
Introduction to Standard C++

Lecture 00: Administravia + Language basics

Massimiliano Culpo1

1CINECA - SuperComputing Applications and Innovation Department

07.04.2014

M.Culpo (CINECA) Introduction to C++ 07.04.2014 1 / 14

Information on the course Course structure

Lecture timetables

Day 1 Language basics
Overview of the language

Memory and object models

The C core in C++

Quick review of basic C concepts

Scope, overloading and name look-up

Types, standard conversions

Introduction to OOP
Motivation for object orientation

Basic design principles

M.Culpo (CINECA) Introduction to C++ 07.04.2014 2 / 14

Information on the course Course structure

Lecture timetables

Day 2 A primer on classes
Class members

Overloaded operators

Class hierarchies
Derived classes

Abstract classes and polymorphism

Day 3 C++ templates
Template functions

Template classes

C++ standard library

Structure of the standard library

Iterator concepts

Overview of containers and algorithms

M.Culpo (CINECA) Introduction to C++ 07.04.2014 2 / 14

Introduction to C++ A quick tour

A little history

C with classes [1979]

B. Stroustrup began his work on ”C with Classes” at AT&T:

enhancement of C with Simula-like features

C was chosen because it was general-purpose, fast,
portable and widely used

C++ [1983]

Added run-time polymorphism, overloading, references, . . .

First edition of ”The C++ Programming Language” released in 1985

”The Annotated C++ Reference Manual” was published in 1990

ISO Standard in 1998, 2003, 2011

The latest major revision of the C++ standard was approved by ISO/IEC on 12/08/2011.

M.Culpo (CINECA) Introduction to C++ 07.04.2014 3 / 14

Introduction to C++ A quick tour

What is C++?

The easiest way to view C++ is not as a single language but as a federation of
related languages:

C

Way down deep, C++ is still based on C.

Object oriented C++

This part of C++ is what C with Classes
was all about.

Template C++

This is the generic programming part of
C++.

The STL

You need to be sure to follow its
conventions.

C++ is a multi-paradigm programming language

Keep the sub-languages in mind, change strategy where needed

Rules for effective C++ programming vary, depending on the part of you are using

M.Culpo (CINECA) Introduction to C++ 07.04.2014 4 / 14

Introduction to C++ A quick tour

Why using (or not) C++?

All the good things. . .

Properly used, C++ can be a joy to work with:

it permits an uncommon range of power and expressiveness

designs can be directly expressed and efficiently implemented

generic-programming is supported through templates

it fosters object-orientation with virtual classes

it is not prohibitive to write effective C++ programs

it really helps in managing large software projects

. . . come at a price

Used without discipline, however, C++ can lead to code that
is incomprehensible, unmaintainable, inextensible, inefficient, and
just plain wrong. (Scott Meyers, “Effective C++”)

M.Culpo (CINECA) Introduction to C++ 07.04.2014 5 / 14

Introduction to C++ A quick tour

Where can I found information about C++?

The ”ISO/IEC Standard” is the final reference on the language:

C
Chapter 1-8 Core language

Chapter 16 Preprocessor

Object oriented C++

Chapter 9-12 Classes, run-time polymorphism

Chapter 15 Exception handling

Template C++

Chapter 13 Overload resolution

Chapter 14 Templates

The STL

Chapter 17-30 Description of each library

It is written in legalese, and therefore is quite difficult to interpret.

cppreference provides a nice quick-reference to the standard libraries.

Some specialized Q&A sites, like stackoverflow, may provide help in case
you want to pose a question related to your code.

And of course there are books!

M.Culpo (CINECA) Introduction to C++ 07.04.2014 6 / 14

http://www.open-std.org/jtc1/sc22/wg21/
http://en.cppreference.com/w/
http://stackoverflow.com/

Introduction to C++ A quick tour

The compilation process in a nutshell

Source File 1

Source File 2

Object File 1

Object File 2

External Library

Executable Program in memory

Compiler

Compiler

Linker

Linker

Linker

OS

M.Culpo (CINECA) Introduction to C++ 07.04.2014 7 / 14

Introduction to C++ Memory and object models

All you need to know about memory and objects therein

The C++ memory model (§1.7)
1 The fundamental storage unit in

the C++ memory model is the byte

2 The memory consists of one or
more sequences of contiguous bytes

3 Every byte has a unique address

4 A memory location is an object of
scalar type

5 Two threads of execution can

update
access

separate memory locations without
interfering with each other

Address Type Value

0

1

2 char 0x28

3 float 0x00

4 0x00

5 0x00

6 0x00

...
...

