Introduction to Standard C++

Lecture 01: The C core in C++

Massimiliano Culpo!

LCINECA - SuperComputing Applications and Innovation Department

07.04.2014

M.Culpo (CINECA) Introduction to C++ 07.04.2014 1/63

The C core in C++

Table of contents - Language rules

@ The C core in C++
@ Basic concepts
@ Types
@ Scope
@ Standard conversions
@ Linkage specifications

M.Culpo (CINECA)

Introduction to C++

07.04.2014

2/63

Table of contents - Language rules

@ The C core in C++
@ Basic concepts

M.Culpo (CINECA) Introduction to C++

07.04.2014

3/63

C++ 101: the "Hello world!"

// 1 — Preprocessor directive
#include <iostream>

// 2 — Using directive on a namespace
using namespace std;

int main() { // 3 — Program entry point
cout << "Hello world!” << endl;
return 0,

M.Culpo (CINECA) Introduction to C++ 07.04.2014 4 /63

The main function (§3.6.1)

All implementations shall allow:

int main() {

}

and:

int main(int argc, char x argv[]) {

}

@ argc is the number of arguments (non-negative)
@ if argc is non-zero the arguments are supplied through argv
© argv|0] is a pointer to the name used to invoke the program

Q argv|argc] shall be 0
Introduction to C++ 07.04.2014 5/63

Declarations and definitions (§3.1)

© Every name that denotes an entity is introduced by a declaration

@ A declaration may:

e introduce one or more names into a translation unit
e re-declare names introduced by previous declarations

@ A declaration is a definition unless:

o it declares a function without specifying the function body

e it contains the extern specifier and neither an initializer nor a
function-body

o it declares a static data member in a class definition

e it is a class name declaration or a typedef declaration

e it is a using declaration or a using directive

One Definition Rule (§3.2.1)

No translation unit shall contain more than one definition of any
variable, function, class type, enumeration type, or template.

M.Culpo (CINECA) Introduction to C++ 07.04.2014

6/ 63

Q: What is a declaration/definition? (§3.1.2)

int a;
extern const int c = 1;
int f(int x) {
return x4a;
}
struct X {
int x;

H

extern int a;
extern const int c;
int f(int);

typedef int Int;
using N::d;

M.Culpo (CINECA) Introduction to C++ 07.04.2014 7 /63

Table of contents - Language rules

@ The C core in C++

@ Types

M.Culpo (CINECA) Introduction to C++

07.04.2014

8 /63

The C core in C++ EER7ES

Taxonomy of types (§3.9)

M.Culpo (CINECA)

Introduction to C++

INTEGRAL
FLOATING POINT
VOID

ENUMERATIONS
POINTERS
REFERENCES
ARRAYS
FUNCTIONS
CLASSES
UNIONS

07.04.2014

9/63

Fundamental types (§3.9.1)

Integral types are composed of bool and:

Signed integer types Unsigned integer types
@ signed char @ unsigned char
@ short int @ unsigned short int
@ int @ unsigned int
@ long int @ unsigned long int
@ long long int (C++ 11)) o unsigned long long int (C++ 11))

Floating-point types include float, double and long double

The void type is an incomplete type and has an empty set of values

M.Culpo (CINECA) Introduction to C++ 07.04.2014 10 / 63

Compound types: enumerations (§7.2)

An enumeration is a distinct type with named constants:

enum {

yellow = 10

red,

blue ,

black = blue + 2

b

// C++11 only

unsigned int {
On,
Off

b

enum class State

@ The identifiers in an enumerator-list are declared as constants

@ An enumerator-definition without an initializer:

e increase the value of the previous enumerator by one
e for the first enumerator the value of the corresponding constant is zero

@ Strongly typed enum (C++ 11): no implicit conversion

M.Culpo (CINECA)

Introduction to C++

07.04.2014

11/ 63

Compound types: pointers (§8.3.1)

A pointer variable stores the address of another variable:

int i = 10;
int x pi = &i;
xpi = 20;

© The unary operator * performs indirection (§5.3.1):

e shall be applied to a pointer
e returns an lvalue referring to the object or function

@ The result of the unary operator & is a pointer to its operand
© A pointer to an incomplete type cannot be dereferenced

© The keyword nullptr indicates a null pointer (C++ 11)

