Introduction to Standard C++

Lecture 02: A Primer on Classes

Massimiliano Culpo!

LCINECA - SuperComputing Applications and Innovation Department

07.04.2014

M.Culpo (CINECA) Introduction to C++ 07.04.2014 1/62

Table of contents - Language rules

© A primer on classes
@ Introduction
@ Special member functions
@ Type conversions
@ Overloaded operators

M.Culpo (CINECA) Introduction to C++ 07.04.2014 2 /62

A primer on classes Introduction

Table of contents - Language rules

© A primer on classes
@ Introduction

M.Culpo (CINECA) Introduction to C++

07.04.2014

3/ 62

A primer on classes Introduction

What is a class in the first place?

A class is a new type. The following snippet:

struct X { int a; };
struct Y { int a; };
X al;

Y a2;

int a3;

declares three variables of three different types. This implies that:

al = a2; // error: Y assigned to X

al = a3; // error:

int f(X); // overload for type X
int f(Y); // overload for type Y

int assigned to X

M.Culpo (CINECA) Introduction to C++

07.04.2014

4 /62

Class names (§9.1)

struct A {
int a; // the name A is seen here...
b
// ... and from here on
struct B {
A a;
i

struct C; // forward declaration of C

@ A class-name is inserted into the scope immediately after it is seen
@ The class name is also inserted in the scope of the class itself

© A declaration consisting solely of the class-key identifier is either:

e a redeclaration of the name in the current scope
e a forward declaration of the identifier as a class name

M.Culpo (CINECA) Introduction to C++ 07.04.2014

5/ 62

Members of a class (§9.2)

The member-specification in a class definition declares the full set of
members of the class:

struct A {
// 1. Nested types
typedef float value _type;
struct B { double b };
// 2. Nested enumerations
enum { RED, BLACK };
// 3. Member functions
int compute(float input);
// 4. Member data
float a;

i
No other member can be added elsewhere

M.Culpo (CINECA) Introduction to C++ 07.04.2014

6/ 62

Data members (§9.2)

A class is a complete type at the closing }; of the class specifier:

struct A {
float a;
// error: type A is incomplete
A b;
// ok: pointer to A is a complete type
Ax c;
}i

@ It follows that a class A:
o shall not contain a non-static member of class A

e can contain a pointer to an object of class A

© Non-static data members shall not have incomplete types

07.04.2014 7/ 62

M.Culpo (CINECA) Introduction to C++

Member functions (§9.3)

Functions declared within a class definition are member functions:

struct X {
// 1. Implicit inline member function
void f(int) {}
void g(int);
void h(int);
b
// 2. Explicit inline member function
inline void X::g(int t) { }
// 3. Non inline member function (X.cpp)
void X::h(int t) { }

@ There shall be at most one definition of a non-inline member function
@ |If the definition of a member function is outside its class definition,
the member function name shall be qualified

M.Culpo (CINECA) Introduction to C++ 07.04.2014 8 /62

Non-static member functions (§9.3.1)

A member function may be called using the class member access syntax:

struct tnode {
// Member data
tnode x left;
tnode * right;
// Member functions
void set(tnodex |, tnodex r);

b

void f(tnode& nl, tnode& n2) {
// Member access syntax
nl.set(&n2,0);
n2.set(0 ,0);

}

for an object of its class type

M.Culpo (CINECA) Introduction to C++ 07.04.2014 9 /62

A primer on classes Introduction

Non-static member functions (§9.3.1)

A member function may be called using the function call syntax:

struct tnode {
// Member data
tnode x left;
tnode * right;
// Member functions

void set (tnodex |, tnodex r);
void execute(tnodex |, tnodex r);

b

void tnode::execute(tnodex |, tnodex r) {
set(l,r);

// Do something else

}

from within the body of a member function

M.Culpo (CINECA) Introduction to C++ 07.04.2014 10 / 62

A primer on classes Introduction

Non-static member functions (§9.3.1)

A non-static member function may be declared const and/or volatile :

struct X {
// volatile member function
void f() volatile;
// const member function
void g() const;

// const volatile member function
void h() const volatile;

i

© The cv-qualifiers affect the type of:

o the object calling the member function (through the this pointer)
e the member function itself

M.Culpo (CINECA) Introduction to C++ 07.04.2014 11 / 62

The this pointer (§9.3.2)

