
Scientific and Technical Computing in C
Day 1

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Roma, 6-7 November 2014

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

C History

• Born in the 70s as an operating system programming
language (traditional C)

• Widely adopted for application development because of its
efficiency and availability on most systems

• First ANSI standard in 1989 (C89), adopted by ISO in 1990
• Second ISO standard in 1995 (C95), just a few extensions

and fixes
• Third ISO standard in 1999 (C99), adding many new features

(usability, more numeric types and math, more characters,
inlining and restrict)

• Current standard is C11 (more usability, threads, Unicode
characters, more robustness)

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

C General Philosophy

• A simple and efficient language
• Only 44 reserved keywords
• Basic data types and operators mapping "naturally" to the

CPU
• Facilities to build data types from the basic ones
• Flexible flow control structures mapping the most common

use cases
• Translated by a compiler to machine language

• A rich Standard Library
• Math functions, memory management, string manipulation,

I/O, ... are not part of the language
• Implemented separately in a library of subprograms
• Linked into the executable after compilation

• A “preprocessor” to manage the code
• Conditional compilation and automated code changes
• Manipulates the code before compilation

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Technical and Scientific Computing

• Why C is bad
• Number crunching has been traditionally done in Fortran
• Fortran is older and more “rigid” than C, compilers optimize

better
• Nowadays, performance differences are often a matter of

compiler flags and good programming techniques
• Why C is good

• From the beginning, it had more powerful data types
• Non-numeric computing in Fortran is a real pain
• There are more C than Fortran programmers
• GUI and DB accesses are best programmed in C
• Mixing C and Fortran uses (used...) to be troublesome
• C99 seriously addressed numerical computing needs
• ... and solved aliasing rules for memory pointers

• Bottom line:
• Significant scientific libraries written in C
• Significant scientific applications written in C
• C compilers got much better at optimizing

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Our Aims

• Teach you the fundamentals of the C language
• For both reading and writing programs
• Showing common idioms
• Illustrating best practices
• Blaming bad ones
• Making you aware of the typical traps
• Focusing on scientific and technical use cases
• You’ll happen to encounter something we didn’t cover, but it

will be easy for you to learn more... or to attend a more
advanced course!

• A course is not a substitute for a reference manual or a good
book!

• Neither a substitute for personal practice

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Outline

1 Introduction

2 C Basics
My First C Program
Making Choices
More Types and Choices
Wrapping it Up 1

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

My First Scientific Program in C

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>
#include <stdio.h>

int main() {
double delta;
double x1, x2;
double a, b, c;

printf("Solving ax^2+bx+c=0, enter a, b, c: ");
scanf("%lf ,%lf ,%lf", &a, &b, &c);

delta = sqrt(b*b - 4.0*a*c); // square root of discriminant
x1 = x2 = -b;
x1 = x1 + delta;
x2 -= delta;
x1 = x1/(2.0*a);
x2 /= 2.0*a;

printf("Real roots: %lf, %lf\n", x1, x2);

return 0;
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Comments to Code

• Text following /* is ignored up to the first */ encountered,
even if it’s on a different line

• In C99, text following // is ignored up to the end of current
line

• Best practice: do comment your code!
• Variable contents
• Algorithms
• Assumptions
• Tricks

• Best practice: do not over-comment your code!
• Obvious comments obfuscate code and annoy readers
• // square root of discriminant is a bad example

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Functions, main() in Particular

• C code is organized in functions
• Each function has a name
• Code goes in between braces
• Arguments, if any, goes in between parentheses
• It can return one or zero results using return
• More on this later...

• In a program, the function main() can’t be dispensed with
• It’s called automatically to execute the program

• main() returns an integer type value
• A UNIX heritage
• Passed to parent process (e.g. the command shell)
• Rule: 0 if everything completed successfully

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Variables

• double x1, x2; declares two variables
• Named memory locations where values can be stored
• Declared by specifying a data type followed by a

comma-separated list of names, ended by a semicolon
• On x86 CPUs, double means that x1 and x2 host IEEE

double-precision (i.e. 64 bits) floating point values
• A legal identifier must be used for a variable name:

• Permitted characters: a-z, A-Z, 0-9, _
• The first one cannot be a digit

(e.g. x1 is a valid identifier, 1x is not)
• 31 characters are guaranteed to be considered
• A good advice: do not exceed 31 characters in an identifier

• Case counts: anIdent is not the same as anident!
• Common convention: avoid variable names entirely made of

capital letters

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Using the Standard Library

• A lot of functionalities are available in an external library of
functions, whose content is defined by the Standard

• The compiler knows nothing about them, so it needs
information about:

• Arguments
• Type of returned value

• Information about functions is in header files
• Grouped by categories
• Must be inserted in the source code before functions are used
• #include causes the preprocessor to do it automatically
• Specifying the header file name between angle brackets

forces the preprocessor to look in the directories where the
Standard header files are located

• Want to compute a square root?
• #include <math.h>
• Use sqrt()

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

A Few First Words on I/O

• Related functions are grouped in stdio.h
• The bare minimum: textual input output from/to the user

terminal
• scanf() reads
• printf() writes

• printf("Solving ..."); is obvious
• Writes the text between double quotes

• printf("Real roots: %lf, %lf\n", x1, x2); is
more interesting

• Conversion specifiers %lf are substituted by the textual
representation of values in x1 and x2

• And a new line is forced by \n
• scanf("%lf ,%lf ,%lf", &a, &b, &c);

• Reads three double precision numbers from the terminal,
converts them in internal binary format, stores them

• Enough for now, disregard details

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Expressions and Operators

• Most of program work takes place in expressions
• Operators compute values from terms

• +, -, * (multiplication), and / behave like in “human” arithmetic
• So do unary -, (, and)

• x1 = x1 + delta assigns the value of expression
x1 + delta to variable x1

• An ending ; makes it into an executable statement
• But it’s still an expression, with the same value assigned to x1
• Thus we can write x1 = x2 = -b;, which is same as x1 =
(x2 = -b);

• Practical shorthands to read/modify/write a variable:
• x2 -= delta is same as x2 = x2 - delta
• x2 /= 2.0*a is same as x2 = x2/(2.0*a)

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Try It Now!

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>
#include <stdio.h>

int main() {
double delta;
double x1, x2;
double a, b, c;

printf("Solving ax^2+bx+c=0, enter a, b, c: ");
scanf("%lf ,%lf ,%lf", &a, &b, &c);

delta = sqrt(b*b - 4.0*a*c); // square root of discriminant
x1 = x2 = -b;
x1 = x1 + delta;
x2 -= delta;
x1 = x1/(2.0*a);
x2 /= 2.0*a;

printf("Real roots: %lf, %lf\n", x1, x2);

return 0;
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Compile your first C program !

• We will use GNU C Compiler (GCC) during this course
• Other compilers are available on the market

(Intel, PGI, Pathscale, etc)
• Linux systems comes with the C compiler
• Windows systems does not have a default one

• we will use MinGW (a minimal port of GCC for Windows)

• Let’s see how to compile and run your first C program:

• put your first C code into main.c file

• Compile your source code using the command:

user@cineca$> gcc main.c

An executable file named a.out will be generated

• Run the program with:

user@cineca$> ./a.out

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Compile your first C program ! (II)

• ... probably you got something like this:

user@cineca$> gcc main.c
/tmp/ccWpSr3h.o: In function ‘main’:
main.c:(.text+0xa8): undefined reference to ‘sqrt’
collect2: ld returned 1 exit status

• #include<math.h> declares some math functions and
constants (sqrt() among them)

• the sqrt() function code is in the math library
• gcc does not automatically link the math library

• you have to link the library explicitly into the executable:

user@cineca$> gcc main.c -lm

• now run the program!

