
Scientific and Technical Computing in C
Day 1

Luca Ferraro Stefano Tagliaventi
CINECA - SCAI Department



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math

6 Aggregate Types

7 Pointer Types

8 Characters and Strings

9 Input and Output

10 Managing Memory

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

C History

• Born in the 70s as an operating system programming
language (traditional C)

• Widely adopted for application development because of its
efficiency and availability on most systems

• First ANSI standard in 1989 (C89), adopted by ISO in 1990
• Second ISO standard in 1995 (C95), just a few extensions

and fixes
• Third ISO standard in 1999 (C99), adding many new features

(usability, more numeric types and math, more characters,
inlining and restrict)

• Current standard is C11 (more usability, threads, Unicode
characters, more robustness)



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

C General Philosophy

• A simple and efficient language
• Only 44 reserved keywords
• Basic data types and operators mapping "naturally" to the

CPU
• Facilities to build data types from the basic ones
• Flexible flow control structures mapping the most common

use cases
• Translated by a compiler to machine language

• A rich Standard Library
• Math functions, memory management, string manipulation,

I/O, ... are not part of the language
• Implemented separately in a library of subprograms
• Linked into the executable after compilation

• A “preprocessor” to manage the code
• Conditional compilation and automated code changes
• Manipulates the code before compilation



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Technical and Scientific Computing

• Why C is bad
• Number crunching has been traditionally done in Fortran
• Fortran is older and more “rigid” than C, compilers optimize

better
• Nowadays, performance differences are often a matter of

compiler flags and good programming techniques
• Why C is good

• From the beginning, it had more powerful data types
• Non-numeric computing in Fortran is a real pain
• There are more C than Fortran programmers
• GUI and DB accesses are best programmed in C
• Mixing C and Fortran uses (used...) to be troublesome
• C99 seriously addressed numerical computing needs
• ... and solved aliasing rules for memory pointers

• Bottom line:
• Significant scientific libraries written in C
• Significant scientific applications written in C
• C compilers got much better at optimizing



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Our Aims

• Teach you the fundamentals of the C language
• For both reading and writing programs
• Showing common idioms
• Illustrating best practices
• Blaming bad ones
• Making you aware of the typical traps
• Focusing on scientific and technical use cases
• You’ll happen to encounter something we didn’t cover, but it

will be easy for you to learn more... or to attend a more
advanced course!

• A course is not a substitute for a reference manual or a good
book!

• Neither a substitute for personal practice



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics
My First C Program
Making Choices
More Types and Choices
Wrapping it Up 1

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math

6 Aggregate Types

7 Pointer Types

8 Characters and Strings

9 Input and Output

10 Managing Memory

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

My First Scientific Program in C

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>
#include <stdio.h>

int main() {
double delta;
double x1, x2;
double a, b, c;

printf("Solving ax^2+bx+c=0, enter a, b, c: ");
scanf("%lf ,%lf ,%lf", &a, &b, &c);

delta = sqrt(b*b - 4.0*a*c); // square root of discriminant
x1 = x2 = -b;
x1 = x1 + delta;
x2 -= delta;
x1 = x1/(2.0*a);
x2 /= 2.0*a;

printf("Real roots: %lf, %lf\n", x1, x2);

return 0;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Comments to Code

• Text following /* is ignored up to the first */ encountered,
even if it’s on a different line

• In C99, text following // is ignored up to the end of current
line

• Best practice: do comment your code!
• Variable contents
• Algorithms
• Assumptions
• Tricks

• Best practice: do not over-comment your code!
• Obvious comments obfuscate code and annoy readers
• // square root of discriminant is a bad example



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Functions, main() in Particular

• C code is organized in functions
• Each function has a name
• Code goes in between braces
• Arguments, if any, goes in between parentesis
• It can return one or zero results using return
• More on this later...