The keyword this:
@ is defined in the body of non-static member functions
@ returns the address of the object for which the function is called
© has type X« in a member function of a class X
@ has type const Xx in a const member function
© has type volatile Xx in a volatile member function
O has type const volatile Xx in a const volatile member function

A cv-qualified member function can be called on an object:
@ if it is as cv-qualified as the member function

@ if it is less cv-qualified than the member function

M.Culpo (CINECA) Introduction to C++ 07.04.2014 12 / 62

Static member functions (§9.4.1)

A data or function member of a class may be declared static:

struct process {
static void reschedule();

b

process& g();

void f() {
process ::reschedule(); // qualified—id
g().reschedule(); // class member access

}

@ A static member of a class may be referred to:
e using a qualified-id expression
e using the class member access syntax

@ A static member function does not have a this pointer

M.Culpo (CINECA) Introduction to C++ 07.04.2014

13 / 62

Static member data (§9.4.2)

class process {
static process*x run_chain;
static processx*x running;

I

// Definition of static data—members
process* process::running = get_main();
process* process::run_chain = running;

© A static data member is not part of the sub-objects of a class
@ One copy of this member is shared by all the objects of the class

© The declaration of a static data member is not a definition

M.Culpo (CINECA) Introduction to C++ 07.04.2014 14 / 62

Access specifiers (§11)

Each member of a class has one access specification:

class A { // class is private by default

public:
int i; // public access
float f; // public access
private:

double d;// private access

I

private : the name can be used only by members and friends

protected : the name can be used only by members and friends of the
class in which it is declared, by classes derived from that
class, and by their friends

public : the name can be used anywhere without access restriction

M.Culpo (CINECA) Introduction to C++ 07.04.2014 15 / 62

Access specifiers (§11)

Any number of access specifiers is allowed:

struct S {

int a; // S::a is public by default
protected:

int b; // S::b is protected
private:

int c; // S::c is private
public:

int d; // S::d is public
b

Members of a class defined with the keyword:
@ class are private by default
@ struct are public by default

M.Culpo (CINECA) Introduction to C++

07.04.2014

16 / 62

The friend keyword (§11.3)

A class specifies its friends, if any, by way of friend declarations:

class X {
int a;
friend void friend_set (X%, int);
public:
void member_set(int);
I
void friend_set (X« p, int i) { p—>a =
void X:: member_set(int i) { a =i; }
void f() {
X obj:
friend_set(&obj,10);
obj.member_set (10);
}

}

A friend of a class is a function or class that is given permission to use the

private and protected member names from the class.

Introduction to C++

M.Culpo (CINECA)

07.04.2014

17 / 62

The friend keyword (§11.3)

class M {
// definition of global f,
// a friend of M, not the

// definition of a member function
friend void f() { }

b

@ A function can be defined in a friend declaration of a class iff:
o the class is a non-local class
e the function name is unqualified
e the function has namespace scope

@ Friendship is neither inherited nor transitive

© Friend declarations do not depend on access specification

M.Culpo (CINECA) Introduction to C++ 07.04.2014 18 / 62

A primer on classes Introduction

Q: Are all these accesses to members well-formed?

class A {
typedef int 1I;

I f();
friend | g(1);
static | x;

—

{
p=A::x);
P
0

e
oQ
> >

M.Culpo (CINECA) Introduction to C++ 07.04.2014 19 / 62

SipzelEl RATibey IS
Table of contents - Language rules

© A primer on classes

@ Special member functions

M.Culpo (CINECA) Introduction to C++

07.04.2014

20 / 62

Special member functions (§12)

struct A { }; // implicit A::operator=
A a, b;

b=a; // well formed

b.operator=(a); // well formed as well

@ The following functions are considered special member functions:
e default constructor
e copy constructor and copy assignment operator
e move constructor and move assignment operator
e destructor
@ The implementation will implicitly declare these member functions for
some class types

© Programs may explicitly or implicitly refer to special member functions

M.Culpo (CINECA) Introduction to C++ 07.04.2014 21 /62

AN IR W EEI Special member functions

Constructors (§12.1)

A special syntax is used to declare or define constructors:

struct S {
S(); // declares the constructor

b

S::S() { // defines the constructor

@ A constructor is used to initialize objects of its class type
@ A constructor shall not be virtual or static
© A default constructor is a constructor that takes no arguments