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Fixing a Problem

• User wants to solve x2 + 1 = 0
• Enters: 1, 0, 1
• Gets: Real roots: nan, nan

• Discriminant is negative, its square root is
Not A Number, nan

• Let’s avoid this, by changing from:
delta = sqrt(b*b - 4*a*c);

to:
delta = b*b - 4*a*c;
if (delta < 0.0)
return 0;

delta = sqrt(delta);

• Try it now!
• Did you check that normal cases still work? Good.

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Conditional Statement

• if (logical-condition) statement
• Executes statement only if logical-condition is true
• Comparison operators: == (equal), != (not equal), >, <, >=,
<=

• But our fix is not user friendly, let’s be more polite by
changing from:
if (delta < 0.0)
return 0;

to:
if (delta < 0.0)
{
printf("No real roots!\n");
return 0;

}

• Try it now!
• Did you check that normal cases still work? Good.

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Compound Statements

• Wherever a statement is legal in C, you can use a sequence
of statements enclosed in braces

• Some folks prefer this:
if (delta < 0.0) {
printf("No real roots!\n");
return 0;

}

and it’s OK
• Some folks write:

if (delta < 0.0) {printf("No real roots!\n"); return 0;}

but this is not that good...

• In general, C disregards white space and line breaks,
but indentation makes program control flow explicit

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Let’s Refactor Our Program

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>
#include <stdio.h>

int main() {
double delta;
double rp;
double a, b, c;

printf("Solving ax^2+bx+c=0, enter a, b, c: ");
scanf("%lf ,%lf ,%lf", &a, &b, &c);

delta = b*b - 4.0*a*c;
if (delta < 0.0)
{
printf("No real roots!\n");
return 0;

}
delta = sqrt(delta)/(2.0*a);

rp = -b/(2.0*a);

printf("Real roots: %lf, %lf\n", rp+delta, rp-delta);

return 0;
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

And Now Make It More Complex!

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>
#include <stdio.h>
#include <stdbool.h>

int main() {
double delta;
double rp;
double a, b, c;
bool rroots = true;

printf("Solving ax^2+bx+c=0, enter a, b, c: ");
scanf("%lf ,%lf ,%lf", &a, &b, &c);

delta = b*b - 4.0*a*c;
if (delta < 0.0)
{
delta = -delta;
rroots = false;

}
delta = sqrt(delta)/(2.0*a);

rp = -b/(2.0*a);

if (rroots)
printf("Real roots: %lf, %lf\n", rp+delta, rp-delta);

else
printf("Complex roots: %lf+%lfI, %lf-%lfI\n", rp, delta, rp, delta);

return 0;
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

More Types and Choices

• bool represents logical values
• C99 only
• Actually an integer type in disguise
• And most types would work, if it’s non zero then it’s true

• else has to match with an if (), and the immediately
following statement is executed when if () logical condition
is false

• Allows for choosing between alternative paths
• Again, a compound statement could be used
• Again, use proper indentation

• By the way, variables can be initialized at declaration, as with
rroots

• By the way, expressions can be passed as function
arguments, as to printf():
their value will be computed and passed to the function

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

As Complex as Possible!

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>
#include <stdio.h>
#include <complex.h>

int main() {
double complex delta;
double complex z1, z2;
double a, b, c;

printf("Solving ax^2+bx+c=0, enter a, b, c: ");
scanf("%lf ,%lf ,%lf", &a, &b, &c);

delta = csqrt(b*b - 4.0*a*c);

z1 = (-b+delta)/(2.0*a);
z2 = (-b-delta)/(2.0*a);

printf("Complex roots: %lf%+lfI, %lf%+lfI\n",
creal(z1), cimag(z1), creal(z2), cimag(z2));

return 0;
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Complex Numbers and Other Stuff

• C99 introduced the complex type
• Include complex.h
• All math and manipulation functions are defined
• Use an expression to specify a constant, like 1.0-2.0*I
• In an older program that already defines its own complex

type, use _Complex instead

• printf() doesn’t know about complex numbers, yet
• Output real and imaginary parts separately

• By the way, the + in conversion specifiers forces output of the
sign, even if positive

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Making It More Robust

• What if user inputs zeroes for a, or a and b?
• Let’s prevent these cases, inserting right after input:

if (a == 0.0)
{
if (b == 0.0)

if (c == 0.0)
fprintf(stderr, "A trivial identity!\n");

else
fprintf(stderr, "Plainly absurd!\n");

else
fprintf(stderr, "Too simple problem!\n");

return -1;
}

• Can you see the program logic?

• Try it now!
• Did you check that normal cases still work? Good.

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Miscellaneous Remarks

• Nested ifs can be a problem
• else always marries innermost if
• Proper indentation is almost mandatory to sort it out
• In doubt, put it in a compound statement: helps legibility too

• What’s this fprintf(stderr,...) stuff?
• fprintf() allows to specify an output file
• stderr is a special file, mandatory for error messages to the

user terminal
• By the way, printf(...) is nothing more than
fprintf(stdout,...)

• And scanf(...) is nothing less than fscanf(stdin,...)

• Best practice: have your program always fail in a controlled
way

• Convention: return negative values on failure
• Use different values for different failures, so that a

Unix shell script can test $? or $status and take action

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

A C Program is Made of: I

• Comments
• Compiler disregards them, but humans do not
• Please, use them
• Do not abuse them, please

• Functions
• One, at least: main()
• Some of them come from the Standard Library
• The proper header file must be #included to use them

• Variables
• Named memory locations you can store values into
• Must be declared

• Variables declarations
• Give name to memory location you can store values into
• An initial value can be specified

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

A C Program is Made of: II

• Expressions
• Compute values to store in variables
• Compute values to pass to functions

• Statements
• Units of work
• Terminated by a ;

• Compound statements (also said blocks)
• Group a sequence of statements in a single entity
• Wrapped in braces { }
• Do not need a terminating ;

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Program Flow Control

• return statements
• Complete execution of the current function
• Allow to return back a result

• Conditional statements
• Allow conditional execution of code
• Allow choice between alternate code paths

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Best Practices

• Use proper indentation
• Compilers don’t care about
• Readers visualize flow control

• Do non-regression testing
• Whenever functionalities are added
• Whenever you rewrite a code in a different way

• Fail in a controlled way
• Giving feedback to humans
• Giving feedback to the parent process

Scientific and Technical Computing in C
Day 1

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Roma, 6-7 November 2014

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Outline

1 Introduction

2 C Basics

3 More C Basics
My First C Functions
Making it Correct
Compile and Link
Making it Robust
Wrapping it Up 2

4 Integer Types and Iterating

5 Arithmetic Types and Math

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

My First C Functions

#include <math.h>

#include "dsp.h"

//Heaviside function, useful in DSP
double theta(double x) {

if (x < 0.0)
return 0.0;

return 1.0;
}

//sinc function, as used in DSP
double sinc(double x) {

const double pi = 3.141592653589793238;

x = x*pi;
if (x == 0.0)
return 1.0;

return sin(x)/x;
}

//generalized rectangular function, useful in DSP
double rect(double t, double tau) {

t = fabs(t);
tau = 0.5*tau;
if (t = tau)

return 0.5;
return theta(tau - t);

}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Functions and Their Definition

• Like variables, functions have names and types
• Name must be an identifier
• Type is the type of the returned result

• They have an associated compound statement, the function
“body”

• Functions have formal parameters
• Declared in a comma separated list, in parentheses
• Each one is like a variable declaration
• In fact, they can be used like variables inside the function

• Parameters vs. arguments
• “Arguments” are the actual values passed to a function when

it is called
• Formal parameters are the names used in the function to

access these values

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Function Parameters

• What if two functions have parameters with identical names?
• No conflicts of sort, they are completely independent

• What if a parameter has the same name of a variable
elsewhere in the program?