M.Culpo (CINECA) Introduction to C++ 07.04.2014

12 / 63

Compound types: references (§8.3.2)

A reference can be thought of as an alias name for an object:

int i = 10;
int & ri = i;

ri = 20; // Now i = 20 holds true

© It combines the syntax of values with the semantic of pointers

@ It is unspecified whether or not a reference requires storage
© According to the standard you can't declare:

o references to references
e pointers to references
e arrays of references

@ A reference shall be initialized to a valid object or function

M.Culpo (CINECA) Introduction to C++ 07.04.2014 13 / 63

Compound types: arrays (§8.3.4)

An array contains a contiguously allocated, non-empty set of objects:

int values[3];

for (int ii = 0; ii < 3; ++ii)
values[ii] = 10xii;

© The number of elements is specified by a constant integral expression
@ If the constant integral expression:

o has value N, the array has N elements numbered [0, N — 1]
e is omitted, the type of the identifier of D is an incomplete object type

© An array can't be constructed from void or references

M.Culpo (CINECA) Introduction to C++ 07.04.2014 14 / 63

Compound types: arrays (§8.3.4)

Several adjacent array of specifications declare a multidimensional array:

int imarray [30][10];
float fmarray[10][20][30];

int imatrix [|[2] = { {1.2} , {3.4} };

@ Arrays in C++ are stored row-wise (last subscript varies fastest)
@ Only the first constant expression may be omitted:

e where an incomplete object type is allowed
e where an initializer is used

M.Culpo (CINECA) Introduction to C++ 07.04.2014 15 / 63

Compound types: functions (§8.3.5)

A function is the typical way to accomplish a task in C++:

int next_element ();
float square_root(float a);
double square_root(double a);

© |If the parameter list is empty, the function takes no arguments

@ The order of evaluation of function arguments is unspecified

© A single name can be used for several different functions in a single
scope (function overloading §13)

M.Culpo (CINECA) Introduction to C++ 07.04.2014 16 / 63

Compound types: functions (§8.3.6)

Functions may use default arguments in their parameter declaration:

int max(int a, int b =20, int c = 0) {
int m= (a>b) ? a: b;
return (m>c) ? m : c;

}

@ Default arguments are evaluated each time the function is called
@ A default argument shall not be redefined by a later declaration

© Nested function definitions are not allowed in C++

M.Culpo (CINECA) Introduction to C++ 07.04.2014

17 / 63

Q: What are the types of the following variables?

int i;

int xpi;

int f();

int xfpi(int);

int (xpif)(charx, charx);
int (xfpif(int))(int);

char x a,b;

float = a[l0];

float (xa)[10];

int (xf) (int, floatx);
int (x&g) (int, floatx)

M.Culpo (CINECA) Introduction to C++ 07.04.2014 18 / 63

Seare
Table of contents - Language rules

@ The C core in C++

@ Scope

M.Culpo (CINECA) Introduction to C++

07.04.2014

19 / 63

Seare
Scope (§3.3)

Each identifier is valid only within some possibly discontiguous portion of
program text called its scope:
int j = 24;
int main() {
int i =j, j;
i = 42;

}

In the previous snippet the identifier j is declared twice as a name:
Scope of the “first” j

“ noe

Scope of the “second” j
@ begin after its declaration @ begin after its declaration
@ extends until the end of the program

@ extends until }
@ excludes the text between , and }

The inner name hides the outer one

M.Culpo (CINECA)

Introduction to C++

07.04.2014 20 / 63

Seare
Taxonomy of scopes (§3.3)

------ BLOCK SCOPE

NAMESPACE SCOPE
CLASS SCOPE
ENUMERATION SCOPE

M.Culpo (CINECA) Introduction to C++ 07.04.2014 21 /63

Seare
Block scope (§3.3.3)

A portion of program text enclosed between { and } is called a block:

int a[10];

// Outer scope where ii is float
float ii = 999.0f;

for(int ii = 0; ii < 10; ii++) {

alii] = ii; // ii is int

}

© A name declared in a block is local to that block (it has block scope)

@ Its potential scope begins with its declaration and ends with the block

© Names declared in the “condition part” of a statement are local to

that statement

M.Culpo (CINECA) Introduction to C++

Seare
Namespace (§7.3) and namespace scope (§3.3.6)