• In a program, the function main() can’t be dispensed with
• It’s called automatically to execute the program

• main() returns an integer type value
• A UNIX heritage
• Passed to parent process (e.g. the command shell)
• Rule: 0 if everything completed successfully



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Variables

• double x1, x2; declares two variables
• Named memory locations where values can be stored
• Declared by specifying a data type followed by a

comma-separated list of names, ended by a semicolon
• On x86 CPUs, double means that x1 and x2 host IEEE

double-precision (i.e. 64 bits) floating point values
• A legal identifier must be used for a variable name:

• Permitted characters: a-z, A-Z, 0-9, _
• The first one cannot be a digit

(e.g. x1 is a valid identifier, 1x is not)
• 31 characters are guaranteed to be considered
• A good advice: do not exceed 31 characters in an identifier

• Case counts: anIdent is not the same as anident!
• Common convention: avoid variable names entirely made of

capital letters



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Using the Standard Library

• A lot of functionalities are available in an external library of
functions, whose content is defined by the Standard

• The compiler knows nothing about them, so it needs
information about:

• Arguments
• Type of returned value

• Information about functions is in header files
• Grouped by categories
• Must be inserted in the source code before functions are used
• #include causes the preprocessor to do it automatically
• Specifying the header file name between angle brackets

forces the preprocessor to look in the directories where the
Standard header files are located

• Want to compute a square root?
• #include <math.h>
• Use sqrt()



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A Few First Words on I/O

• Related functions are grouped in stdio.h
• The bare minimum: textual input output from/to the user

terminal
• scanf() reads
• printf() writes

• printf("Solving ..."); is obvious
• Writes the text between double quotes

• printf("Real roots: %lf, %lf\n", x1, x2); is
more interesting

• Conversion specifiers %lf are substituted by the textual
representation of values in x1 and x2

• And a new line is forced by \n
• scanf("%lf ,%lf ,%lf", &a, &b, &c);

• Reads three double precision numbers from the terminal,
converts them in internal binary format, stores them

• Enough for now, disregard details



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Expressions and Operators

• Most of program work takes place in expressions
• Operators compute values from terms

• +, -, * (multiplication), and / behave like in “human” arithmetic
• So do unary -, (, and )

• x1 = x1 + delta assigns the value of expression
x1 + delta to variable x1

• An ending ; makes it into an executable statement
• But it’s still an expression, with the same value assigned to x1
• Thus we can write x1 = x2 = -b;, which is same as x1 =
(x2 = -b);

• Practical shorthands to read/modify/write a variable:
• x2 -= delta is same as x2 = x2 - delta
• x2 /= 2.0*a is same as x2 = x2/(2.0*a)



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Try It Now!

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>
#include <stdio.h>

int main() {
double delta;
double x1, x2;
double a, b, c;

printf("Solving ax^2+bx+c=0, enter a, b, c: ");
scanf("%lf ,%lf ,%lf", &a, &b, &c);

delta = sqrt(b*b - 4.0*a*c); // square root of discriminant
x1 = x2 = -b;
x1 = x1 + delta;
x2 -= delta;
x1 = x1/(2.0*a);
x2 /= 2.0*a;

printf("Real roots: %lf, %lf\n", x1, x2);

return 0;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Compile your first C program !

• We will use GNU C Compiler (GCC) during this course
• Other compilers are available on the market

(Intel, PGI, Pathscale, etc)
• Linux systems comes with the C compiler
• Windows systems does not have a default one

• we will use MinGW (a minimal port of GCC for Windows)

• Let’s see how to compile and run your first C program:

• put your first C code into main.c file

• Compile your source code using the command:
user@cineca$> gcc main.c

An executable file named a.out will be generated

• Run the program with:
user@cineca$> ./a.out



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Compile your first C program ! (II)

• ... probably you got something like this:
user@cineca$> gcc main.c
/tmp/ccWpSr3h.o: In function ‘main’:
main.c:(.text+0xa8): undefined reference to ‘sqrt’
collect2: ld returned 1 exit status

• #include<math.h> declares some math functions and
constants (sqrt() among them)

• the sqrt() function code is in the math library
• gcc does not automatically link the math library

• you have to link the library explicitly into the executable:
user@cineca$> gcc main.c -lm

• now run the program!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Fixing a Problem

• User wants to solve x2 + 1 = 0
• Enters: 1, 0, 1
• Gets: Real roots: nan, nan

• Discriminant is negative, its square root is
Not A Number, nan

• Let’s avoid this, by changing from:
delta = sqrt(b*b - 4*a*c);

to:
delta = b*b - 4*a*c;
if (delta < 0.0)
return 0;

delta = sqrt(delta);

• Try it now!
• Did you check that normal cases still work? Good.