• No conflicts of sort, they are completely independent

• Wait!
• What happens on assignment to a parameter?

• Does something change in the calling function?
• No!

• Arguments are passed by value in C
• Parameters are like local variables, storing arguments values
• Feel free to change their content as needed!

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Miscellaneous Remarks

• The const qualifier
• A const qualified variable can only be initialized
• Compilers will bark if you try to change its value

• Best practice: always give name to constants
• Particularly if unobvious, like 1.0/137.0
• It also helps to centralize updates (well, not for π)

• fabs() returns absolute value of a floating point number
• Remember to #include <math.h>

• return ends function execution returning a result

• else isn’t always needed
• In this case, because return will end function execution

anyway

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

On to Testing

• Let’s put the code in a file named dsp.c
• Best practice: always put different groups of related functions

in different files
• Helps to tame complexity
• You can always pass all source files to the compiler
• And you’ll learn to do better ...

• And let’s write a program to test all functions
• Best practice: always write a special purpose program to test

each subset of functions
• Best to include in the program automated testing of all

relevant cases
• Let’s do it by hand with I/O for now, to make it short

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Try It Now!

#include <math.h>

#include "dsp.h"

//Heaviside function, useful in DSP
double theta(double x) {

if (x < 0.0)
return 0.0;

return 1.0;
}

//sinc function, as used in DSP
double sinc(double x) {

const double pi = 3.141592653589793238;

x = x*pi;
if (x == 0.0)
return 1.0;

return sin(x)/x;
}

//generalized rectangular function, useful in DSP
double rect(double t, double tau) {

t = fabs(t);
tau = 0.5*tau;
if (t = tau)

return 0.5;
return theta(tau - t);

}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Testing DSP Functions

• we collect DSP functions in dsp.c source file
• we want to test these functions
• let’s write a test_dsp.c program:

#include <stdio.h>

int main() {

double t, tau;
printf("Test DSP functions, enter t, tau: ");
scanf("%lf, %lf", &t, &tau);

printf("theta(%lf) = %lf\n", t, theta(t));
printf("sinc(%lf) = %lf\n", t, sinc(t));
printf("rect(%lf,%lf) = %lf\n", t, tau, rect(t,tau));

return 0;
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Testing DSP Functions (II)

• let’s build our test program putting all together:

user@cineca$> gcc test_dsp.c dsp.c -o test_dsp -lm

• -lm links the math library
• -o gives the name test_dsp to the executable

• Now run the program:

user@cineca$> ./test_dsp
Test DSP functions, enter t, tau: 1., 1.

theta(1.000000) = 0.000000
sinc(1.000000) = 654810880.000000
rect(1.000000,1.000000) = 0.000000

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Testing DSP Functions (III)

•• results were incorrect since main function didn’t know
anything about our custom functions

• compiler assumed they all take and return integer types
• create and include a dsp.h header file in the main source

file
#include <stdio.h>
#include "dsp.h"

int main() {
...

• now your compiler knows the right types for DSP functions
arguments and return values:

user@cineca$> ./test_dsp
Test DSP functions, enter t, tau: 1., 1.
theta(1.000000) = 1.000000
sinc(1.000000) = 0.000000
rect(1.000000,1.000000) = 0.500000

• much better ...

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Header File: dsp.h

#ifndef DSP_H
#define DSP_H
double theta(double x);
double sinc(double x);
double rect(double t, double tau);
#endif

• Function prototypes are function declarations: a ; replaces
the function body

• Parameters names are optional, but can be informative

• If DSP_H is already defined, preprocessor will remove the
code before compiler is invoked

• Best practices:
• Always play the above trick: complex programs cause multiple

inclusions of header files
• Use all capitals identifiers for preprocessor symbols
• Include dsp.h in dsp.c too: compiler will complain if you

make them inconsistent

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

My First C Functions

#include <math.h>
#include "dsp.h"

//Heaviside function, useful in DSP
double theta(double x) {

if (x < 0.0)
return 0.0;

return 1.0;
}

//sinc function, as used in DSP
double sinc(double x) {

const double pi = 3.141592653589793238;

x = x*pi;
if (x == 0.0)
return 1.0;

return sin(x)/x;
}

//generalized rectangular function, useful in DSP
double rect(double t, double tau) {

t = fabs(t);
tau = 0.5*tau;
if (t = tau)

return 0.5;
return theta(tau - t);

}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Debugging rect()

• Everything fine with theta() and sinc(), but rect()
behaves unexpectedly

• If tau is zero, it always returns 1.0
• If tau is non zero, it always returns 0.5

• Let’s reread it carefully
• We wrote = where we actually meant ==

• Assignments are expressions, so tau value is returned
• A zero means false to if ()
• Anything different from zero means true to if ()

• Let’s fix it and test again!

• Best practice:
• Always enable compiler warnings and pay attention to them

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

My First C Functions Fixed!

• #include <math.h>
#include "dsp.h"

//Heaviside function, useful in DSP
double theta(double x) {

if (x < 0.0)
return 0.0;

return 1.0;
}

//sinc function, as used in DSP
double sinc(double x) {

const double pi = 3.141592653589793238;

x = x*pi;
if (x == 0.0)
return 1.0;

return sin(x)/x;
}

//generalized rectangular function, useful in DSP
double rect(double t, double tau) {

t = fabs(t);
tau = 0.5*tau;
if (t == tau)

return 0.5;
return theta(tau - t);

}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Compiler Errors and Warnings

• compiler stops on grammar and syntax violations
• goes on if you write code semantically absurd, but

syntactically correct!
• compiler can perform extra checks and report warnings

• very useful in early development phases
• pinpoint “suspect” code... sometimes pedantically
• read them carefully anyway

• -Wall option turns on all-warnings on gcc
• if only we used it earlier ...

user@cineca$> gcc -Wall -o test_dsp test_dsp.c dsp.c -lm
test_dsp.c: In function ’main’:
test_dsp.c:9: warning: implicit declaration of ’theta’
test_dsp.c:10: warning: implicit declaration of ’sinc’
test_dsp.c:11: warning: implicit declaration of ’rect’
dsp.c: In function ’rect’:
dsp.c:20: warning: suggest parentheses around assignment

used as truth value

• something is an error for a selected C standard
• use -std=c99 to force C99 standard

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Building a Program

Creating an executable from source files is a three step
process:
• pre-processing:

• each source file is read by the pre-processor
• substitute (#define) MACROs
• insert code per #include statements
• insert or delete code according #ifdef, #if ...