@ |If there is no user-declared constructor for class S, a default
constructor is implicitly declared as an inline public member

M.Culpo (CINECA) Introduction to C++ 07.04.2014 22 /62

Data-members inizialization (§12.6)

class X {
int a; int b;
int i; int j;

const int& r;

X(int i) : // Initializers
b(i), i(i), j(this—i), r(a)
{3

}

@ Initializers for non-static data members can be specified by a list of
constructor initializer

@ If a given non-static data member is not designated by a member
initializer, then it is default constructed.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 23 /62

AN IR W EEI Special member functions

Copy and assignment (§12.8)

A class object can be copied in two ways:

struct X {
X(int);
X(const X&, int = 1);

—

X a(1l); // calls X(int);

X b(a, 0); // calls X(const X&, int);
X c=b; // calls X(const X&, int);

c = a;

1

@ by initialization, using a copy constructor operator

@ by assignment, using a copy assignment operator

M.Culpo (CINECA) Introduction to C++

07.04.2014

24 / 62

Copy constructor (§12.8)

@ A constructor for class X is a copy constructor if:

o its first parameter is of type X& (or any cv-qualified variant)
o there are no other parameters
o all other parameters have default arguments

@ If the class definition does not explicitly declare a copy constructor:

@ a copy constructor is implicitly declared as defaulted
@ ...unless the class has a user-declared copy assignment or destructor

© The implicitly-defined copy constructor performs a memberwise copy

© Non-static data members are initialized in the order of declarations

M.Culpo (CINECA) Introduction to C++ 07.04.2014 25 / 62

Assignment operator (§12.8)

A user-declared copy assignment operator:

struct X {

X();
X& operator=(const X&);

}i

const X cx;

X x;
void f() {
X = CX;

}

@ is a non-static member function of X

@ has exactly one parameter of type X or (cv-qualified) X&

M.Culpo (CINECA) Introduction to C++ 07.04.2014

26 / 62

Assignment operator (§12.8)

@ If a class does not explicitly declare a copy assignment operator and:

o there is no user-declared move constructor
o there is no user-declared move assignment operator

a copy assignment operator is implicitly declared as defaulted

@ Such implicit declaration is deprecated if the class has:

e a user-declared copy constructor
e a user-declared destructor

M.Culpo (CINECA) Introduction to C++ 07.04.2014

27 / 62

Object inizialization (§12.6)

struct complex {
complex(); // Default constructor
complex(double);
complex(double, double);

b

complex sqrt(complex,complex);

// complex(double)

complex a(1l);

// complex(double, double)

complex ¢ = complex(1,2);

// sqrt(complex,complex)+copy

complex d = sqrt(a,c);

// complex()

complex e;

M.Culpo (CINECA) Introduction to C++ 07.04.2014 28 / 62

Q: What is the difference, if any, between the following?

SomeType t = u;
SomeType t(u);
SomeType t();
SomeType t;

It may be useful to review the following issues:
@ Default constructor
@ Copy constructor
© Assignments
@ Declarations
before answering GotW #01.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 29 / 62

Destructor (§12.4)

A special syntax is also used to declare the destructor:

struct B {
“"B(); // Destructor declaration
i

B::"B() {} // Destructor definition

@ A destructor is used to destroy objects of its class type
@ A destructor takes no parameters

© No return type can be specified for it (not even void)
@ A destructor shall not be static

M.Culpo (CINECA) Introduction to C++ 07.04.2014 30 / 62

Destructor (§12.4)

@ If a class has no user-declared destructor, a destructor is implicitly
declared as defaulted

@ An implicit destructor is an inline public member of its class

© Destructors are invoked implicitly for constructed objects:

e with static storage duration at program termination

e with automatic storage duration at block exit

o if they are temporary, when the their lifetime ends

o allocated by a new-expression, through use of a delete-expression

M.Culpo (CINECA) Introduction to C++ 07.04.2014 31/62

Table of contents - Language rules

© A primer on classes

@ Type conversions

M.Culpo (CINECA) Introduction to C++

07.04.2014

32/ 62

Type conversions (§12.3)

Type conversions are specified by constructors and conversion functions:

struct X { operator int(); };

struct Y { operator X(); };

