Introduction to Standard C++

Lecture 03: Class Hierarchies and Dynamic Polymorphism

Massimiliano Culpo?!

LCINECA - SuperComputing Applications and Innovation Department

07.04.2014

M.Culpo (CINECA) Introduction to C++ 07.04.2014 1/60

Table of contents - Language rules

@ Class hierarchies
@ Introduction
@ Derived classes
@ Inheritance and polymorphic behavior
@ Dynamic and static casts

M.Culpo (CINECA) Introduction to C++ 07.04.2014

2/ 60

Class hierarchies Introduction

Table of contents - Language rules

@ Class hierarchies
@ Introduction

M.Culpo (CINECA) Introduction to C++

07.04.2014

3/ 60

Necessity for class specialization: a classic example

Consider a program dealing with people employed by a firm:

class Employee {

string name_, surname._;
Date hiring_date_;
b

Consider further the necessity of representing a manager:

class Manager {
Employee record_;
set<Employeex> group_;

}; // Use composition as a first guess

M.Culpo (CINECA) Introduction to C++ 07.04.2014

4 / 60

Necessity for class specialization: a classic example

/* Prints name,surname and hiring date x/
void printStatus(const Employee& emp);

/* The previous function should
work with Manager objects x/
class Manager : public Employee {

set<Employeex> group_;
}i

@ From a software design perspective a Manager is an Employee
@ This kind of relationship is expressed in C++ through inheritance
© Employee is referred to as the base class

© Manager is called the derived class

M.Culpo (CINECA) Introduction to C++ 07.04.2014 5/ 60

Class hierarchies Derived classes

Table of contents - Language rules

@ Class hierarchies

@ Derived classes

M.Culpo (CINECA) Introduction to C++

07.04.2014

6/ 60

Derived classes (§10)

Consider the following definition:

class Manager : public Employee {

}i

© Employee is a direct base class of Manager
@ In general, A is a base class of B if:

e it is a direct base class of B
e it is a direct base class of one of B base classes

@ Unless redeclared in the derived class, members of a base class are
also considered to be members of the derived class

@ The base class members are said to be inherited by the derived class

@ Inherited members can be referred to in expressions, unless their
names are hidden or ambiguous

M.Culpo (CINECA) Introduction to C++ 07.04.2014 7 / 60

Derived classes (§10)

A class hierarchy can be represented by a directed acyclic graph:

Employee Manager

surname_ : string group_ : set<Employee*>
name_ : string

derivedOperation()

baseOperation() LIA

CEO

managers_ : set<Manager*>

@ An arrow means “directly derived from”

@ A graph of this kind is often referred to as subobject lattice

M.Culpo (CINECA) Introduction to C++ 07.04.2014

8 / 60

Derived classes (§10)

An object may have multiple levels of inheritance:

struct Base {
int a, b, c;

b

struct DerivedLl : Base {
int b;

b

struct DerivedL2 : DerivedLl {
int c;

b

@ In this example, Base is:

e a direct base class of DerivedL1
e an indirect base class of DerivedL2

M.Culpo (CINECA) Introduction to C++

07.04.2014

9/ 60

Multiple base classes (§10.1): subobject lattices

class X { };
class Y : public X, public X {
. // ill —-formed
struct L {
int next;
b
class A : public L { };
class B : public L { };
class C : public A, public B {
void f();
}; // well—formed
class D : public A, public L {
void f();
}, // well—formed

M.Culpo (CINECA) Introduction to C++ 07.04.2014 10 / 60

Multiple base classes (§10.1): virtual base classes

\
C Non-virtual base Virtual base

@ A base class specifier that:
e does not contain the keyword virtual, specifies a non-virtual base class
e contains the keyword virtual, specifies a virtual base class

@ For each distinct occurrence of a non-virtual base class:

o the derived object contains a distinct base class subobject of that type
e explicit qualification can be used to specify which subobject is meant

M.Culpo (CINECA) Introduction to C++ 07.04.2014 11 / 60

Class hierarchies Derived classes

Q: Can you draw the subobject lattice of A, B and C?

class
class
class
class
class

class
class
class

public
public
public
public

public
public
public

public

V{};

virtual V{};
virtual V{};