• compiling:
• each source file is translated into an object code file
• an object code file contains global variables and functions

defined in the code, as well as references to external ones
• linking:

• object files are combined into a single executable file
• every symbol should be resolved

• symbols can be defined in your object files
• or in other object code (Standard or external libraries)

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Compiling and Linking with GCC

• when you give the command:

user@cineca$> gcc test_dsp.c dsp.c -lm

• it’s like going through three steps:
• pre-processing: with -E option compiler stops after this stage
• compiling: with -c compiler produces an object file .o without

linking
• linking object files together with external libraries

user@cineca$> gcc dsp.o test_dsp.o -lm

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Compiling and Linking with GCC

• In order to resolve symbols defined in external libraries, you
have to specify:

• which libraries to use (-l option)
• in which directories they are (-L option)

• an example: let’s use the library
/home/user/mylibs/libfoo.a

user@cineca$> gcc file1.o file2.o -L/home/user/mylibs -lfoo

• we just use the name of the library for -l switch
• the DSP example:

user@cineca$> gcc dsp.o test_dsp.o -lm

• the sqrt() function is contained in the libm.a library
• the math library is part of the Standard C Library, thus resides

in a directory the compiler already knows about

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Managing Wrong Arguments

#include <math.h>

double rect(double t, double tau) {

t = fabs(t);
tau = 0.5*fabs(tau); // fix for tau<0
if (t == tau)

return 0.5;

return theta(tau - t);
}

• What if rect() is passed a negative argument for tau?
• Wrong results

• Taking the absolute value of tau is a possibility
• But not a good one, because:

• a negative rectangle width is nonsensical
• probably flags a mistake in the calling code
• and a zero rectangle width is also a problem

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Failing Predictably

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

double rect(double t, double tau) {

if (tau <= 0.0) {
fprintf(stderr, "rect() invalid argument, tau: %lf\n", tau);
exit(EXIT_FAILURE);

}

t = fabs(t);
tau = 0.5*tau;
if (t == tau)

return 0.5;

return theta(tau - t);
}

• A known approach...
• with a new twist!

• return doesn’t terminate programs unless in main()
• exit() from stdlib.h works everywhere
• -1 may be used instead of EXIT_FAILURE, but is less

portable

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

A More “Standard” Approach

#include <math.h>
#include <errno.h>

double rect(double t, double tau) {

if (tau <= 0.0) {
errno = EDOM;
return 0.0;

}

t = fabs(t);
tau = 0.5*tau;
if (t == tau)

return 0.5;

return theta(tau - t);
}

• And a prudent user would check it, and use perror() from
stdio.h, as in:
errno = 0;
a = rect(b, c);
if (errno)
{

perror("rect():");
//recovery action or controlled failure

}

• But there is more...

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Total Robustness

• Your platform could support IEEE floating point standard
• Most common ones do, at least in a good part

• This means more bad cases:
• one of the arguments is a NAN
• both arguments are infinite (they are not ordered!)

• Best strategy: return a NAN and set errno in these bad
cases

• And do it also for non positive values of tau
• But then the floating point environment configuration should

be checked, proper floating point exceptions set...

• Being absolutely robust is difficult
• Too advanced stuff to cover in this course
• But not an excuse, some robustness is better than none
• It’s a process to do in steps
• Always comment in your code bad cases you don’t

address yet!

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

We Did Progress!

• Functions and their parameters
• Arguments are passed to functions by value
• A program can be subdivided in more source files
• Header files help to do it
• Preprocessor helps to write good header files
• Function prototypes
• const variables
• To if (), zero is false and non zero is true
• Mistyping = for == is very dangerous
• exit() terminates a program
• errno is a standard way to report issues
• And perror() translates each issue for humans

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Best Practices

• Name constants, do not use magic numbers in the code
• Group different sets of functionalities in different files

• Helps to separate concerns and simplifies work
• Plan for header files to be included more than once

• It happens, sooner or later and it’s easy to take care of

• Use all capitals names to easily spot preprocessor symbols
• Test every function you write

• Writing specialized programs to do it

• Use compilers and other tools to catch mistakes
• Anticipate causes of problems

• Find a rational way to react
• Fail predictably and in a standard way
• The road to robustness is a long walk to do in steps
• Comment issues still to be addressed in your code

Scientific and Technical Computing in C
Day 1

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Roma, 6-7 November 2014

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating
Play it Again, Please
Testing and Fixing it
Hitting Limits
Wider Integer Types
Polishing it Up
Wrapping it Up 3

5 Arithmetic Types and Math

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Greatest Common Divisor

• Euclid’s Algorithm
1 Take two integers a and b
2 Let r ← a mod b
3 Let a← b
4 Let b ← r
5 If b is not zero, go back to step 2
6 a is the GCD

• Let’s implement it and learn some more C

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

GCD & LCM

#include "numbertheory.h"

// Greatest Common Divisor
int gcd(int a, int b) {

do {
int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

// Least Common Multiple
int lcm(int a, int b) {

return a*b/gcd(a,b);
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

The Integer Type

• int means that a value is an integer
• Only integer values, positive, negative or zero
• On most platforms, int means a 32 bits value, ranging from
−231 to 231 − 1

• Want to know the actual size?
• sizeof(int) will return the size in bytes of the internal

binary representation of type int

• Want to know more? #include <limits.h>
• INT_MAX is the greatest positive value an int can assume
• INT_MIN is the most negative value an int can assume
• These are preprocessor macros expanding to literal constants

(more on this later...)
• Want to convert to/from textual decimal representation?

• Use conversion specifier %d in printf() format string
• Use conversion specifier %d in scanf() format string

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Iterating with do ... while ()

• do
statement
while (logical-condition)

1 Executes statement
2 Evaluates logical-condition
3 If logical-condition is true (i.e. not zero), goes back to 1
4 If logical-condition is false, proceeds to execute the following

code

• while (b) will also do, but while (b != 0) is more
readable and costs no more CPU work

• What’s this variable declaration here?
• t can only be used inside the block it is declared into
• I.e. its scope is limited to the block it is declared into
• It’s not special to do...while (),it works in any

compound statement

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Iterating with while ()

• while (logical-condition)
statement

1 Evaluates logical-condition
2 If logical-condition is false (i.e. zero), goes to 5
3 Executes statement
4 Goes back to 1
5 Skips statement and proceeds to execute the following code

• while () is very similar to do ... while (), but the
latter always performs at least one iteration

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Time for Testing

• Put the code in file numbertheory.c

• Write a suitable numbertheory.h

• Write a program to test both gcd() and lcm() on a pair of
integer numbers

• Remember using %d for I/O

• Test it:
• with pairs of small positive integers
• with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0

• In some cases, we get wrong results or runtime errors
• Euclid’s algorithm is only defined for positive integers

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

GCD & LCM: Try It Now!

#include "numbertheory.h"

// Greatest Common Divisor
int gcd(int a, int b) {

do {
int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

// Least Common Multiple
int lcm(int a, int b) {

return a*b/gcd(a,b);
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Let’s Fix It...