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Conditional Statement

• if (logical-condition) statement
• Executes statement only if logical-condition is true
• Comparison operators: == (equal), != (not equal), >, <, >=,
<=

• But our fix is not user friendly, let’s be more polite by
changing from:
if (delta < 0.0)
return 0;

to:
if (delta < 0.0)
{
printf("No real roots!\n");
return 0;

}

• Try it now!
• Did you check that normal cases still work? Good.



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Compound Statements

• Wherever a statement is legal in C, you can use a sequence
of statements enclosed in braces

• Some folks prefer this:
if (delta < 0.0) {
printf("No real roots!\n");
return 0;

}

and it’s OK
• Some folks write:

if (delta < 0.0) {printf("No real roots!\n"); return 0;}

but this is not that good...

• In general, C disregards white space and line breaks,
but indentation makes program control flow explicit



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Let’s Refactor Our Program

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>
#include <stdio.h>

int main() {
double delta;
double rp;
double a, b, c;

printf("Solving ax^2+bx+c=0, enter a, b, c: ");
scanf("%lf ,%lf ,%lf", &a, &b, &c);

delta = b*b - 4.0*a*c;
if (delta < 0.0)
{
printf("No real roots!\n");
return 0;

}
delta = sqrt(delta)/(2.0*a);

rp = -b/(2.0*a);

printf("Real roots: %lf, %lf\n", rp+delta, rp-delta);

return 0;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

And Now Make It More Complex!

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>
#include <stdio.h>
#include <stdbool.h>

int main() {
double delta;
double rp;
double a, b, c;
bool rroots = true;

printf("Solving ax^2+bx+c=0, enter a, b, c: ");
scanf("%lf ,%lf ,%lf", &a, &b, &c);

delta = b*b - 4.0*a*c;
if (delta < 0.0)
{
delta = -delta;
rroots = false;

}
delta = sqrt(delta)/(2.0*a);

rp = -b/(2.0*a);

if (rroots)
printf("Real roots: %lf, %lf\n", rp+delta, rp-delta);

else
printf("Complex roots: %lf+%lfI, %lf-%lfI\n", rp, delta, rp, delta);

return 0;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More Types and Choices

• bool represents logical values
• C99 only
• Actually an integer type in disguise
• And most types would work, if it’s non zero then it’s true

• else has to match with an if (), and the immediately
following statement is executed when if () logical condition
is false

• Allows for choosing between alternative paths
• Again, a compound statement could be used
• Again, use proper indentation

• By the way, variables can be initialized at declaration, as with
rroots

• By the way, expressions can be passed as function
arguments, as to printf():
their value will be computed and passed to the function



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

As Complex as Possible!

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>
#include <stdio.h>
#include <complex.h>

int main() {
double complex delta;
double complex z1, z2;
double a, b, c;

printf("Solving ax^2+bx+c=0, enter a, b, c: ");
scanf("%lf ,%lf ,%lf", &a, &b, &c);

delta = csqrt(b*b - 4.0*a*c);

z1 = (-b+delta)/(2.0*a);
z2 = (-b-delta)/(2.0*a);

printf("Complex roots: %lf%+lfI, %lf%+lfI\n",
creal(z1), cimag(z1), creal(z2), cimag(z2));

return 0;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Complex Numbers and Other Stuff

• C99 introduced the complex type
• Include complex.h
• All math and manipulation functions are defined
• Use an expression to specify a constant, like 1.0-2.0*I
• In an older program that already defines its own complex

type, use _Complex instead

• printf() doesn’t know about complex numbers, yet
• Output real and imaginary parts separately

• By the way, the + in conversion specifiers forces output of the
sign, even if positive



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Making It More Robust

• What if user inputs zeroes for a, or a and b?
• Let’s prevent these cases, inserting right after input:

if (a == 0.0)
{
if (b == 0.0)

if (c == 0.0)
fprintf(stderr, "A trivial identity!\n");

else
fprintf(stderr, "Plainly absurd!\n");

else
fprintf(stderr, "Too simple problem!\n");

return -1;
}

• Can you see the program logic?

• Try it now!
• Did you check that normal cases still work? Good.



