Introduction to Standard C++

Intermezzo: Object Oriented Analysis and Design

Massimiliano Culpo?

LCINECA - SuperComputing Applications and Innovation Department

07.04.2014

M.Culpo (CINECA) Introduction to C++ 07.04.2014 1/32

Introduction to object orientation Overview

Table of contents

@ Introduction to object orientation

M.Culpo (CINECA) Introduction to C++ 07.04.2014 2/32

Introduction to object orientation Overview

Object oriented programming : what's in that?

Imperative programming : reach your goal changing a program state

Procedural programming : steps to reach the problem solution
@ Separation between data structure and algorithms
@ A program is usually broken down in a series of functions

© Code cluttered with low-level details of algorithms

OO programming : problem in terms of interactions among entities
© Aggregation between data and functions operating on it
© A program is broken down in a series of interacting classes
© Algorithms may be expressed into high-level domain language

@ Fosters flexibility and permits to manage complexity

M.Culpo (CINECA) Introduction to C++ 07.04.2014

3/32

Table of contents

© Object oriented programming

M.Culpo (CINECA) Introduction to C++ 07.04.2014 4 /32

Object oriented programming Key concepts

OO Concept - Class

M.Culpo (CINECA) Introduction to C++ 07.04.2014 5/32

OO Concept - Class

/%
x* A class defines a set of objects that
* share behavior and structure
*/
class Car {
public:
Car & change_speed(Speed new_speed);
Car & turn(Angle degree);
/* Behavior x/
private:
Engine m_engine;
Tires m_tires;
/* Structure x/

b

M.Culpo (CINECA) Introduction to C++ 07.04.2014 6 /32

OO Concept - Object

i

L s L epmaven— DRl

M.Culpo (CINECA) Introduction to C++ 07.04.2014 7 /32

OO Concept - Object

/%
* An object is an instance of a class
*/
class Hammer {
public:
Hammer(Handle ,Head) ;
void hit(Needle needle);
private:
Handle m_handle;
Head m_head;
i
/+ Each object has a unique identity x/
Hammer hammerl(wooden_handle, steel_head);
Hammer hammer2(rubber_handle , titanium_head);

M.Culpo (CINECA) Introduction to C++ 07.04.2014 8 /32

OO Concept - Abstraction

M.Culpo (CINECA) Introduction to C++ 07.04.2014 9 /32

OO Concept - Abstraction

/%

*/

struct
void
void

I

struct
void
void

/ *

}

x+ Classes are abstraction of real
* as they reduce the information to what is
* important for the problem at hand

Cat { /+ For the granny x/

purr ();
eat();

Cat { /+ For the veterinary surgeon x

breath ();
heart_rate ();

*/

entities

M.Culpo (CINECA) Introduction to C++

07.04.2014

10 / 32

OO Concept - Abstraction

QUADRUPED RECUINING |
ON THE VERANDA

M.Culpo (CINECA) Introduction to C++ 07.04.2014

11/ 32

OO Concept - Encapsulation

M.Culpo (CINECA) Introduction to C++ 07.04.2014 12 / 32

Object oriented programming Key concepts

OO Concept - Encapsulation

/%
*+ Encapsulate means hiding the internal
x+ state from the client
*/
}
class Cat {
public:/+ What the client knows x/
void purr();
void eat();
private: /+ What the client shouldn’t know x/
void tongue_out ();
Stomach m_stomach;
Tongue m_tongue;

I

M.Culpo (CINECA) Introduction to C++ 07.04.2014 13 / 32

OO Concept - Modularity

ASSEMEIY
\gSTRucnoYm
O

M.Culpo (CINECA) Introduction to C++ 07.04.2014 14 / 32

OO Concept - Modularity

/%

* A system is decomposed into parts
* (modules) that are weakly coupled
*/
struct Purrer {

/* Public interface x/

void execute();

/* Internal state x/
¥
struct Cat {

void purr() { m_purrer.execute(); }
private:

Purrer m_purrer;

I

M.Culpo (CINECA) Introduction to C++ 07.04.2014 15 / 32

Object oriented programming Key concepts

OO Concept - Inheritance

M.Culpo (CINECA) Introduction to C++ 07.04.2014 16 / 32

Object oriented programming Key concepts

OO Concept - Inheritance

/%

x* A class may extend the behavior of

* another class inheriting from it

*/

struct Car { /x Behavior x/

virtual Car & change_speed(Speed speed);
virtual Car & turn(Angle degree);

/* Other methods here x/

}i

struct RaceCar : public Car {
/* Change only what needs change x/
Car & change_speed(Speed speed);
Car & turn(Angle degree);

}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 17 / 32

OO Concept - Hierarchy

M.Culpo (CINECA) Introduction to C++ 07.04.2014 18 / 32

OO Concept - Hierarchy

JET:

*+ Abstractions are ordered into hierarchies
* according to the relationship among them
*/
class ClockworkMotor : public ToyMotor {

/* State and behavior defined here x/
}

class ToyMouse : public MechanicalToy {
void charge();

private:
ClockworkMotor m_motor;

¥

M.Culpo (CINECA) Introduction to C++ 07.04.2014 19 / 32

Object oriented programming Key concepts

OO Concept - Type check

M.Culpo (CINECA) Introduction to C++ 07.04.2014 20 / 32

PHITEIES & O tsige
Table of contents

© Object oriented design

M.Culpo (CINECA) Introduction to C++ 07.04.2014 21 /32

PHITEIES & O tsige
What is a design principle?