• Best way: generalize algorithm to the whole integer set
• gcd(a,b) is non negative, even if a or b is less than zero

• Taking the absolute value of a and b using abs() will do
• gcd(a,0) is |a|

• Conditional statements will do
• gcd(0,0) is 0

• Already covered by the previous item, but let’s pay attention to
lcm()

• By the way, && is the logical AND of two logical conditions

• Try and test it:
• with pairs of small positive integers
• with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
• and with the pair: 1000000, 1000000

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

GCD & LCM: Dealing with 0 and
Negatives

#include <stdlib.h>
#include "numbertheory.h"

// Greatest Common Divisor
int gcd(int a, int b) {

a = abs(a);
b = abs(b);

if (a == 0)
return b;

if (b == 0)
return a;

do {
int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

// Least Common Multiple
int lcm(int a, int b) {

if (a == 0 && b == 0)
return 0;

return a*b/gcd(a,b);
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Beware of Type Ranges

• a*b/gcd(a,b) same as (a*b)/gcd(a,b)

• What if the result of a calculation cannot be represented in
the given type?

• Technically, you get an arithmetic overflow
• C is quite liberal: the result is implementation defined
• Best practice: be very careful of intermediate results

• Easy fix: gcd(a,b) is an exact divisor of b

• Try and test it:
• with pairs of small positive integers
• on the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
• with the pair: 1000000, 1000000
• and let’s test also with: 1000000, 1000001

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

GCD & LCM: Avoiding an Overflow

#include <stdlib.h>
#include "numbertheory.h"

// Greatest Common Divisor
int gcd(int a, int b) {

a = abs(a);
b = abs(b);

if (a == 0)
return b;

if (b == 0)
return a;

do {
int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

// Least Common Multiple
int lcm(int a, int b) {

if (a == 0 && b == 0)
return 0;

return a*(b/gcd(a,b));
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Wider Integer Types

• Sometimes an integer type with a wider range of values is
needed

• long int (commonly shortened to long)
• LONG_MAX and LONG_MIN from limits.h
• %ld conversion specifier in printf() and scanf()
• But C Standard only says: can’t be narrower than an int
• In practice, it can be 32 or 64 bits wide, depending on platform

and compiler
• As usual, use sizeof(long int) to check

• C99 long long int (shortened to long long)
• LLONG_MAX and LLONG_MIN from limits.h
• %lld conversion specifier in printf() and scanf()
• C99 Standard requires: must be at least 64 bits wide!
• As usual, use sizeof(long long) to check if you got more

than that

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

GCD & LCM: Wider Integers

#include <stdlib.h>
#include "numbertheory.h"

// Greatest Common Divisor
long long int gcd(long long int a, long long int b) {

a = llabs(a);
b = llabs(b);

if (a == 0)
return b;

if (b == 0)
return a;

do {
long long int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

// Least Common Multiple
long long int lcm(long long int a, long long int b) {

if (a == 0 || b == 0)
return 0;

return a*(b/gcd(a,b));
}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Call the Right Function!

• We had to call different functions for absolute value
• labs() for long ints
• llabs() for long long ints

• What if you call, say, labs() for int or long long values?
• Automatic conversion between different types happens!
• But a narrower type cannot represent all possible values of a

wider one
• No problem when converting to a wider type
• At risk of overflow (i.e. implementation defined surprise) when

converting to a narrower one
• Best practice: enable compiler warnings or use tools like
lint to catch mistakes

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Unsigned Integer Types

• unsigned int (often shortened to unsigned)
• Same width as an int
• No negative values, only positive integers, but nearly twice the

ones in an int
• UINT_MAX (from limits.h) is its greatest value
• Use conversion specifier %u in printf() and scanf()

• And there are more unsigned types...
• Like unsigned long and unsigned long long
• ULONG_MAX and ULLONG_MAX from limits.h
• %lu and %llu in printf() and scanf()

• No arithmetic overflows!
• C Standard requires arithmetic in any unsigned type to be

exact modulo 2type width in bits

• Beware of signed to/from unsigned conversions!
• Negative values cannot be represented in an unsigned
• And vice versa for the biggest half of unsigned values
• You are in for implementation defined surprises!

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

A Couple of Issues

• Best practice: avoid useless work
• a*(b/gcd(a,b)) causes error if both a and b are zero
• but it’s useless anyway if a or b is zero, let’s use || (logical

OR) to avoid it

• Best practice: be loyal to C approach
• You have now a gcd() function that works on the widest

available integer type
• And you could use it safely for narrower types
• But at the cost of getting compiler warnings, even if you do it

correctly
• And this is not the C way (think of abs(), labs(), llabs())

• Let’s try an easy solution

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

GCD Flavors

#include <stdlib.h>
#include "numbertheory.h"

// Greatest Common Divisor
long long int llgcd(long long int a, long long int b) {

a = llabs(a);
b = llabs(b);

if (a == 0)
return b;

if (b == 0)
return a;

do {
long long int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

long int lgcd(long int a, long int b) {
return (long int)llgcd((long long int)a, (long long int)b);

}

int gcd(int a, int b) {
return (int)llgcd((long long int)a, (long long int)b);

}

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Getting in Control of Type
Conversions

• (type)expression
• Is an explicit cast
• Forces conversion from expression type to specified one
• And tells the compiler you know what you are doing

• The solution is not perfect
• If you are working with a lot of basic ints, you are spending a

lot of work in type conversions and wider than necessary
arithmetic

• And there are more integer types we didn’t mention yet...
• Writing specialized copies is not an option

• If you want to change something, you have to make the same
change in different places

• Best practice: avoid replicating similar code

• The preprocessor can generate specialized function
copies for you

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

GCD: 3 for the Price of 1

#include <stdlib.h>
#include "numbertheory.h"

#define GGCD(TYPE,PREFIX) \
TYPE PREFIX ## gcd(TYPE a, TYPE b) { \

a = PREFIX ## abs(a); \
b = PREFIX ## abs(b); \
if (a == 0) \
return b; \

if (b == 0) \
return a; \

do {\
TYPE t = a % b; \
a = b; \
b = t; \

} while (b); \
return a; \

}

#define GLCM(TYPE,PREFIX) \
TYPE PREFIX ## lcm(TYPE a, TYPE b) { \

if (a == 0 || b == 0) \
return 0; \

return a*(b/PREFIX ## gcd(a,b)); \
}

GGCD(int,)
GGCD(long int, l)
GGCD(long long int, ll)

GLCM(int,)
GLCM(long int, l)
GLCM(long long int, ll)

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Generating Code With Macros

• Preprocessor macros
• Their content is substituted wherever the macros appear in

the code
• Every occurrence of each parameter is replaced by the text

given as argument
• A macro must be a “one-liner”

• A \ at end of line is needed to continue on the next line
• The ## operator concatenates two neighbouring tokens

• As if they had been typed with no space in between

• Six functions are defined by macro expansion
int gcd(int a, int b)
long int lgcd(long int a, long int b)
long long int llgcd(long long int a, long long int b)
int lcm(int a, int b)
long int llcm(long int a, long int b)
long long int lllcm(long long int a, long long int b)

• Beware: debugging macros can be difficult

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

C11 Type-Generic Macros

• Still, unlike in higher level languages, you have to remember
the right function name to invoke according to argument
types

• C11 has a better way:
#define gcd(A, B) _Generic((A), \

int: gcd \
long int: lgcd \
long long int: llgcd \
) (A, B)

#define lcm(A, B) _Generic((A), \
int: lcm \
long int: llcm \
long long int: lllcm \
) (A, B)

• Now you can use gcd() and lcm() for all argument types
• Coming to a compiler near you...