// At most one UD conversion per value
Y a;

int b =a; // error

int ¢ = X(a) // ok

@ These user-defined conversions and are used for:
e implicit type conversions
e initialization
e explicit type conversions
@ At most one user-defined conversion is implicitly applied

M.Culpo (CINECA) Introduction to C++ 07.04.2014 33 /62

A primer on classes Type conversions

Type conversion by constructor (§12.3.1)

A constructor declared without the function-specifier explicit :

struct X {
X(int);
X(const charx, int =0);
explicit X(float);
b
void f(X arg) {
Xa=1;, // a=X(1)
X b ="Jessie”; // b =X("Jessie”,0)
a 2; /] a=X(2)
f(3): // £(X(3))

X c = 2.0f; // error: explicit constructor
}

specifies a conversion from the types of its parameters

M.Culpo (CINECA) Introduction to C++ 07.04.2014

34 / 62

Type conversion by constructor (§12.3.1)

An explicit constructor:

struct Z {
explicit Z();
explicit Z(int);

I

Z a;

Z al = 1; // error: no implicit conversion
Z a3 =12(1);

Z a2(1);

Zx p = new Z(1);

@ Constructs objects where the direct-initialization syntax is used

@ Constructs objects where casts are explicitly used

M.Culpo (CINECA) Introduction to C++ 07.04.2014

35 / 62

Conversion functions (§12.3.2)

If a conversion function is explicit:

class Y { };
struct Z {
operator int();
explicit operator Y() const;
b
void h(Z z) {
Y yl(z); // direct—initialization
int a = yl; // conversion
Y y2 = z; // error: copy—initialization
Y y3 = (Y)z; // cast notation

}

it is only considered as a user-defined conversion for direct-initialization

M.Culpo (CINECA) Introduction to C++ 07.04.2014 36 / 62

Quaiieailed cpmia
Table of contents - Language rules

© A primer on classes

@ Overloaded operators

M.Culpo (CINECA) Introduction to C++

07.04.2014

37 / 62

Overloaded operators (§13.5)

A class may overload the following operators:

new delete new|| delete]]
+ * / % " & | I
! = < > += = = /= %=
" &= | << >> >>= <K= == I=
<= >= && I

Operator functions are usually not called directly; instead they are invoked
to evaluate the operators they implement:

complex z

a.operator+(b);
z=a+ b;

M.Culpo (CINECA) Introduction to C++

07.04.2014 38 / 62

Overloaded operators (§13.5)

@ An operator function shall either be:

@ a non-static member function
e a non-member function

@ It is not possible to change:

o the precedence
e the grouping
o the number of operands

of operators defined by the standard
© An operator function, in general, cannot have default arguments

@ Operator functions cannot have more or fewer parameters than the
number required for the corresponding operator by the standard

M.Culpo (CINECA) Introduction to C++ 07.04.2014 39 / 62

Example: overloaded operators (§13.5)

struct X {

X& operator++(); // prefix ++a
X operator++(int); // postfix at++
i

struct Y { };

Y& operator++(Y&); // prefix ++b
Y operator++(Y&, int); // postfix b+
void f(X a, Y b) {
++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);
}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 40 / 62

Table of contents - Best practices

© Best practices
@ Special member functions
@ Resource management
@ Operator overloading

M.Culpo (CINECA) Introduction to C++

07.04.2014

41/ 62

SipzelEl RATibey IS
Table of contents - Best practices

© Best practices
@ Special member functions

M.Culpo (CINECA) Introduction to C++ 07.04.2014 42 / 62

BTN Ieteal =l Special member functions

KNOW WHAT IS IMPLICIT AND WHAT IS NOT

If you don't declare them, compilers will declare their own versions of the
default and copy constructor, copy assignment operator and destructor.

Thus, writing:

class A {};

is essentially the same as writing:

class A {
A() {}
A(const A & rhs) {}
A & operator=(const A & rhs){}

"AO{}

I

43 / 62

M.Culpo (CINECA) Introduction to C++ 07.04.2014

DISALLOW WHAT YOU DON’T WANT

If you don't want a class to support a particular kind of functionality, you
simply don’t declare the function that would provide it.

This doesn’t work for the copy constructor and assignment operator.