Design principle
Basic tool or technique that can be applied to designing or

writing code to make that code more maintainable, flexible or
extensible, "Head First, Object Oriented Analysis and Design”

M.Culpo (CINECA) Introduction to C++ 07.04.2014 22 /32

Object oriented design Principles of OO design

OOD principle - Code to an

<<interface>>

Athlete

play()

getSport() : String

<<realize>>

A

I

I

! ™

| <<realize>>
I

1

)

interface

FlexibleTeam

addPlayer(player : Athlete)

FootballPlayer

HockeyPlayer

RigidTeam

getSport() : String
play()

getSport() : String
play()

addPlayer(player : FootballPlayer)

By coding to an interface your code will work with all of the
interface subclasses - even the ones that haven't been created yet

M.Culpo (CINECA)

Introduction to C++

07.04.2014

23 / 32

OOD principle - Encapsulate what varies

OriginalPainter

BetterPainter

<<interface>>

prepareEasel()
cleanBrushes()
paint()

m_style : PaintStyle

PaintStyle

g yle() : String

prepareEasel()
cleanBrushes()

setF yle(sty

paint()

paint()

<<realize>>

ModernPai

paint()

paint()

Anytime you have behavior that is likely to change, move that
behavior away from what won’t change very frequently. This
way you'll get stable and extensible code

M.Culpo (CINECA)

Introduction to C++

07.04.2014

24 / 32

Object oriented design Principles of OO design

OOD principle - Have only one reason to change

Automobile BetterAuto CarWash
start() start() wash(car : Automobile)
stop() stop()
changeTire(tire : Tire) getOil() : Integer -
drive() Driver
wash()
checkOil() = =

drive(car : Automobile)
getOil() : Integer
Mechanic

Tire

checkOil(car : Automobile)
Tire(car : ile,tire : Tire)

The easiest way to make your software resilient to change is to
make sure that each class has only one reason to change. The
chances that a class is going to change are minimized reducing
the number of things that can change

M.Culpo (CINECA) Introduction to C++ 07.04.2014 25 /32

Object oriented design Principles of OO design

OOD principle - The Open-Closed Principle (OCP)

<<interface>>

Athlete

getSport() : String
play()
JAN JAN

<<realize>> | <<realize>>

HockeyPlayer FootballPlayer ProfessionalPlayer
]

getSport() : String getSport() : String play()

play() play()

A flexible code is one that allows changes but does not require

modifications to existing code. Code classes that are open for
extension and closed for modifications

M.Culpo (CINECA) Introduction to C++ 07.04.2014 26 / 32

OOD principle - Don’t Repeat Yourself (DRY)

RemoteController void pressButton() { B

o if(door.isOpen()) {

door.close();
pressButton() }else {

door.open();
AutomaticDoor Timer timer(door.close(),5);
}

}

open()
close()
isOpen() void recognize() {
if(door.isOpen()) {
VoiceRecognizer] door.close();
o }else {

7 door.open();

recognize() Timer timer(door.close(),5);

}

}

Avoid duplicate code by abstracting out things that are common
and placing those things in a single location

M.Culpo (CINECA) Introduction to C++ 07.04.2014 27 / 32

OOD principle - Single Responsibility Principle (SRP)

getOil() : Integer

Tire

Every object in your system should have a single responsibility.

Automobile BetterAuto CarWash
start() start() wash(car : Automobile)
stop() stop()
changeTire(tire : Tire) getOil() : Integer -
drive() Driver
wash()
checkOil()

drive(car : Automobile)

Mechanic

checkOil(car : Automobile)

geTire(car : ile, til

: Tire)

All its services should be focused on carrying out that

responsibility.

M.Culpo (CINECA)

Introduction to C++

07.04.2014

28 / 32

Object oriented design Principles of OO design

OOD principle - Liskov Substitution Principle (LSP)

Tile

Board

width : Integer
height : Integer
tiles : Tile

3DBoard

getTile(x : Integer,y : Integer) : Tile

Wrong3DBoard

depth : Integer

getTile(x : Integer,y : Integer,z : Integer) : Tile

depth : Integer

getTile(x : Integer,y : Integer,z : Integer) : Tile

When inheriting from a base class, you must be able to substitute
your sub-class for the base class without altering the semantic.
In short: subtypes must be substitutable for their base types

M.Culpo (CINECA)

Introduction to C++

07.04.2014

29 / 32

OOD principle - Liskov Substitution Principle (LSP)

Delegation

Delegate behavior to another class when you don't want to
change the behavior, but the implementation it’s not your
responsibility

Composition

Composition permits to reuse behavior from one or more classes.
Your object completely owns the composed objects, and they
do not exist outside of their usage in your object

Aggregation
Aggregation is the same thing as composition except that
aggregated objects exist outside of your object

M.Culpo (CINECA) Introduction to C++ 07.04.2014 30/ 32

Table of contents - Appendices

@ Bibliography

M.Culpo (CINECA) Introduction to C++ 07.04.2014 31/32

Bibliography

[ALEXANDRESCU, A.
Modern C++ Design: Generic Programming and Design Patterns
Applied.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001.

M Gamwma, E., HELM, R., JOHNSON, R., AND VLISSIDES, J.
Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[McLAUGHLIN, B. D., POLLICE, G., AND WEST, D.
Head First Object-Oriented Analysis and Design: A Brain Friendly
Guide to OOA&D (Head First).
O'Reilly Media, Inc., 2006.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 32/32

	Introduction to object orientation
	Overview

	Object oriented programming
	Key concepts

	Object oriented design
	Principles of OO design

	Bibliography