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

More Types and Flow Control

• There are many integer types
• With implementation dependent ranges
• Range limits are defined in limits.h
• sizeof(type) can be used to know their size in bytes

• Automatic type conversions take place
• And can be controlled with explicit casts

• Different library functions for different types
• Ditto for printf() and scanf() conversion specifiers

• Behavior on integer overflow is implementation defined
• Some control is possible using parentheses

• Variables can be declared inside a block
• Limiting access to the block scope

• Sequence of statements can be iterated according to a
logical condition

• Logical conditions can be combined using || (OR) and
&& (AND) operators

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Best Practices

• Do not rely on type sizes, they are implementation dependent
• Think of intermediate results in expressions: they can

overflow or underflow
• Unintended implicit conversions can take you by surprise

• Put compiler warnings and specialized tools to good use

• Avoid unnecessary computations
• Avoid code replication
• Be consistent with C approach

• Even if it costs more work
• Even if it costs learning more C
• Once again, you can do it in steps
• You’ll appreciate it in the future

Scientific and Technical Computing in C
Day 1

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Roma, 6-7 November 2014

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math
Integer Types
Floating Types
Expressions
Arithmetic Conversions

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Data

• Computing == manipulating data and calculating results
• Data are manipulated using internal, binary formats
• Data are kept in memory locations and CPU registers

• C is quite liberal on internal data formats
• Most CPU are similar but all have peculiarities
• C only mandates what is de facto standard
• Some details depend on the specific executing (a.k.a. target)

hardware architecture and software implementation
• C Standard Library provides facilities to translate between

internal formats and human readable ones
• C allows programmers to:

• think in terms of data types and named containers
• disregard details on actual memory locations and data

movements

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

C is a Strongly Typed Language

• Each literal constant has a type
• Dictates internal format of the data value

• Each variable has a type
• Dictates content internal format and amount of memory
• Type must be specified in a declaration before use

• Each expression has a type
• And subexpressions have too
• Depends on operators and their arguments

• Each function has a type
• That is the type of the returned value
• Specified in function declaration or definition
• If the compiler doesn’t know the type, it assumes int

• Function parameters have types
• I.e. type of arguments to be passed in function calls
• Specified in function declaration or definition
• If the compiler doesn’t know the types, it will accept any

argument, applying some type conversion rules

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Integer Types (as on Most CPUs)

Type Sign Conversion Width (bits) Size (bytes)
Minimum Usual Minimum Usual

signed char +/- %hhd1
8 8 1 1

unsigned char + %hhu1

short +/- %hd
16 16 2 2short int

unsigned short + %hu
unsigned short int
int +/- %d

16 32 2 4unsigned + %u
unsigned int
long +/- %ld

32 32 or 64 4 4 or 8long int
unsigned long + %lu
unsigned long int

long long2
+/- %lld

64 64 8 8long long int2

unsigned long long2
+ %llu

unsigned long long int2

Constraint: short width ≤ int width ≤ long width ≤ long long width

1. C99, in C89 use conversion to/from int types
2. C99

• New platform/compiler? Always check with sizeof(type)

• Values of char and short types just use less memory,
they are promoted to int types in calculations

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

#include <limits.h>

Name Meaning Value
CHAR_BIT width of any char type ≥ 8
SCHAR_MIN minimum value of signed char ≤ −128
SCHAR_MAX maximum value of signed char ≥ 127
UCHAR_MAX maximum value of unsigned char type ≥ 255
SHRT_MIN minimum value of short ≤ −32768
SHRT_MAX maximum value of short ≥ 32767
USHRT_MAX maximum value of unsigned short ≥ 65535
INT_MIN minimum value of int ≤ −32768
INT_MAX maximum value of int ≥ 32767
UINT_MAX maximum value of unsigned ≥ 65535
LONG_MIN minimum value of long ≤ −2147483648
LONG_MAX maximum value of long ≥ 2147483647
ULONG_MAX maximum value of unsigned long ≥ 4294967295
LLONG_MIN minimum value of long long ≤ −9223372036854775808
LLONG_MAX maximum value of long long ≥ 9223372036854775807
ULLONG_MAX maximum value of unsigned long long ≥ 18446744073709551615

• Use them to make code more portable across platforms
• New platform/compiler? Always check values

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Integer Literal Constants

• Constants have types too
• Compilers must follow precise rules to assign types to integer

constants
• But they are complex
• And differ among standards

• Rule of thumb:
• write the number as is, if it is in int range
• otherwise, use suffixes U, L, UL, LL, ULL
• lowercase will do as well, but l is easy to misread as 1

• Remember: do not write spokes = bycicles*2*36;
• #define SPOKES_PER_WHEEL 36
• or declare:
const int SpokesPerWheel = 36;

• and use them, code will be more readable, and you’ll be
ready for easy changes

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Integer Types Math

• #include <stdlib.h> to use:

Function Returns
abs() absolute value of an int
labs() absolute value of a long
llabs() absolute value of a long long

• Use like: a = abs(b+i) + c;

• For values of type short or char, use abs()

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Bitwise Arithmetic

• Integer types are encoded in binary format
• Each one is a sequence of bits, each having state 0 or 1
• Bitwise arithmetic manipulates state of each bit

• Each bit of the result of unary operator ~ is in the opposite
state of the corresponding bit of the operand

• Each bit of the result of binary operators |, &, and ^ is the
OR, AND, and XOR respectively of the corresponding bits in
the operands

• Precedence
• a&b | c^d&e same as (a&b) | (c^(d&e))
• ~a&b same as (~a)&b

• Associativity is from left to right
• a | b | c same as (a | b) | c

• As usual, precedence and associativity can be overridden
using explicit (and), and |=, &=, and ^= are available

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Enumerated Types

enum boundary {
free_slip,
no_slip,
inflow,
outflow
};

enum boundary leftside, rightside;

enum liquid {water, mercury} fluid; //may confuse readers

leftside = free_slip;

• A set of integer values represented by identifiers
• Under the hood, it’s an int
• free_slip is an enumeration constant with value 0
• no_slip is an enumeration constant with value 1
• inflow is an enumeration constant with value 2
• ...

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Choosing Values for Enumeration
Constants

enum spokes {SpokesPerWheel = 36};

enum element {
hydrogen = 1,
helium,
carbon = 6,
oxygen = 8,
fluorine
};

• Enumeration constants can be given a specified value
• When the enumeration constant value is not specified:

• if it’s the first in the declaration, gets the value 0
• if it’s not, gets (value of the previous one+1)
• thus helium above gets 2, and fluorine gets 9
• negative values can be used too

• A convenient way to give names to related integer
constants

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Floating Types (as on Most CPUs)

Type Conversion Width (bits) Size (bytes)
Usual Usual

float %f, %E, %G2 32 4
double %lf, %lE, %lG2 64 8
long double %Lf, %LE, %LG2 80 or 128 10 or 16
float _Complex1 none NA 8
double _Complex1 none NA 16
long double _Complex1 none NA 20 or 32

Constraints:
all float values must be representable in double
all double values must be representable in long double

1. C99
2. %f forces decimal notation, %E forces exponential decimal notation,
%G chooses the one most suitable to the value

• New platform/compiler? Always check with sizeof(type)

• In practice, always in IEEE Standard binary format, but not a C Standard
requirement

• #include <complex.h> and use float complex, double complex, and
long double complex, if your program does not already uses the complex
identifier