One possible solution is to declare the copy constructor and copy
assignment operator as private:

class Uncopyable {
public:

private:
Uncopyable(const Uncopyable&);
Uncopyable& operator=(const Uncopyable&);

}i

The functions of course should not be defined, to disallow the possibility of
member and friend functions calling them.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 44 / 62

BTN Ieteal =l Special member functions

RETURN VALUE OF THE ASSIGNMENT OPERATORS

Assignment can be chained together:

X =y =2z = 15;

Another interesting point is that assignment is right-associative:

x = (y = (z = 15));

// The previous statement is parsed like:

The way this behavior is implemented is that assignment returns a

reference to its left-hand argument:

class A {
public:
A& operator=(const A& rhs) {
return xthis; } };

M.Culpo (CINECA) Introduction to C++

07.04.2014

45 / 62

ASSIGNMENT TO SELF

Code that operates on references or pointers to multiple objects of the
same type, needs to consider that the objects might be the same.

Consider for instance the following situation:

class Resource { /x ... */ };

class ResourceHandler {
public:

private:

Resource xpres;

I

where a resource handler manages a pointer to an heap-allocated object.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 46 / 62

ASSIGNMENT TO SELF

The most common pitfall in this case is to release a resource before you
are done using it:

ResourceHandler&

ResourceHandler :: operator=

(const ResourceHandler& rhs) {
// Stop using current resource
delete pres;
// Deep copy of rhs resource
pres = new Resource(xrhs.pres);
// Return a reference to this
return xthis; }

Though this implementation looks reasonable at a first glance, a problem
occurs if xthis and rhs are the same object.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 47 / 62

ASSIGNMENT TO SELF

The traditional way to prevent this error is to check for assignment to self

via an identity test:

ResourceHandler&

ResourceHandler :: operator=

(const ResourceHandler& rhs) {
// Handle self—-assignment
if (this = &rhs) return xthis;
// Stop using current resource
delete pres;
// Deep copy of rhs resource
pres = new Resource(xrhs.pres);
// Return a reference to this
return xthis; }

M.Culpo (CINECA) Introduction to C++

07.04.2014

48 / 62

Table of contents - Best practices

© Best practices

@ Resource management

M.Culpo (CINECA) Introduction to C++

07.04.2014

49 / 62

RAII (RESOURCE ALLOCATION IS INITIALIZATION)

Consider the following code snippet:

class Resource{ /x ... %/ };

void dummy_function() {
Resource * pRes = new Resource;

delete pRes;

}

This looks fine, but there are several ways the function could fail to delete
the Resource object. To avoid this inconvenience we need to put that
resource inside an object devised to release it during destruction:

void dummy_function() {
ResourceHandler pRes(new Resource);
}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 50 / 62

RAII (RESOURCE ALLOCATION IS INITIALIZATION)

class ResourceHandler {
Resource * pointer_

public:

ResourceHandler (Resource * pointer)
pointer_(pointer) {};

“ResourceHandler () { delete pointer_; }

}

RAII - When an object is used to manage a resource:
© the constructor acquires immediately the resource

@ the destructor ensures the release of the resource

M.Culpo (CINECA) Introduction to C++ 07.04.2014 51 /62

THE RULE OF THREE

Consider the following class that manages a resource:

class Person {
charx name_;
int age_;
public:
// the constructor acquires a resource:
// dynamic memory obtained via new][]
Person(const charx the_name, int the_age) {

name_ = new char[strlen (the_name) + 1];
strcpy (name, the_name);
age_ = the_age;

}

// the destructor releases this resource
“Person() {

delete [] name;
}

s

M.Culpo (CINECA) Introduction to C++ 07.04.2014 52 / 62

Best practices Resource management

THE RULE OF THREE

A class written in this way may have several unpleasant effects:

int main() {
Person a(" Giulio Cesare” ,62);

Person b(a); // change in a <——> change in b
{ Person c(”"Napoleone Bonaparte” ,21);

a=c // dangling pointer + memory leak

b}

Since memberwise copying does not behave correctly, we must define the
copy constructor and the copy assignment operator explicitly:

// 1. Copy constructor

Person(const person& that) {
name = new char[strlen(that.name) + 1];
strcpy (name, that.name);
age = that.age;