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Miscellaneous Remarks

• Nested ifs can be a problem
• else always marries innermost if
• Proper indentation is almost mandatory to sort it out
• In doubt, put it in a compound statement: helps legibility too

• What’s this fprintf(stderr,...) stuff?
• fprintf() allows to specify an output file
• stderr is a special file, mandatory for error messages to the

user terminal
• By the way, printf(...) is nothing more than
fprintf(stdout,...)

• And scanf(...) is nothing less than fscanf(stdin,...)

• Best practice: have your program always fail in a controlled
way

• Convention: return negative values on failure
• Use different values for different failures, so that a

Unix shell script can test $? or $status and take action



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A C Program is Made of: I

• Comments
• Compiler disregards them, but humans do not
• Please, use them
• Do not abuse them, please

• Functions
• One, at least: main()
• Some of them come from the Standard Library
• The proper header file must be #included to use them

• Variables
• Named memory locations you can store values into
• Must be declared

• Variables declarations
• Give name to memory location you can store values into
• An initial value can be specified



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A C Program is Made of: II

• Expressions
• Compute values to store in variables
• Compute values to pass to functions

• Statements
• Units of work
• Terminated by a ;

• Compound statements (also said blocks)
• Group a sequence of statements in a single entity
• Wrapped in braces { }
• Do not need a terminating ;



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Program Flow Control

• return statements
• Complete execution of the current function
• Allow to return back a result

• Conditional statements
• Allow conditional execution of code
• Allow choice between alternate code paths



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Best Practices

• Use proper indentation
• Compilers don’t care about
• Readers visualize flow control

• Do non-regression testing
• Whenever functionalities are added
• Whenever you rewrite a code in a different way

• Fail in a controlled way
• Giving feedback to humans
• Giving feedback to the parent process





Scientific and Technical Computing in C
Day 1

Luca Ferraro Stefano Tagliaventi
CINECA - SCAI Department



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics

3 More C Basics
My First C Functions
Making it Correct
Compile and Link
Making it Robust
Wrapping it Up 2

4 Integer Types and Iterating

5 Arithmetic Types and Math

6 Aggregate Types

7 Pointer Types

8 Characters and Strings

9 Input and Output

10 Managing Memory

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

My First C Functions

#include <math.h>

#include "dsp.h"

//Heaviside function, useful in DSP
double theta(double x) {

if (x < 0.0)
return 0.0;

return 1.0;
}

//sinc function, as used in DSP
double sinc(double x) {

const double pi = 3.141592653589793238;

x = x*pi;
if (x == 0.0)
return 1.0;

return sin(x)/x;
}

//generalized rectangular function, useful in DSP
double rect(double t, double tau) {

t = fabs(t);
tau = 0.5*tau;
if (t = tau)

return 0.5;
return theta(tau - t);

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Functions and Their Definition

• Like variables, functions have names and types
• Name must be an identifier
• Type is the type of the returned result

• They have an associated compound statement, the function
“body”

• Functions have formal parameters
• Declared in a comma separated list, in parentheses
• Each one is like a variable declaration
• In fact, they can be used like variables inside the function

• Parameters vs. arguments
• “Arguments” are the actual values passed to a function when

it is called
• Formal parameters are the names used in the function to

access these values



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Function Parameters

• What if two functions have parameters with identical names?
• No conflicts of sort, they are completely independent

• What if a parameter has the same name of a variable
elsewhere in the program?

• No conflicts of sort, they are completely independent

• Wait!
• What happens on assignment to a parameter?

• Does something change in the calling function?
• No!

• Arguments are passed by value in C
• Parameters are like local variables, storing arguments values
• Feel free to change their content as needed!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Miscellaneous Remarks

• The const qualifier
• A const qualified variable can only be initialized
• Compilers will bark if you try to change its value

• Best practice: always give name to constants
• Particularly if unobvious, like 1.0/137.0
• It also helps to centralize updates (well, not for π)

• fabs() returns absolute value of a floating point number
• Remember to #include <math.h>

• return ends function execution returning a result

• else isn’t always needed
• In this case, because return will end function execution

anyway



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

On to Testing

• Let’s put the code in a file named dsp.c
• Best practice: always put different groups of related functions

in different files
• Helps to tame complexity
• You can always pass all source files to the compiler
• And you’ll learn to do better ...

• And let’s write a program to test all functions
• Best practice: always write a special purpose program to test

each subset of functions
• Best to include in the program automated testing of all

relevant cases
• Let’s do it by hand with I/O for now, to make it short



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Try It Now!