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

#include <float.h>

Name Meaning Value
FLT_EPSILON min{x|1.0 + x > 1.0} in float type ≤ 10−5

DBL_EPSILON min{x|1.0 + x > 1.0} in double type ≤ 10−9

LDBL_EPSILON min{x|1.0 + x > 1.0} in long double type ≤ 10−9

FLT_DIG decimal digits of precision in float type ≥ 6
DBL_DIG decimal digits of precision in double type ≥ 10
LDBL_DIG decimal digits of precision in long double type ≥ 10
FLT_MIN minimum normalized positive number in float range ≤ 10−37

DBL_MIN minimum normalized positive number in long range ≤ 10−37

LDBL_MIN minimum normalized positive number in long double range ≤ 10−37

FLT_MAX maximum finite number in float range ≥ 1037

DBL_MAX maximum finite number in long range ≥ 1037

LDBL_MAX maximum finite number in long double range ≥ 1037

FLT_MIN_10_EXP minimum x such that 10x is in float range and normalized ≤ −37
DBL_MIN_10_EXP minimum x such that 10x is in double range and normalized ≤ −37
LDBL_MIN_10_EXP minimum x such that 10x is in long double range and normalized ≤ −37
FLT_MAX_10_EXP maximum x such that 10x is in float range and finite ≥ 37
DBL_MAX_10_EXP maximum x such that 10x is in double range and finite ≥ 37
LDBL_MAX_10_EXP maximum x such that 10x is in long double range and finite ≥ 37

• Use them to make code more portable across platforms
• New platform/compiler? Always check values
• “Normalized”? Yes, IEEE Standard allows for even smaller

values, with loss of precision, and calls them “denormalized”
• “Finite”? Yes, IEEE Standard allows for infinite values

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Floating Literal Constants

• Need something to distinguish them from integers
• Decimal notation: 1.0, -17., .125, 0.22
• Exponential decimal notation: 2E19 (2× 1019), -123.4E9

(−1.234× 1011), .72E-6 (7.2× 10−7)
• They have type double by default

• Use suffixes F to make them float or L to make them long
double

• Lowercase will do as well, but l is easy to misread as 1

• Never write charge = protons*1.602176487E-19;
• #define UNIT_CHARGE 1.602176487E-19
• or declare:
const double UnitCharge = 1.602176487E-19;

• and use them in the code to make it readable
• it will come handier when more precise measurements will

be available

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

double Math

Function/Macro Returns
HUGE_VAL1 largest positive finite value
INFINITY1 positive infinite value
NAN1 IEEE quiet NaN (if supported)
double fabs(double x), |x|,
double copysign(double x, double y)1 if y 6= 0 returns |x|y/|y| else returns |x|
double floor(double x), double ceil(double x), bxc, dxe,
double trunc(double x)1, if x > 0 returns bxc else returns dxe,
double round(double x)1 nearest2 integer to x
double fmod(double x, double y), x mod y (same sign as x)
double fdim(double x, double y)1 if x > y returns x− y else returns 0
double nextafter(double x, double y)1 next representable value after x toward y

double fmin(double x, double y)1 min{x, y}
double fmax(double x, double y)1 max{x, y}
1. C99
2. If x is halfway, returns the farthest from 0

• #include <math.h>
• Before C99, there were no fmin() or fmax()

• Preprocessor macros have been widely used to this aim
• Use the new functions, instead

• More functions are available to manipulate values
• Mostly in the spirit of IEEE Floating Point Standard
• We encourage you to learn more about

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

double Higher Math

Functions Return
double sqrt(double x),

√
x,

double cbrt(double x)1, 3√x,
double pow(double x, double y), xy,
double hypot(double x, double y)1

√
x2 + y2

double sin(double x), double cos(double x),
Trigonometric functionsdouble tan(double x), double asin(double x),

double acos(double x), double atan(double x)
double atan2(double x, double y) Arc tangent in (−π, π]

double exp(double x), ex,
double log(double x), double log10(double x), loge x, log10 x,
double expm1(double x)1, double log1p(double x)1 ex − 1, log(x + 1)
double sinh(double x), double cosh(double x),

Hyperbolic functionsdouble tanh(double x), double asinh(double x)1,
double acosh(double x)1, double atanh(double x)1

double erf(double x)1 error function: 2√
π

∫ x
0 e−t2 dt

double erfc(double x)1 1− 2√
π

∫ x
0 e−t2 dt

double tgamma(double x)1, double lgamma(double x)1 Γ(x), log(|Γ(x)|)
1. C99

• Again, #include <math.h>

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

double complex Math
C99 & C11

Function/Macro Returns
double complex CMPLX(double x, double y)1 x + iy,
double complex cabs(double complex z), |z|,

double complex carg(double complex z), Argument of z
(a.k.a. phase angle),

double complex creal(double complex z), Real part of z,
double complex cimag(double complex z), Imaginary part of z,
double complex conj(double complex z) Complex conjugate of z
double complex csqrt(double complex z),

√
z,

double complex cpow(double complex z, double complex w) zw

double complex cexp(double complex z), ez,
double complex clog(double complex z) loge z
1. C11

• To use them, #include <complex.h>
• You’ll also get:
csin(), ccos(), ctan(),
casin(), cacos(), catan(),
csinh(), ccosh(), ctanh(),
casinh(), cacosh(), catanh()

• And I for the imaginary unit

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

float and long double Math

• Before C99, all functions were only for doubles
• And automatic conversion of other types was applied

• But from 1999 C is really serious about floating point math
• All functions exist also for float and long double
• Same names, suffixed by f or l
• Like acosf() for arccosine of a float
• Or cacosl() for long double complex
• Ditto for macros, like HUGE_VALF or CMPLXL()

• If you find this annoying (it is!):
• #include <tgmath.h>
• and use everywhere, for all real and complex types, function

names for double type
• These are clever type generic processor macros, expanding

to the function appropriate to the argument

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Expressions

• A fundamental concept in C
• A very rich set of operators
• Almost everything is an expression
• Even assignment to a variable

• C expressions are complicated
• Expressions can have side effects
• Not all subexpressions are necessarily computed
• Except for associativity and precedence rules, order of

evaluation of subexpressions is up to the compiler
• Values of different type can be combined, and a result

produced according to a rich set of rules
• Sometimes with surprising consequences

• We’ll give a simplified introduction
• Subtle rules are easily forgotten
• Relying on them makes the code difficult to read
• When you’ll find a puzzling piece of code, you can always

look for a good manual or book

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Arithmetic Expressions

• Binary operators +, -, * (multiplication) and / have the usual
meaning and behavior

• Unary operator - evaluates to the opposite of its operand
• Unary operator + evaluates to its operand
• Precedence

• -a*b + c/d same as ((-a)*b) + (c/d)
• -a + b same as (-a) + b

• Associativity of binary ones is from left to right
• a + b + c same as (a + b) + c
• a*b/c*d same as ((a*b)/c)*d

• Explicit (and) override precedence and associativity
• Only for integer types, % is the modulo operator (27%4

evaluates to 3), same precedence as /

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Hitting Limits

• All types are limited in range
• What about:

• INT_MAX + 1? (too big)
• INT_MIN*3? (too negative)

• Technically speaking, this is an arithmetic overflow
• And division by zero is a problem too
• For signed integer types, the Standard says:

• behavior and results are unpredictable
• i.e. up to the implementation

• For other types, the Standard says:
• arithmetic on unsigned integers must be exact

modulo 2type width, no overflow
• with floating types, is up to the implementation