M {};

M, public N {};
L, public M ,
L, public N

public

N {};
o {}

M.Culpo (CINECA)

Introduction to C++

07.04.2014

12 / 60

Class hierarchies Derived classes

Member name lookup (§10.2)

@ Member name lookup:

o determines the meaning of a name in a class scope
e can result in an ambiguity, in which case the program is ill-formed

@ The scope in which name lookup begins is:

non-qualified expression class scope of this
qualified expression scope of the nested name specifier

© The lookup-set for a name f in class C consists of:

declaration set a set of members named f
subobject set a set of subobjects where declarations were found

M.Culpo (CINECA) Introduction to C++ 07.04.2014

13 / 60

Member name lookup (§10.2)

struct A { int f(); };

struct B { int f(); };

struct C : A, B {

int f() { return A::f() + B::f(); }

}i

struct V {int v;};

struct A {int a; static int s; enum {e};};
struct B : A, virtual V {};

struct C : A, virtual V {};

struct D : B, C {};

D« pd; // Are pd—>{v, s, e, a} ambiguous?

© Ambiguities can often be resolved by qualifying a name

@ A static member, a nested type or an enumerator defined in a base
class can be found unambiguously

M.Culpo (CINECA) Introduction to C++ 07.04.2014 14 / 60

Q: Which names are ambiguous? (§10.2)

struct V { int f(); int x; };
struct W { int g(); int y; };

struct B : virtual V, W {
int f(); int x;

int g(); int y;

H
struct C : virtual V, W { };
struct D : B, C { void glorp(); };

void D::glorp() {
x++; /] 17
FO): /] 77
y++ // ??
g(): // 7

M.Culpo (CINECA) Introduction to C++ 07.04.2014 15 / 60

Q: Which conversion triggers an ambiguous name look-up?

struct
struct
struct
struct
struct

, virtual V { };
, virtual V { };

, C{ };

P S,

ONnw><
UJJ>J>w_—'w_J

void g() {
D d;

Bx pb =&d; // ??
Ax pa =&d; // 7
Vx pv = &d; // ??

M.Culpo (CINECA) Introduction to C++ 07.04.2014 16 / 60

Inheritance and polymorphic behavior
Table of contents - Language rules

@ Class hierarchies

@ Inheritance and polymorphic behavior

M.Culpo (CINECA) Introduction to C++ 07.04.2014 17 / 60

Inheritance and polymorphic behavior
Virtual functions (§10.3)

@ A polymorphic class declares or inherits a virtual function
@ If a virtual member function vf:

o is declared in a class Base
o is declared in a class Derived, derived directly or indirectly from Base
o Derived::vf prototype is exactly the same as Base::vf

then Derived::vf is also virtual and it overrides Base::vf

@ A virtual member function is a final overrider unless the most derived
class of which Base is a base declares or inherits a function that
overrides it

@ In a derived class, if a virtual member function of a base class
subobject has more than one final overrider the program is ill-formed

© Even though destructors are not inherited, a destructor in a derived
class overrides a base class destructor declared virtual

M.Culpo (CINECA) Introduction to C++ 07.04.2014 18 / 60

Inheritance and polymorphic behavior
Example (§10.3.2): final overrider

struct A { virtual void f(); };

struct B : virtual A {
virtual void f();
H

struct C : B , virtual A {
using A::f;

b

vo(i:d foo() {
c.f,(); // calls B::f (final overrider)
c.C::f(); // calls A::f (using—declaration)
}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 19 / 60

Inheritance and polymorphic behavior
Virtual functions (§10.3)

A virtual member function does not have to be visible to be overridden:

struct B {
virtual void f();

}s

struct D : B {
void f(int);

i

struct D2 : D {
void f();

i

@ In the previous snippet:

o the function f(int) in class D hides the virtual function f()
o D::f(int) is not a virtual function
o f() in class D2 has the same name and parameter list as B::f()

@ D2::f() is a virtual function that overrides the function B::f()

M.Culpo (CINECA) Introduction to C++ 07.04.2014

20 / 60

Inheritance and polymorphic behavior
Return type of overriding functions (§10.3.7)