A namespace is an optionally-named declarative region:

namespace nms {
int counter() {

}

}
// Qualified name lookup
int id = nms:: counter ();

@ The name of a namespace can be used to access entities
@ lts definition can be split over different translation units

© The outermost declarative region of a translation unit is a namespace,

called the global namespace

M.Culpo (CINECA) Introduction to C++

Seare
Namespace (§7.3) and namespace scope (§3.3.6)

Namespace definitions can be nested:

namespace Outer {
int i = 0;
namespace Inner {
void f() { i++; } // Outer::i
int i = 10;
void g() { i++ } // Inner::i
}

}

An unnamed namespace behaves as if it were replaced by:

namespace unique { /x body x/ }

M.Culpo (CINECA) Introduction to C++ 07.04.2014

24 / 63

Seare
Namespace (§7.3) and namespace scope (§3.3.6)

All occurrences of unique in a translation unit:

namespace { int i; } // unique ::i
void f() { i++ } // unique ::i++
namespace A {
namespace {
int i; // A:: unique ::i
int j;
}
void g() { i++ } // A:: unique ::i++
}

© are replaced by the same identifier. ..

@ ...that differ from all other identifiers in the entire program

M.Culpo (CINECA) Introduction to C++ 07.04.2014

25 / 63

The C core in C++ Scope

Namespace (§7.3) and namespace scope (§3.3.6)

A namespace-alias (§7.3.2):

namespace long_long_name {
int i = 0;

// Namespace alias

namespace lln = long_long _name;
// i has value 1
long_long_name :: i++;

// i has value 2

lIn::i++;

declares an alternate name for a namespace.

M.Culpo (CINECA) Introduction to C++

07.04.2014

26 / 63

Seare
Using declarations (§7.3.3)

A using-declaration introduces a name into a declarative region:

namespace B {

; void f(char) { /x ... %/ };

namespace D {
using B:: f;
void f(int) {
f('c');, // B::f(char)
}
void g(int) {
| 8U<): 77Diig(ine)

}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 27 / 63

Seare
Using declarations (§7.3.3)

The entity declared by a using-declaration:

namespace A {
void f(int);
}

using A::f; // synonym for A::f(int);
namespace A {

void f(char);
}

void foo() {
f('a'); // calls f(int),
} // even though f(char) exists.

shall be known in the context using it according to its definition at the
point of the using-declaration.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 28 / 63

Seare
Using directive (§7.3.4)

A using-directive may only appear in namespace scope or in block scope:

namespace A {
void f(int);
int g(float);

}

using namespace A;

// void A::f(int)
f(10);

// int A::g(float)
int a =g(3.0f);

M.Culpo (CINECA) Introduction to C++

07.04.2014

29 / 63

Seare
Using directive (§7.3.4)

For unqualified lookup, the using-directive is transitive:

namespace M {
int foo(char);
}

namespace N {
int foo(float);
// Import int M::foo(char)
using namespace M;
}
void f() {
using namespace N;
int foo('a'); // int M::foo(char)
int foo(1.0f); // int N::foo(float)
}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 30/ 63

LLCECRICRTNGEI Standard conversions

Table of contents - Language rules

@ The C core in C++

@ Standard conversions

M.Culpo (CINECA) Introduction to C++

07.04.2014

31/ 63

The C core in C++ Standard conversions

Standard conversions (§4)

Standard conversions are implicit conversions defined for built-in types.

A standard conversion sequence is a sequence of standard conversions:

@ Zero or one conversion from the following set:
@ lvalue-to-rvalue conversion o function-to-pointer conversion
@ array-to-pointer conversion

@ Zero or one conversion from the following set:

o integral promotions @ integral conversions

o floating point promotion o floating point conversions

@ pointer conversions o floating-integral conversions
@ pointer to member conversions @ boolean conversions

© Zero or one qualification conversion
It will be applied to an expression if necessary to convert it to a required
destination type.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 32 /63

The C core in C++ Standard conversions

Standard conversions (§4)

@ An expression e can be implicitly converted to a type T if and only if:

Tt =c¢;

is well-formed. The effect of the implicit conversion is the same as
using the temporary variable t as the result of the conversion

@ Expressions with a given type will be implicitly converted:
e when used as operands of operators
e when used in the condition of an if or iteration statement
e when used in the expression of a switch statement
e when used as the source expression for an initialization

M.Culpo (CINECA) Introduction to C++ 07.04.2014 33 /63

Liit:zge speaiicaimie
Table of contents - Language rules

@ The C core in C++

@ Linkage specifications

M.Culpo (CINECA) Introduction to C++

07.04.2014

34 /63

Linkage specifications (§7.5)

Linkage between C++ and non-C++ code fragments:

// CH linkage by default
complex sqrt(complex);

extern "C" {
// C linkage: no overloading
double sqrt(double);

}

can be achieved using a linkage-specification.