(you can get DBL_MAX, or a NaN, or an infinity)
• Best practice: NEVER rely on behaviors observed with a

specific architecture and/or compiler

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Assignment Operator

• Binary operator =
• assigns the value of the right operand to the left operand
• and returns the value of the right operand
• thus a = b*2 is an expression with value b*2 and the side

effect of changing variable a
• a = b*2; is an assignment statement

• The left operand must be something that can store a value
• In C jargon, an lvalue
• a = 20 is OK, if a is a variable
• 20 = a is not

• Precedence is lowest (except for , operator) and associativity
is from right to left

• a = b*2 + c same as a = (b*2 + c)
• z = a = b*2 + c same as z = (a = (b*2 + c))

• You’ll read the latter form, particularly in while ()
statements, but avoid writing it

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

More Assignment Operators

• Most binary operators offer useful shortcut forms:

Expression Same as
a += b a = a + b
a -= b a = a - b
a *= b a = a*b
a /= b a = a/b
a %= b a = a%b

• In heroic times, used to map some CPUs optimized
instructions

• With nowadays optimizing compilers, only good to spare
keystrokes

• You’ll find them often, particularly in for(;;) statements

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

More Side Effects

• Pre-increment/decrement unary operators: ++ and --
• ++i same as (i = i + 1)
• --i same as (i = i - 1)

• Post-increment/decrement unary operators: ++ and --
• i++ increments i content, but returns the original value
• i-- decrements i content, but returns the original value

• Operand must be an lvalue
• Precedence is highest

• Quite handy in while () and for (;;) statements
• Easily becomes a nightmare inside expressions

• Particularly when you change the code

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Order of Subexpressions
Evaluation

• i is an int type variable whose value is 5
j = 4*i++ - 3*++i;
foo(++i, ++i);

• Which value is assigned to j?
• Could be

-1

• Or could as well be

6

• Which values are passed to foo()?
• Could be foo(

8

,

9

)
• Or could as well be foo(

9

,

8

)

• Order of evaluation of subexpressions is implementation
defined!

• Ditto for order of evaluation of function arguments!

• NEVER! NEVER pre/post-in/de-crement the same
variable twice in a single expression, or function call!

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Logical Expressions

• Comparison operators
• == (equal), != (not equal), >, <, >=, <=
• Compare operand values
• Return int type 0 if evaluation is false, 1 if true
• Precedence lower than arithmetic operators, higher than

bitwise and logical operators
• In doubt, add parentheses, but be sober

• Logical operators
• ! is unary NOT, && is binary AND, || is binary OR
• Zero operand are considered false, non zero ones true
• Return int type 0 if comparison is false, 1 if true
• Precedence of ! just lower than ++ and --
• &&, ||: higher than = and friends
• !a&&b || a&&!b means ((!a)&&b) || (a&&(!b))
• Again: in doubt, add parentheses, but be sober

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

More Logic from math.h

• Some macros to tame floating point complexity
• isfinite()

• True if argument value is finite
• isinf()

• True if argument value is an infinity
• isnan()

• True if argument value is a NaN
• And more, if you are really serious about floating point

calculations
• Mostly in the spirit of IEEE Floating Point Standard
• Learn more about it, before using them

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Being Completely Logical

• C99 defines integer type _Bool
• Only guaranteed to store 0 or 1
• Perfect for logical (a.k.a. boolean) expressions
• Use it for “flag” variables, and to avoid surprises
• Better yet, #include <stdbool.h>,

and use type bool, and values true and false

• Watch your step!
• Simply mistype & for && or vice versa
• Simply mistype || for |
• You’ll discover, possibly after hours of debugging, that (bitwise

arithmetic) != (logical arithmetic)

• C99 offers a fix to this unfortunate choice
• #include <iso646.h>
• And use not, or, and and in place of !, || and &&

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Even More Side Effects

• Right operand of || and && is evaluated after left one
• And is not evaluated at all if:

• left one is found true for an ||
• left one is found false for an &&

• Beware of “short circuit” evaluation...
• ... if the right operand is an expression with side effects!
• A life saver in preprocessor macros and a few more cases
• But makes your code less readable
• Use nested if () whenever you can

• logical-expr ? expr1 : expr2
• expr1 is only evaluated if logical-expr is true
• expr2 is only evaluated if logical-expr is false
• Again, is a life saver in preprocessor macros
• But in normal use an if () is more readable

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Mixing Types in Expressions

• C allows for expressions mixing any arithmetic types
• A result will always be produced
• Whether this is the result you expect, it’s another story

• Broadly speaking, the base concept is clear
• For each binary operator in the expression, in order of

precedence and associativity:
• if both operands have the same type, fine
• otherwise, operand with narrower range is converted to type

of other operand

• OK when mixing floating types
• The wider range includes the narrower one

• OK when mixing signed integer types
• The wider range includes the narrower one

• OK even when mixing unsigned integer types
• The wider range includes the narrower one

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Type Conversion Traps

• For the assignment operator:
• if both operands have the same type, fine
• otherwise, right operand is converted to left operand type
• if the value cannot be represented in the destination type, it’s

an overflow, and you are on your own

• We said: in order of precedence and associativity
• if a is a type long long int variable, and b is a 32 bits

wide int type variable and contains value INT_MAX, in:
a = b*2
multiplication will overflow

• and in:
a = b*2 + 1LL
multiplication will overflow too

• while:
a = b*2LL + 1
is OK

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

More Type Conversion Traps

• Think of mixing floating and integer types
• Floating types have wider range
• But not necessarily more precision
• A 32 bits float has fewer digits of precision than a 32 bits
int

• And a 64 bits double has fewer digits of precision than a 64
bits int

• The result could be smaller than expected

• Think of mixing signed and unsigned integer types!
• Negative values cannot be represented in unsigned types
• Half of the values representable in an unsigned type, cannot

be represented in a signed type of the same width
• So, you are in for implementation defined surprises!
• And Standard rules are quite complicated
• We spare you the gory details, simply don’t do it!

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Cast Your Subexpressions

• (type)
• Unsurprisingly, it’s an operator
• Precedence just higher than multiplication, right-to-left

associative
• Use it like (unsigned long)(sig + ned)

• Casting let you override standard conversion rules
• In previous example, you could use it like this:
a = (long long int)b*2 + 1

• Type casting is not magic
• Just instructs compiler to apply the conversion you need
• Only converts values, not type of variables you assign to

• Do not abuse it
• Makes codes unreadable
• Could be evidence of design mistakes
• Or that your C needs a refresh

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

Arithmetic
Integers
Floating
Expressions
Mixing Types

Rights & Credits

These slides are c©CINECA 2014 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written
permission from the copyright owner. For more information
see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:
• Michela Botti
• Federico Massaioli
• Luca Ferraro
• Stefano Tagliaventi

	Introduction
	C Basics
	My First C Program
	Making Choices
	More Types and Choices
	Wrapping it Up 1

	More C Basics
	My First C Functions
	Making it Correct
	Compile and Link
	Making it Robust
	Wrapping it Up 2

	Integer Types and Iterating
	Play it Again, Please
	Testing and Fixing it
	Hitting Limits
	Wider Integer Types
	Polishing it Up
	Wrapping it Up 3

	Arithmetic Types and Math
	Integer Types
	Floating Types
	Expressions
	Arithmetic Conversions