© The return type of a function D::f overriding B::f shall be either:

o identical to the return type of the overridden function
e covariant with the classes of the functions

@ The return types of the functions are covariant if:
e both are pointers or references to classes
o the class in the return type of B::f
@ is the same class as the class in the return type of D::f
@ is an unambiguous and accessible base class of the return type of D::f
both pointers or references have the same cv-qualification
the class type in the return type of D::f has the same cv-qualification
as or less cv-qualification than the class type in the return type of B::f

M.Culpo (CINECA) Introduction to C++ 07.04.2014 21 / 60

Class hierarchies Inheritance and polymorphic behavior

Virtual functions (§10.3.8): example

+

struct No_good public Base {

struct
void

Derived public Base {

vfl(); // virtual and overrides
void vf2(int); // not virtual, hides
char vf3(); // error: invalid return
D« vf4(); // OK: returns pointer to

+i

D« vf4(); // error: B is inaccessible

class B { };
class D : private B { friend class Derived; };
struct Base {

virtual void vfl();

virtual void vf2();

virtual void vf3();

virtual Bx vf4();

virtual Bx vf5();

Base:: vfl ()
Base:: vf2 ()
type

derived class

Introduction to C++

M.Culpo (CINECA)

07.04.2014

22 / 60

Inheritance and polymorphic behavior
Q: Is there a difference between case 1 and 27

class Transaction {
public:
Transaction ();
virtual void logTransaction() const;
I
class BuyTransaction: public Transaction {
public:
virtual void logTransaction () const;
BuyTransaction ();
i
/x 1 %/
Transaction :: Transaction() { logTransaction(); }
BuyTransaction :: BuyTransaction (){}
/x 2 x/
Transaction :: Transaction () {}
BuyTransaction :: BuyTransaction(){logTransaction ();}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 23 / 60

Inheritance and polymorphic behavior
Abstract classes (§10.4)

class point {

class shape { // abstract class
point center;

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual

I

@ An abstract class defines an interface, therefore:

e it can be used only as a base class of some other class
e has at least one pure virtual function

@ Derived classes provide a variety of implementations

M.Culpo (CINECA) Introduction to C++ 07.04.2014 24 / 60

Inheritance and polymorphic behavior
Abstract classes (§10.4)

shape x; // error: object of abstract class
shapex p; // OK

shape f(); // error

void g(shape); // error

shape& h(shape&); // OK

@ An abstract class shall not be used as

@ a parameter type

e a function return type

e the type of an explicit conversion
@ Pointers and references to an abstract class can instead be declared
© From these rules it follows that:

e an abstract class can be derived from a class that is not abstract
e a pure virtual function may override a non-pure virtual function

M.Culpo (CINECA) Introduction to C++ 07.04.2014 25 / 60

Inheritance and polymorphic behavior
Abstract classes (§10.4)

A class is abstract if it inherits at least one pure virtual function:

class ab_circle : public shape {
int radius;
public:

void rotate(int) { }
// ab_circle::draw() is a pure virtual

}i

class circle : public shape {
int radius;
public:
void rotate(int) { }
// a definition is required somewhere
void draw ();

b

M.Culpo (CINECA) Introduction to C++ 07.04.2014 26 / 60

Inheritance and polymorphic behavior
Accessibility of base classes (§11.2)

The keywords public, protected and private:

private B { };
public B { };
B { }; // B private by default

public B { };
private B { };
B { }; // B public by default

protected B { };
protected B { };

class B { };
class D1
class D2
class D3
struct D4 :
struct D5
struct D6
class D7
struct D8

may be used to set access properties of base classes

M.Culpo (CINECA) Introduction to C++ 07.04.2014

27 / 60

Class hierarchies Inheritance and polymorphic behavior

Accessibility of base classes (§11.2)

A member of a private base class:

:B::si
::Bx bpl
::Bx bp2
bp2—>mi

}

b. mi _ 3; // OK (

struct B { int mi; // non—static member
static int si; // static member };

class D private B {};

class DD : public D { void f(); };

void DD:: f() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
::B b;