#include <math.h>

#include "dsp.h"

//Heaviside function, useful in DSP
double theta(double x) {

if (x < 0.0)
return 0.0;

return 1.0;
}

//sinc function, as used in DSP
double sinc(double x) {

const double pi = 3.141592653589793238;

x = x*pi;
if (x == 0.0)
return 1.0;

return sin(x)/x;
}

//generalized rectangular function, useful in DSP
double rect(double t, double tau) {

t = fabs(t);
tau = 0.5*tau;
if (t = tau)

return 0.5;
return theta(tau - t);

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Testing DSP Functions

• we collect DSP functions in dsp.c source file
• we want to test these functions
• let’s write a test_dsp.c program:

#include <stdio.h>

int main() {

double t, tau;
printf("Test DSP functions, enter t, tau: ");
scanf("%lf, %lf", &t, &tau);

printf("theta(%lf) = %lf\n", t, theta(t));
printf("sinc(%lf) = %lf\n", t, sinc(t));
printf("rect(%lf,%lf) = %lf\n", t, tau, rect(t,tau));

return 0;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Testing DSP Functions (II)

• let’s build our test program putting all together:
user@cineca$> gcc test_dsp.c dsp.c -o test_dsp -lm

• -lm links the math library
• -o gives the name test_dsp to the executable

• Now run the program:
user@cineca$> ./test_dsp
Test DSP functions, enter t, tau: 1., 1.

theta(1.000000) = 0.000000
sinc(1.000000) = 654810880.000000
rect(1.000000,1.000000) = 0.000000

•



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Testing DSP Functions (III)

• results were incorrect since main function didn’t know
anything about our custom functions

• compiler assumed they all take and return integer types
• create and include a dsp.h header file in the main source

file
#include <stdio.h>
#include "dsp.h"

int main() {
...

• now your compiler knows the right types for DSP functions
arguments and return values:
user@cineca$> ./test_dsp
Test DSP functions, enter t, tau: 1., 1.
theta(1.000000) = 1.000000
sinc(1.000000) = 0.000000
rect(1.000000,1.000000) = 0.500000

• much better ...



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Header File: dsp.h

#ifndef DSP_H
#define DSP_H
double theta(double x);
double sinc(double x);
double rect(double t, double tau);
#endif

• Function prototypes are function declarations: a ; replaces
the function body

• Parameters names are optional, but can be informative

• If DSP_H is already defined, preprocessor will remove the
code before compiler is invoked

• Best practices:
• Always play the above trick: complex programs cause multiple

inclusions of header files
• Use all capitals identifiers for preprocessor symbols
• Include dsp.h in dsp.c too: compiler will complain if you

make them inconsistent



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

My First C Functions

#include <math.h>
#include "dsp.h"

//Heaviside function, useful in DSP
double theta(double x) {

if (x < 0.0)
return 0.0;

return 1.0;
}

//sinc function, as used in DSP
double sinc(double x) {

const double pi = 3.141592653589793238;

x = x*pi;
if (x == 0.0)
return 1.0;

return sin(x)/x;
}

//generalized rectangular function, useful in DSP
double rect(double t, double tau) {

t = fabs(t);
tau = 0.5*tau;
if (t = tau)

return 0.5;
return theta(tau - t);

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Debugging rect()

• Everything fine with theta() and sinc(), but rect()
behaves unexpectedly

• If tau is zero, it always returns 1.0
• If tau is non zero, it always returns 0.5

• Let’s reread it carefully
• We wrote = where we actually meant ==

• Assignments are expressions, so tau value is returned
• A zero means false to if ()
• Anything different from zero means true to if ()

• Let’s fix it and test again!

• Best practice:
• Always enable compiler warnings and pay attention to them
•



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

My First C Functions Fixed!