}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 53 / 62

Best practices Resource management

THE RULE OF THREE

// 2. Copy assignment operator
Person& operator=(const Person& that) {
if (this != &that) {

charx local_-name = new char[strlen (that.name)+1];
// 1f the above statement throws, the object
// is still in the same state as before.

strcpy(local_name, that.name);
delete [] name_;
name_ = local_name;
age. = that.age;
} return xthis; }

RULE OF THREE - If you need to explicitly declare either:
@ the destructor

@ the copy constructor
@ the copy assignment operator
you probably need to explicitly declare all three of them.
Introduction to C++ 07.04.2014 54 / 62

THE COPY AND SWAP IDIOM

Let's dwell a little more on the copy assignment operator:

Person& operator=(const Person& that) {
if (this != &that) { // (1)
charx local_-name = new char[strlen (that.name)+1];
strcpy (local_name , that.name); // (2)
delete [] name_;
name_ = local_name; // (2)
age. = that.age; // (2)
}

return xthis;

}

This implementation suffers from at least 2 problems:
@ the self-assignment test is rarely needed, but always evaluated

@ part of the code is duplicated from the copy constructor

M.Culpo (CINECA) Introduction to C++ 07.04.2014

55 / 62

THE COPY AND SWAP IDIOM

The copy-and-swap idiom is an elegant solution to write a copy
assignment operator for classes that manage resources:

class Person {
charx name._;

int age_;
public:

friend void swap(Person& first , Person& second) {
using std ::swap;
swap(first .name_, second.name.);
swap(first.age_ , second.age_);

}

Person& operator=(Person other) {

swap (xthis , other);
return xthis;

}

i

M.Culpo (CINECA) Introduction to C++ 07.04.2014

56 / 62

Qi evaitzihi
Table of contents - Best practices

© Best practices

@ Operator overloading

M.Culpo (CINECA) Introduction to C++

07.04.2014

57 / 62

KNOW WHEN TO RETURN AN OBJECT

Consider the following class:

class Rational {
public:
Rational(int numerator = 0, int denominator = 1);
private:
int n,d;
Ji -

Apparently, two different signatures may be used to implement operators:

Rational operatorx(const Rational& lhs,
const Rational& rhs);
Rational& operatorx(const Rational& lhs,
const Rational& rhs);

M.Culpo (CINECA) Introduction to C++ 07.04.2014 58 / 62

Best practices Operator overloading

KNOW WHEN TO RETURN AN OBJECT

As there is no reason to expect that an object of type Rational exists prior

to the call to operatorx, the only right way to return a new object from
within a function is:

Rational operatorx(const Rational& lhs,

const Rational& rhs) {
return Rational(lhs.nxrhs.n,lhs.dxrhs.d);

}

Never return:

@ a pointer or reference to a local stack object
@ a reference to a heap-allocated object
@ a pointer or reference to a local static object

if there is a chance that more than one such object will be needed

M.Culpo (CINECA) Introduction to C++ 07.04.2014 59 / 62

Best practices Review of the lecture

The one slide summary of the lecture

Classes basics
@ A class is a user-defined type that aggregates structure and behavior
@ Access specifiers may be used to enforce encapsulation
© Constructor, destructor and assignment are special member functions

@ A class may overload operators or define custom conversions

Best practices
@ Special member functions must be disallowed if you don’t want them

@ Resource management is done following well-established idioms

© Care must be taken to decide when to return by value or by reference

M.Culpo (CINECA) Introduction to C++ 07.04.2014 60 / 62

Table of contents - Appendices

© Bibliography

M.Culpo (CINECA) Introduction to C++ 07.04.2014 61 / 62

Bibliography

[] MEYERS, S.
Effective C++: 55 Specific Ways to Improve Your Programs and
Designs, 3rd ed.
Addison-Wesley Professional, 2005.

[§ SuTTER, H.
Exceptional C++: 47 Engineering Puzzles, Programming Problems,
and Solutions.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

3 SUTTER, H., AND ALEXANDRESCU, A.
C++ Coding Standards: 101 Rules, Guidelines, and Best Practices,
1 ed.
Addison-Wesley Professional, Nov. 2004.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 62 / 62

	A primer on classes
	Introduction
	Special member functions
	Type conversions
	Overloaded operators

	Best practices
	Special member functions
	Resource management
	Operator overloading

	Bibliography