3; // OK

this; // error: B is a private base class

(::Bx) this; // OK with cast

b.mi is different from this—>mi)
b.si = 3; // OK (b.si is different from this—si)

3; // OK: access through a pointer to B.

might be inaccessible as an inherited member name, but accessible directly

M.Culpo (CINECA) Introduction to C++

07.04.2014

28 / 60

Class hierarchies Inheritance and polymorphic behavior

Q: Which of the following expressions are ill-formed?

class B { protected: int i

class D1 : public B {};

class D2 : public B {
friend void fr(Bx,D1x,D2x); void mem(Bx,D1x);

I

void fr(Bx pb, D1x pl, D2x p2) {
pb—i = 1; pl—i = 2; p2—i = 3; // ??

int B::x pmi_B =&B::i; int B::x pmi_B2 =&D2::i; // ??
void D2::mem(Bx pb, D1x pl) {

pb—>i = 1; pl—>i = 2; i = 3; B::i = 4;// 7?

}

void g(Bx pb, D1x pl, D2x p2)
pb—i = 1; pl—i = 2; p2—>i = 3; [/ 7?
}

-~

M.Culpo (CINECA) Introduction to C++ 07.04.2014 29 / 60

Inheritance and polymorphic behavior
Access to virtual functions (§11.5)

struct B {

virtual int f();

&

class D : public B {

private:

int f();

void f() {

D d;

Bx pb = &d;

Dx pd = &d;

pb—f(); // OK: B::f() is public
pd—>f(); // error: D::f() is invoked (private)
}

@ The access rules for a virtual function:

e are determined by its declaration
e are not affected by the rules for a function that later overrides it

M.Culpo (CINECA) Introduction to C++ 07.04.2014 30 / 60

Inheritance and polymorphic behavior
Derived classes: member inizialization (§12.6.2.10)

@ The initialization of a class object proceeds in the following order:
virtual base classes initialized in the order they appear
(depth-first left-to-right traversal)
direct base classes initialized in declaration order
non-static data members initialized in declaration order
constructor body executed after member initialization

@ The declaration order is mandated to ensure that base and member
subobjects are destroyed in the reverse order of initialization

© Member functions (including virtual member functions) can be called
for an object under construction

© However, if these operations are performed in an initializer the result
of the operation is undefined

M.Culpo (CINECA) Introduction to C++ 07.04.2014 31/ 60

Table of contents - Language rules

@ Class hierarchies

@ Dynamic and static casts

M.Culpo (CINECA) Introduction to C++

07.04.2014

32 / 60

Dynamic cast (§5.2.7)

The result of the expression:

dynamic_cast<T>(v)

@ Converts the expression v to type T

@ T shall be a pointer or reference to a complete class type or void x
© The dynamic_cast operator shall not cast away constness

@ If the type of v is the same as T the result is v

@ If v is a null pointer value, the result is the null pointer value of type T

@ If T is pointer to B and v has type pointer to D such that B is a base
class of D, the result is a pointer to the unique B subobject of the D
object pointed to by v

@ Otherwise, v shall be a pointer to or an lvalue of a polymorphic type

M.Culpo (CINECA) Introduction to C++ 07.04.2014 33 /60

Class hierarchies Dynamic and static casts

Dynamic cast (§5.2.7)

class A { virtual void f(); };
class B { virtual void g(); };

void g() {
D d;
Bx bp

bp = dynamic_cast<Bx«>(a
ap = dynamic_cast<A«>(&
bp = dynamic_cast<Bx>(&

}

class D : public virtual A, private B { };

(Bx) &d; // cast needed to break protection
Ax ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(xbp); // fails

ap = dynamic_cast<Ax>(bp); // fails

p); // fails

d); // succeeds

d); // ill —formed

M.Culpo (CINECA) Introduction to C++

07.04.2014

34 / 60

Static cast (§5.2.9)

The result of the expression:

static_cast<T>(v)

@ Converts the expression v to type T
@ The static_cast operator shall not cast away constness

© If the declaration T t(e) is well-formed, e is converted to type T
@ The effect of such an explicit conversion is the same as:

e performing the declaration and initialization

e using the temporary variable as the result of the conversion
© An lvalue of type B can be cast to D& when:

e D is a class derived from B
e a valid standard conversion from pointer to D to pointer to B exists
e B is not a virtual base class of D