...

M.Culpo (CINECA) Introduction to C++ 07.04.2014 8 / 14

Introduction to C++ Memory and object models

All you need to know about memory and objects therein

The C++ object model (§1.8)
1 An object is a region of storage

2 An object is created by either:

a definition
a new-expression
the implementation

3 An object has a:

type
storage duration

4 An object may have a name

5 Objects can contain other objects,
called subobjects

6 An object that is not a subobject is
called a complete object

Address Type Value

0

1

2 char 0x28

3 float 0x00

4 0x00

5 0x00

6 0x00

...
...

...

M.Culpo (CINECA) Introduction to C++ 07.04.2014 8 / 14

Introduction to C++ Memory and object models

All you need to know about memory and objects therein

1 s t r u c t A {
2 char c ;
3 i n t i ;
4 }
5

6 A obj ;
7

8 a . c = ’H ’ ;
9 a . i = 1 0 2 4 ;

Address Type Name Value

0

1

2 A char a a.c 0x28

3 int a.i 0x00

4 0x00

5 0x04

6 0x00

...
...

...
...

M.Culpo (CINECA) Introduction to C++ 07.04.2014 9 / 14

Introduction to C++ Memory and object models

Objects in presence of multiple threads (C++11)

// Thread 0
f l a g [0] = true ; // A
i f (f l a g [1]) // B
// r e s o l v e contention
e l s e
// c r i t i c a l sect ion

f l a g [0] = f a l s e ;

// Thread 1
f l a g [1] = true ; // C
i f (f l a g [0]) // D
// r e s o l v e contention
e l s e
// c r i t i c a l sect ion

f l a g [1] = f a l s e ;

Q: If flags are shared and atomic, could both threads enter the
critical region?
A: Not in a sequentially consistent (SC) memory model

Sequentially consistent data-race free (SC-DRF)

The C++ standard guarantees a SC system if it is free of data-races

M.Culpo (CINECA) Introduction to C++ 07.04.2014 10 / 14

Introduction to C++ Memory and object models

Storage duration of objects (§3.7)

Storage duration is the property of an object that defines the minimum
potential lifetime of the storage containing the object.

Static storage duration

Storage lasts for the entire
duration of the program

Thread storage duration

Storage lasts for the entire
duration of the thread in
which they were created

Automatic storage duration

Storage lasts until the block
in which they were created
exits

Dynamic storage duration

Storage is managed by the
programmer with new and
delete operators

M.Culpo (CINECA) Introduction to C++ 07.04.2014 11 / 14

Introduction to C++ Memory and object models

Storage duration of objects (§3.7)

// Automatic storage durat ion
void foo () {

i n t i i = 0 ;
{ f l o a t j j = 0 . 0 f ; } // storage f o r j j e x p i r e s

} // storage f o r i i e x p i r e s

// S t a t i c storage durat ion
void bar () {

s t a t i c i n t i i = 0 ;
} // l a s t s u n t i l the end of the program

// Dynamic storage durat ion
void foobar () {

i n t ∗ p i i = new i n t [3] ;
de lete [] p i i ; // l a s t s u n t i l corresponding de lete

}

M.Culpo (CINECA) Introduction to C++ 07.04.2014 12 / 14

Introduction to C++ Memory and object models

Q: What is the storage duration of the objects below?

1 void foo (f l o a t ∗ workspace , const i n t s i z e)
2 {
3 s t a t i c i n t n c a l l s = 0 ;
4 n c a l l s ++;
5 f o r (i n t i i = 0 ; i i < s i z e ; i i ++)
6 workspace [i i] = i i ;
7 }
8 i n t main () {
9 f l o a t ∗ pf = new f l o a t [1 0] ;

10 foo (pf , 1 0) ;
11 de lete [] pf ;
12 }

M.Culpo (CINECA) Introduction to C++ 07.04.2014 13 / 14

Introduction to C++ Memory and object models

Key points so far. . .

General guidelines

1 C++ is a complex, multi-paradigm programming language
2 To master C++ you need to know:

where a paradigm needs to be applied
how to combine different paradigms

3 Discipline is a pre-requisite for an effective use of C++

Memory and object models

1 The constructs in a C++ program create, destroy, refer to, access and
manipulate objects

2 An object is a region of storage with an associated type, storage
duration and possibly a name

3 The C++ standard guarantees a SC-DRF memory model

M.Culpo (CINECA) Introduction to C++ 07.04.2014 14 / 14

	Information on the course
	Course structure

	Introduction to C++
	A quick tour
	Memory and object models

