	2x2x4x2x2	00101
4 (quadrants)	128	2x2x4x4x2	00111
8 (halves)	256	4x2x4x4x2	10111

MidPlane in FERMI RACK: R11 R31

Example: N08 – N09 = 64 Compute Cards (2x2x4x2x2)

MidPlane in FERMI / {R11 R31}

Inter-Processor Communication

Network Performance

- All-to-all: 97% of peak
- Bisection: > 93% of peak
- Nearest-neighbor: 98% of peak
- Collective: FP reductions at 94.6% of peak

Integrated 5D torus

- -Virtual Cut-Through routing
- -Hardware assists for collective & barrier functions
- -FP addition support in network
- -RDMA
 - Integrated on-chip Message Unit
- 2 GB/s raw bandwidth on all 10 links
 - -each direction -- i.e. 4 GB/s bidi
 - -1.8 GB/s user bandwidth
 - protocol overhead
- 5D nearest neighbor exchange measured at 1.76 GB/s per link (98% efficiency)
- Hardware latency
 - -Nearest: 80ns
 - -Farthest: 3us
 - (96-rack 20PF system, 31 hops)

Additional 11th link for communication to IO nodes

- -BQC chips in separate enclosure
- -IO nodes run Linux, mount file system
- -IO nodes drive PCIe Gen2 x8 (4+4 GB/s)
 - $\leftrightarrow \text{IB/10G Ethernet} \leftrightarrow \text{file system \& world}$

BGQ PowerA2 processor

Carlo Cavazzoni, Mirko Cestari HPC department, CINECA

Power A2

- 64bit (was 32 bit for BG/L and BG/P)
- Power instruction set (Power1...Power7, PowerPC)
- •RISC processors
- •Superscalar
- •Multiple Floating Point units
- •SMT
- •Multicore

PowerA2 chip, basic info

•16 cores + 1 + 1 (17th Processor core for system functions)

•1.6GHz

- •system-on-a-chip design
- •16GByte of RAM at 1.33GHz
- •32MByte L2 cache, 64B L1 line cache
- •Peak Perf 204.8 gigaflops
- •power draw of 55 watts
- •45 nanometer copper/SOI process (same as Power7)
- •Water Cooled

PowerA2 chip, more info

•Contains a 800MHz crossbar switch

- links the cores and L2 cache memory together
- peak bisection bandwidth of 563GB/sec
- connects the processors, the L2, the networking

•5D torus interconnect is also embedded on the chips

- •Two of these can be used for PCI-Express 2.0 x8 peripheral slots.
- supports point-to-point, collective, and barrier messages and also implements direct memory access between nodes.

PowerA2 chip, layout

System-on-a-Chip design: integrates processors, memory and networking logic into a single chip

PowerA2 core

- •4 FPU
- •in-order dispatch, execu
- and completion
- •2-way concurrent issue.
- 1 branch/integer/load/
- 1 AXU (FP/vector).
- •4 way SMT

CINECA

XX

SMT, why?

- is a direct consequence of the in-order instruction core
- avoids instruction stall
- increases instruction throughput (not the peak performance)...
- •... still can increase the overall performance of a (memory bound) application
- enables superscalar pipeline

PowerA2 FPU

•each processor has Quad FPU

•four-wide double precision SIMD instructions

•(or) two-wide complex arithmetic SIMD inst.

•six-stage pipeline

•permute instructions

•maximum of eight concurrent

- floating point operations
- per clock plus a load and a store.

Thanks for your attention! Any question?

CINECA