M.Culpo (CINECA) Introduction to C++ 07.04.2014 35 / 60

Table of contents - Best practices

© Best practices
@ Special member functions
@ Design and declarations
@ Object-orientation

M.Culpo (CINECA) Introduction to C++ 07.04.2014

36 / 60

SipzelEl RATibey IS
Table of contents - Best practices

© Best practices
@ Special member functions

M.Culpo (CINECA) Introduction to C++

07.04.2014

37 / 60

DISALLOW WHAT YOU DON’T WANT (PART 2)

A class Uncopyable that barely can't be copied or assigned:

class Uncopyable {

protected:
Uncopyable() {};
“Uncopyable (){};

private:

Uncopyable(const Uncopyable&);
Uncopyable& operator=(const Uncopyable&);

iE
can be used as a policy to propagate the behavior in derived classes:
class Derived : private Uncopyable {
// This class will fail at compile—time in case

// copy—constructor or assignment are generated

M.Culpo (CINECA) Introduction to C++ 07.04.2014

38 / 60

DESTRUCTOR IN POLYMORPHIC BASE CLASSES

class TimeKeeper {
public:

TimeKeeper ();

virtual ~“TimeKeeper();

Jie
class AtomicClock: public TimeKeeper { /x ... %/ };
class WaterClock: public TimeKeeper { /x ... %/ };

As many clients will access a dynamic object through a pointer or reference
to its polymorphic base, the use of a virtual destructor is mandatory:

// Get dynamically allocated object

TimeKeeper xptk = getTimeKeeper ();

delete ptk;

// What if a non—virtual destructor is used here?

M.Culpo (CINECA) Introduction to C++ 07.04.2014 39 / 60

Design aid desleeieie
Table of contents - Best practices

© Best practices

@ Design and declarations

M.Culpo (CINECA) Introduction to C++

07.04.2014

40 / 60

MAKE INTERFACES EASY TO USE CORRECTLY

Developing effective interfaces requires that you consider the kinds of
mistakes that clients might make:

class Date {
public:
Date(int month, int day, int year);

+;

At a first glance this may seem reasonable, but:

Date d(30, 3, 2013); // should be d(3,30,2013)
Date d(30,30, 2013); // should be d(3,30,2013)

These client errors may be prevented by the introduction of new types:

struct Day {
explicit Day(int d) : val_(d) {}
int val_; };

M.Culpo (CINECA) Introduction to C++ 07.04.2014 41 / 60

MAKE INTERFACES EASY TO USE CORRECTLY

The new definition of Date would be:

class Date {
public:
Date(const Month& month,
const Day& day,
const Year& year);
+;
Date d(30, 3,2013); // error
Date d(Day(30), Month(3), Year(2013)); // error
Date d(Month(3), Day(30), Year(2013)); // OK

Once the right types are in place, it is reasonable to:
@ restrict the values of those types

@ restrict the set of operations that are allowed on those types

@ ensure a behavior that is as compatible as possible with built-in types

M.Culpo (CINECA) Introduction to C++ 07.04.2014

42 / 60

CLASS DESIGN IS TYPE DESIGN

Good class have natural syntax and intuitive semantics:
@ How should objects of your new type be created and destroyed?
@ How should object initialization differ from object assignment?
© What does it mean for objects to be passed by value?
@ What are the restrictions on legal values for your new type?
© Does your new type fit into an inheritance graph?
@ What kind of type conversions are allowed for your new type?
@ What operators and functions make sense for the new type?
© What standard functions should be disallowed?
© Who should have access to the members of your new type?

@ What is the "undeclared interface” of your new type?