#include <math.h>
#include "dsp.h"

//Heaviside function, useful in DSP
double theta(double x) {

if (x < 0.0)
return 0.0;

return 1.0;
}

//sinc function, as used in DSP
double sinc(double x) {

const double pi = 3.141592653589793238;

x = x*pi;
if (x == 0.0)
return 1.0;

return sin(x)/x;
}

//generalized rectangular function, useful in DSP
double rect(double t, double tau) {

t = fabs(t);
tau = 0.5*tau;
if (t == tau)

return 0.5;
return theta(tau - t);

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Compiler Errors and Warnings

• compiler stops on grammar and syntax violations
• goes on if you write code semantically absurd, but

syntactically correct!
• compiler can perform extra checks and report warnings

• very useful in early development phases
• pinpoint “suspect” code... sometimes pedantically
• read them carefully anyway

• -Wall option turns on all-warnings on gcc

• if only we used it earlier ...
user@cineca$> gcc -Wall -o test_dsp test_dsp.c dsp.c -lm
test_dsp.c: In function ’main’:
test_dsp.c:9: warning: implicit declaration of ’theta’
test_dsp.c:10: warning: implicit declaration of ’sinc’
test_dsp.c:11: warning: implicit declaration of ’rect’
dsp.c: In function ’rect’:
dsp.c:20: warning: suggest parentheses around assignment

used as truth value

• something is an error for a selected C standard
• use -std=c99 to force C99 standard



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Building a Program

Creating an executable from source files is a three step
process:
• pre-processing:

• each source file is read by the pre-processor
• substitute (#define) MACROs
• insert code per #include statements
• insert or delete code according #ifdef, #if ...

• compiling:
• each source file is translated into an object code file
• an object code file contains global variables and functions

defined in the code, as well as references to external ones
• linking:

• object files are combined into a single executable file
• every symbol should be resolved

• symbols can be defined in your object files
• or in other object code (Standard or external libraries)



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Compiling and Linking with GCC

• when you give the command:
user@cineca$> gcc test_dsp.c dsp.c -lm

• it’s like going through three steps:
• pre-processing: with -E option compiler stops after this stage
• compiling: with -c compiler produces an object file .o without

linking
• linking object files together with external libraries

user@cineca$> gcc dsp.o test_dsp.o -lm



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Compiling and Linking with GCC

• In order to resolve symbols defined in external libraries, you
have to specify:

• which libraries to use (-l option)
• in which directories they are (-L option)

• an example: let’s use the library
/home/user/mylibs/libfoo.a
user@cineca$> gcc file1.o file2.o -L/home/user/mylibs -lfoo

• we just use the name of the library for -l switch
• the DSP example:

user@cineca$> gcc dsp.o test_dsp.o -lm

• the sqrt() function is contained in the libm.a library
• the math library is part of the Standard C Library, thus resides

in a directory the compiler already knows about



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Managing Wrong Arguments

#include <math.h>

double rect(double t, double tau) {

t = fabs(t);
tau = 0.5*fabs(tau); // fix for tau<0
if (t == tau)

return 0.5;

return theta(tau - t);
}

• What if rect() is passed a negative argument for tau?
• Wrong results

• Taking the absolute value of tau it’s a possibility
• But not a good one, because:

• a negative rectangle width is nonsensical
• probably flags a mistake in the calling code
• and a zero rectangle width is also a problem



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Failing Predictably

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

double rect(double t, double tau) {

if (tau <= 0.0) {
fprintf(stderr, "rect() invalid argument, tau: %lf\n", tau);
exit(EXIT_FAILURE);

}

t = fabs(t);
tau = 0.5*tau;
if (t == tau)

return 0.5;

return theta(tau - t);
}

• A known approach...
• with a new twist!

• return doesn’t terminate programs unless in main()
• exit() from stdlib.h works everywhere
• -1 may be used instead of EXIT_FAILURE, but is less

portable



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A More “Standard” Approach

#include <math.h>
#include <errno.h>

double rect(double t, double tau) {

if (tau <= 0.0) {
errno = EDOM;
return 0.0;

}

t = fabs(t);
tau = 0.5*tau;
if (t == tau)

return 0.5;

return theta(tau - t);
}

• And a prudent user would check it, and use perror() from
stdio.h, as in:
errno = 0;
a = rect(b, c);
if (errno)
{

perror("rect():");
//recovery action or controlled failure

}

• But there is more...



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Total Robustness

• Your platform could support IEEE floating point standard
• Most common ones do, at least in a good part

• This means more bad cases:
• one of the arguments is a NAN
• both arguments are infinite (they are not ordered!)

• Best strategy: return a NAN and set errno in these bad
cases

• And do it also for non positive values of tau
• But then the floating point environment configuration should

be checked, proper floating point exceptions set...