@ The Standard specifies the semantics for "C" and " C+-+"

@ A linkage-specification shall occur only in namespace scope

M.Culpo (CINECA) Introduction to C++ 07.04.2014 35 /63

Linkage specifications (§7.5): example

int x;
namespace A {
extern "C" int f();
extern "C" int g() { return 1; }
extern "C" int h();
// ill —formed: same name
extern "C" int x();
}
namespace B {
// A::f or B:: f
extern "C" int f();
// ill —formed: two definitions
extern "C" int g() { return 1; }

// A::h and ::h refer to the same function
int A::f() { return 98; } // definition
extern "C" int h() { return 97; } // definition

M.Culpo (CINECA) Introduction to C++ 07.04.2014 36 / 63

Table of contents - Best practices

© Best practices
@ Use of preprocessor macros
@ Use of qualifiers
@ Use of standard library

M.Culpo (CINECA) Introduction to C++

07.04.2014

37 /63

Table of contents - Best practices

© Best practices
@ Use of preprocessor macros

M.Culpo (CINECA) Introduction to C++

07.04.2014

38 /63

Best practices Use of preprocessor macros

INCLUDE GUARDS

It is common practice to protect header files with a unique macro name
called include guard:

#ifndef HEADER_UNIQUE_NAME_
#define HEADER_UNIQUE_NAME_
/ *

Header body

*/
#endif

to prevent violations of the One Definition Rule when including them.

Q1: Why the include guard for a header file needs to be unique?
Q2: What will happen in case of a name-clash?

M.Culpo (CINECA) Introduction to C++ 07.04.2014 39 /63

ke of apalliiess
Table of contents - Best practices

© Best practices

@ Use of qualifiers

M.Culpo (CINECA) Introduction to C++

07.04.2014

40 / 63

Best practices Use of qualifiers

PREFER CONSTS OR ENUMS TO OBJECT-LIKE MACROS

When you do something like this:

#define ASPECT_RATIO 1.653

the symbolic name ASPECT _RATIO is not seen by the compiler, as it is
removed by the preprocessor during macro expansion.

This may have unexpected side-effects as:

@ macro doesn't respect any scope

@ compiler messages may refer to 1.653 instead of ASPECT_RATIO

The solution is to replace the macro with a constant or an enum:

const double AspectRatio = 1.653;
const char *x const language name = "C++";
enum { NumTurns = 5 };

M.Culpo (CINECA) Introduction to C++

07.04.2014 41 / 63

Best practices Use of qualifiers

PREFER INLINES TO FUNCTION-LIKE MACROS

Another common misuse of the #define directive is using it to implement
function-like macros that don’t incur the overhead of a function call:

// call f with the maximum of a and b
#define CALLWITH.MAX(a, b) \

f((a) > (b) 7 (a) : (b))

Anyhow, the use of inline can get the same efficiency plus all the
predictable behavior and type safety of a regular function:

inline void callWithMax(int a, int b) {
f(a>b?a: b);
}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 42 / 63

USE CONST WHENEVER POSSIBLE

The keyword const allows to specify a semantic constraint (a particular
object should not be modified):

char greeting[] = "Hello";

// non—const pointer, non—const data
char xp = greeting;

// non—const pointer, const data
const char xp = greeting;

// const pointer, non—const data
char * const p = greeting;

// const pointer, const data

const char *x const p = greeting;

This cause the compiler to know and enforce your intentions, and let other
programmers to be aware of the object properties.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 43 / 63

U= of sty ey
Table of contents - Best practices

© Best practices

@ Use of standard library

M.Culpo (CINECA) Introduction to C++

07.04.2014

44 / 63

PREFER std::vector TO BUILT-IN ARRAYS

Even though knowing the array machinery in C++ is somehow mandatory,
std :: vector provides many advantages over built-in arrays:

#include <vector>

#include <iostream>

using namespace std;

void print_size (const vector<int>& foo) {
// Maintain size information
cout << foo.size()<< endl;

int main() {
vector<int> foo;
for (int ii = 0; ii < 1000; ii++)
foo.push_back(ii); // Automatic resizing
cout << foo[0] << endl; // Array syntax
cout << foo.at(10) << endl; // Range check
print_size (foo);

M.Culpo (CINECA) Introduction to C++ 07.04.2014 45 / 63

Best practices Review of the lecture

The one slide summary of the lecture

C core in C++
O In its guts C++ still shares many things with C
@ Compatibility with C was a design goal for the C++ committee
© The classification of types is similar to the one you may find in C. ..
© ... with the exception of classes (and that's where everything began)
@ C++ permits function overloading, while C does not

@ C++ introduces the use of namespaces to avoid name cluttering

Best practices
@ Use include guards to prevent violations of the ODR

@ Avoid pre-processor macros and use const whenever possible

© Prefer std:: vector over built-in arrays

M.Culpo (CINECA) Introduction to C++ 07.04.2014 46 / 63

Table of contents - Appendices

© Bibliography

M.Culpo (CINECA) Introduction to C++ 07.04.2014 47 / 63

Bibliography

[] MEYERS, S.
Effective C++: 55 Specific Ways to Improve Your Programs and
Designs, 3rd ed.
Addison-Wesley Professional, 2005.

[SUTTER, H., AND ALEXANDRESCU, A.

C++ Coding Standards: 101 Rules, Guidelines, and Best Practices,
1 ed.
Addison-Wesley Professional, Nov. 2004.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 48 / 63

Table of contents - Appendices

@ Appendices
@ A - Preprocessing directives

@ B - Expressions and specifiers

M.Culpo (CINECA) Introduction to C++ 07.04.2014

49 / 63

AV ENGISSI A - Preprocessing directives

Preprocessing directives (§16)

A preprocessing directive consists of a sequence of preprocessing tokens
@ The first token in the sequence is a #

@ The last token is the first newline character that follows #

The most common uses of a preprocessing directive are:

e Conditional inclusion @ Macro replacement

@ Source file inclusion @ Pragma directives

Preprocessing tokens within a directive are not subject to macro expansion.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 50 / 63

Conditional inclusion (§16.1)

Expression controlling conditional inclusion shall be integral constant
expressions, with the exception of:

#if defined MACRONAME
<code>
#endif

and:

#if defined (MACRONAME)
<code>
#endif

The unary operator expression defined evaluates to:
o 1 if the identifier is currently defined as a macro name
e 0 if it is not

M.Culpo (CINECA) Introduction to C++ 07.04.2014 51 /63

Appendices A - Preprocessing directives

Conditional inclusion (§16.1)

Preprocessing directives of the form:

#if first_constant_expression
<first _branch >

#elif second_constant_expression
<second_branch>

#else

<default_branch>

#endif

check the corresponding constant expressions, and preprocess the first that
evaluates to true. The following shortened forms are defined:

#ifdef id // #if defined id
#ifndef id // #if !defined id

M.Culpo (CINECA) Introduction to C++ 07.04.2014 52 /63

Source file inclusion (§16.2)

A preprocessing directive of the form:

#include <header_file >

searches a sequence of implementation-defined places for a header. How
the places are specified or the header identified is implementation-defined.

A preprocessing directive of the form:

#include "header_file”

searches for the header in an implementation-defined manner. If this
search fails the directive reverts to the previous case.

Both directives cause the replacement of that directive by the entire
contents of the source file identified by the specified sequence.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 53 /63

Macro replacement (§16.3)

A preprocessing directive of the form:

#define identifier replacement

defines an object-like macro that causes the replacement of each
subsequent instance of the macro name.

A preprocessing directive of the form:

#define macro_name(identifier) replacement

defines a function-like macro with parameters, whose use is similar
syntactically to a function call.

Within the sequence of preprocessing tokens making up an invocation of a
function-like macro, new-line is considered a normal white-space character.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 54 / 63

Macro replacement (§16.3)

The # operator (Stringification)
@ shall be followed by a parameter
@ is replaced by a single character string literal

@ the order of evaluation of # and ## operators is unspecified.