M.Culpo (CINECA) Introduction to C++ 07.04.2014 43 / 60

PREFER NON-MEMBER NON-FRIEND FUNCTIONS

Object oriented principles dictate encapsulation, but usually it is
misunderstood how the principle should be put into practice:

class WebBrowser {
public:
void clearCache ();
void clearHistory ();
void removeCookies ();

+s

There are at least two alternatives to perform these actions together:

/* Member function x/
void WebBrowser:: clearAll () {
}

/+* External function x/
void clearBrowser (WebBrowser& browser);

M.Culpo (CINECA) Introduction to C++ 07.04.2014

44 / 60

PREFER NON-MEMBER NON-FRIEND FUNCTIONS

In C++ the best solution to this problem is the use of convenience functions
with a common namespace, but defined is separate translation units:

/+ header ”webbrowser.h” x/
namespace WebBrowserStuff {

class WebBrowser { /x ... x/ };
}

/+ header "webbrowsercookies.h” x/

namespace WebBrowserStuff {
// Cookies related convenience functions
}

This approach effectively implements three basic OO principles:

@ encapsulation
@ packaging flexibility

© functional extensibility

M.Culpo (CINECA) Introduction to C++ 07.04.2014 45 / 60

CONVERT ALL THE PARAMETERS OF A FUNCTION

Consider the following snippet:

class Rational {
public:
Rational(int numerator = 0, int denominator = 1);

The correct way to support mixed-mode arithmetic operations for a class
of this kind is through non-member functions:

const Rational operatorx(const Rational& lhs,
const Rational& rhs);

as it allows compilers to perform implicit type conversions on all
arguments.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 46 / 60

Table of contents - Best practices

© Best practices

@ Object-orientation

M.Culpo (CINECA) Introduction to C++

07.04.2014

47 / 60

PUBLIC INHERITANCE MODELS " IS-A”

The equivalence of public inheritance and "is-a" relationship sounds
simple, but sometimes your intuition can mislead you:

class Bird {
public:
virtual void fly () = 0;

}i

class Penguin : public Bird {
/+ Can they fly?!? x/
e

To implement an "is-a" relationship you must ensure that:
@ everything that applies to base classes must also apply to derived classes

because every derived class object is a base class object.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 48 / 60

AVOID HIDING INHERITED NAMES

Consider the following snippet:

class Base {
public:

void mf3(double& in); };
class Derived: public Base {
public:

void mf3(int& in); };

In this case Derived::mf3 hides Base::mf3. This is never desirable in case
of public inheritance. The correct way to extend the look-up set of a name
is through a using declaration:

class Derived: public Base {
public:

using Base:: mf3;

void mf3(int& in);

IiE

M.Culpo (CINECA) Introduction to C++ 07.04.2014 49 / 60

INHERITANCE OF INTERFACES AND IMPLEMENTATIONS

Consider the following class hierarchy:

class Shape {

public:
virtual void draw() const = 0;
virtual void error(const std::string& msg);
int objectlD () const;

+s
class Rectangle: public Shape { /*x ... %/ };
class Ellipse : public Shape { /* ... %/ };

There is clearly a difference in the semantic of the three declarations:
pure virtual function derived classes inherit a function interface only

virtual function derived classes inherit a function interface as well as
a default implementation

non-virtual function derived classes inherit a function interface as well as
a mandatory implementation

M.Culpo (CINECA) Introduction to C++ 07.04.2014 50 / 60

COMPOSITION MODELS ”"HAS-A"

Composition is the relationship between types that arises when objects of
one type contain objects of another type:

class Address { /x ... %/ };
class PhoneNumber { /x *
class Person {
public:
private:
std :: string name;
Address address;
PhoneNumber voiceNumber;
PhoneNumber faxNumber;

!/}

b

It's meaning is completely different from that of public inheritance:

application domain models an "has-a" relationship

implementation domain models an "is implemented in terms of” relationship

M.Culpo (CINECA) Introduction to C++ 07.04.2014 51 / 60

Best practices Object-orientation

USE OF PRIVATE INHERITANCE

An implementation detail can be coded using private inheritance:

class Widget: private Timer {
private:

virtual void onTick() const; };

Private inheritance can usually be avoided resorting to private classes:

class Widget {

private:
class WidgetTimer: public Timer {
public:
virtual void onTick() const; }s

WidgetTimer timer; };

Composition is to be preferred to this approach, though it makes sense:
@ when a derived class needs access to protected members
@ when a derived class needs to redefine inherited virtual functions

M.Culpo (CINECA) Introduction to C++ 07.04.2014 52 / 60

USE OF MULTIPLE INHERITANCE

class IPerson { // Interface to be implemented

public:

virtual “lperson(){}

virtual std::string name() const = 0; };
class Personinfo { // Helps in implementing an IPerson
public:

const char x theName() const; };
class CPerson : public IPerson, private Personinfo {
public:

virtual std::string name() const {
std :: string name(theName);
return name;

Pk

One of the most common use case of multiple inheritance is:
public inheritance from an interface

private inheritance from a class that helps with implementation

M.Culpo (CINECA) Introduction to C++ 07.04.2014

53 / 60

Best practices Review of the lecture

The one slide summary of the lecture

Class hierarchies and polymorphism
@ A class may inherit from multiple base classes
@ Virtual functions may be overridden to obtain a polymorphic behavior

© Abstract classes define an interface and cannot be instantiated)

Best practices
© Destructors in polymorphic base classes must be virtual
@ Public inheritance models the is-a relationship
© Composition or private inheritance model the has-a relationship

@ Avoid hiding inherited names, use multiple inheritance judiciously

M.Culpo (CINECA) Introduction to C++ 07.04.2014 54 / 60

Table of contents - Appendices

© Bibliography

M.Culpo (CINECA) Introduction to C++ 07.04.2014 55 / 60

Bibliography

[] MEYERS, S.
Effective C++: 55 Specific Ways to Improve Your Programs and
Designs, 3rd ed.
Addison-Wesley Professional, 2005.

[§ SuTTER, H.
Exceptional C++: 47 Engineering Puzzles, Programming Problems,
and Solutions.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

3 SUTTER, H., AND ALEXANDRESCU, A.
C++ Coding Standards: 101 Rules, Guidelines, and Best Practices,
1 ed.
Addison-Wesley Professional, Nov. 2004.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 56 / 60

Table of contents - Appendices

e Appendices
@ A - Member look-up set

M.Culpo (CINECA) Introduction to C++

07.04.2014

57 / 60

A - il (et esi
Member look-up set (§10.2): definition and calculation

The following steps define how the look-up set S(f, C) is constructed:
o if C contains a declaration of f:
declaration set contains every declaration of f in C
subobject set contains C
@ otherwise S(f, C) is initially empty
o if C has direct base classes B; i =1,...,n

Q calculate S(f,B;) fori=1,...,n
@ merge all the S(f, B;) into S(f, C)

M.Culpo (CINECA) Introduction to C++ 07.04.2014 58 / 60

Member look-up set (§10.2): definition and calculation

The following steps define the result merging process:
Q@ S(f, C) is unchanged if:
@ each of the subobject members of S(f, B;) is a base class subobject of at

least one of the subobject members of S(f, C)
e S(f,Bj) is empty
@ S(f,C) is a copy of S(f, B;) if:
@ each of the subobject members of S(f, C) is a base class subobject of at

least one of the subobject members of S(f, B;)
e S(f,C)is empty

@ S(f, C) is ambiguous (invalid declaration set) if:
e S(f,Bj) and S(f, C) differ
An invalid declaration set is considered different from any other

© Otherwise, the new S(f, C) is a lookup set with the shared set of
declarations and the union of the subobject sets

M.Culpo (CINECA) Introduction to C++ 07.04.2014 59 / 60

N . Il - Member look-up set
Member look-up set (§10.2.7): example

struct A { int x; i // S(x,A)
struct B { float x; };// S(x,B)

// S(x,C) = {invalid, { A in C, B in C }}
struct C: public A, public B { };

// S(x,D) = S(x,C)

struct D: public virtual C { };

// S(x.E) = {{ E:ix }, { E }}
struct E: public virtual C { char x; };
// S(x,F) = S(x,E)

struct F: public D, public E { };

int main() {

F f;

f.x = 0; // OK, lookup finds E::x
}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 60 / 60

	Class hierarchies
	Introduction
	Derived classes
	Inheritance and polymorphic behavior
	Dynamic and static casts

	Best practices
	Special member functions
	Design and declarations
	Object-orientation

	Bibliography
	Appendices
	A - Member look-up set