The #+# operator (Concatenation)
@ concatenates two pre-processing tokens

@ the order of evaluation of ## operators is unspecified

Argument substitution

@ takes place after the arguments of a function-like macro have been identified

@ a parameter not preceded by # or ## is replaced by the corresponding argument

@ if a macro is given as an argument, it is expanded before being substituted

M.Culpo (CINECA) Introduction to C++ 07.04.2014

55 / 63

Appendices A - Preprocessing directives

Q: What are the stages of the following macro expansion?

#define dhash # 44 #
#define mkstr(a) # a

#define in_between(a) mkstr(a)
#define join(c, d) in_between(c dhash d)

char p[] = join(x, y);

M.Culpo (CINECA) Introduction to C++ 07.04.2014 56 / 63

Predefined macro names (§16.8)

The following macro names shall be defined by the implementation:

__cplusplus
// defined for CXX translation units

__DATE __
// date of translation of the source file
__TIME__
// time of translation of the source file
__FILE __

// presumed name of the source file

If any of the pre-defined macro names is re-defined or un-defined, this
triggers an undefined behavior.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 57 / 63

The sizeof operator (§5.3.3)

The sizeof operator: :

float a[10];

int nelems = sizeof(a) / sizeof(a[0]);

yields the number of bytes in the object representation of its operand.

@ sizeof shall not be applied to a function or incomplete type
@ sizeof(char), sizeof(signed char) and sizeof (unsigned char) are 1
© For other fundamental types, the result is implementation defined

@ For references or a reference types, the result is the size of the
referenced type

M.Culpo (CINECA) Introduction to C++ 07.04.2014 58 / 63

The new (§5.3.4) and delete (§5.3.5) expressions

int x pi
delete pi;

delete []

delete []

= new int;

// Parentheses needed

int (x)() pfa =
pfa;

// The return type is
int (*)[10]

pia
pia;

for compound types

int (x[10])()):

int (+)[10]
int[20][10];

@ The new-expression attempts to create an object of a given type

@ The delete-expression destroys an object created by a new-expression

© Entities created this way have dynamic storage duration

M.Culpo (CINECA)

Introduction to C++

07.04.2014

The static specifier (§7.1.1)

The static specifier applied to functions implies internal linkage:

// internal linkage
static charx f();
charx f() {

}

while applied to variables it implies static storage duration:

int getiID() {
static int count = 0;
count++;
return count;

M.Culpo (CINECA) Introduction to C++

60 / 63

The inline specifier (§7.1.2)

A function declaration with an inline specifier declares an inline function.

The specifier indicates to the implementation that inline substitution of
the function body at the point of call is to be preferred to the usual
function call mechanism:

inline int sum(int a, int b) {
return a + b;
}

An implementation is not required to perform this inline substitution at
the point of call.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 61 / 63

Appendices B - Expressions and specifiers

The typedef specifier (§7.1.3)

The keyword typedef declares identifiers that can be used later for naming
fundamental or compound types.

A name declared with the typedef specifier becomes a typedef-name.

A typedef-name is a synonym for another type. A typedef-name does not
introduce a new type the way a class or enum declaration does.

typedef int value type;
typedef int (xhandler)(value_type);

// fpointer has type int (x)(int)
handler fpointer;

M.Culpo (CINECA) Introduction to C++ 07.04.2014 62 / 63

const and volatile qualifiers (§7.1.6)

There are two cv-qualifiers, const and volatile .

A pointer or reference to a cv-qualified type need not actually point or
refer to a cv-qualified object, but it is treated as if it does.

A const-qualified access path cannot be used to modify an object:

int a = 10;
int x pi = &a;
const int * cpi = &a;
xpi = 20; // OK
xcpi = 30; // ERROR

The keyword volatile is a hint to the implementation that the value of an
object might be changed at any time.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 63 / 63

	The C core in C++
	Basic concepts
	Types
	Scope
	Standard conversions
	Linkage specifications

	Best practices
	Use of preprocessor macros
	Use of qualifiers
	Use of standard library

	Bibliography
	Appendices
	A - Preprocessing directives
	B - Expressions and specifiers