• Being absolutely robust is difficult
• Too advanced stuff to cover in this course
• But not an excuse, some robustness is better than none
• It’s a process to do in steps
• Always comment in your code bad cases you don’t

address yet!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

We Did Progress!

• Functions and their parameters
• Arguments are passed to functions by value
• A program can be subdivided in more source files
• Header files help to do it
• Preprocessor helps to write good header files
• Function prototypes
• const variables
• To if (), zero is false and non zero is true
• Mistyping = for == is very dangerous
• exit() terminates a program
• errno is a standard way to report issues
• And perror() translates each issue for humans



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Best Practices

• Name constants, do not use magic numbers in the code
• Group different sets of functionalities in different files

• Helps to separate concerns and simplifies work
• Plan for header files to be included more than once

• It happens, sooner or later and it’s easy to take care of

• Use all capitals names to easily spot preprocessor symbols
• Test every function you write

• Writing specialized programs to do it

• Use compilers and other tools to catch mistakes
• Anticipate causes of problems

• Find a rational way to react
• Fail predictably and in a standard way
• The road to robustness is a long walk to do in steps
• Comment issues still to be addressed in your code





Scientific and Technical Computing in C
Day 1

Luca Ferraro Stefano Tagliaventi
CINECA - SCAI Department



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating
Play it Again, Please
Testing and Fixing it
Hitting Limits
Wider Integer Types
Polishing it Up
Wrapping it Up 3

5 Arithmetic Types and Math

6 Aggregate Types

7 Pointer Types

8 Characters and Strings

9 Input and Output

10 Managing Memory

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Greatest Common Divisor

• Euclid’s Algorithm
1 Take two integers a and b
2 Let r ← a mod b
3 Let a← b
4 Let b ← r
5 If b is not zero, go back to step 2
6 a is the GCD

• Let’s implement it and learn some more C



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

GCD & LCM

#include "numbertheory.h"

// Greatest Common Divisor
int gcd(int a, int b) {

do {
int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

// Least Common Multiple
int lcm(int a, int b) {

return a*b/gcd(a,b);
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

The Integer Type

• int means that a value is an integer
• Only integer values, positive, negative or zero
• On most platforms, int means a 32 bits value, ranging from
−231 to 231 − 1

• Want to know the actual size?
• sizeof(int) will return the size in bytes of the internal

binary representation of type int

• Want to know more? #include <limits.h>
• INT_MAX is the greatest positive value an int can assume
• INT_MIN is the most negative value an int can assume
• These are preprocessor macros expanding to literal constants

(more on this later...)
• Want to convert to/from textual decimal representation?

• Use conversion specifier %d in printf() format string
• Use conversion specifier %d in scanf() format string



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Iterating with do ... while ()

• do
statement
while (logical-condition)

1 Executes statement
2 Evaluates logical-condition
3 If logical-condition is true (i.e. not zero), goes back to 1
4 If logical-condition is false, proceeds to execute the following

code

• while (b) will also do, but while (b != 0) is more
readable and costs no more CPU work

• What’s this variable declaration here?
• t can only be used inside the block it is declared into
• I.e. its scope is limited to the block it is declared into
• It’s not special to do...while (),it works in any

compound statement



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Iterating with while ()

• while (logical-condition)
statement

1 Evaluates logical-condition
2 If logical-condition is false (i.e. zero), goes to 5
3 Executes statement
4 Goes back to 1
5 Skips statement and proceeds to execute the following code

• while () is very similar to do ... while (), but the
latter always performs at least one iteration



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Time for Testing

• Put the code in file numbertheory.c

• Write a suitable numbertheory.h

• Write a program to test both gcd() and lcm() on a pair of
integer numbers

• Remember using %d for I/O

• Test it:
• with pairs of small positive integers
• with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0

• In some cases, we get wrong results or runtime errors
• Euclid’s algorithm is only defined for positive integers



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

GCD & LCM: Try It Now!

#include "numbertheory.h"

// Greatest Common Divisor
int gcd(int a, int b) {

do {
int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

// Least Common Multiple
int lcm(int a, int b) {

return a*b/gcd(a,b);
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Let’s Fix It...

• Best way: generalize algorithm to the whole integer set
• gcd(a,b) is non negative, even if a or b is less than zero

• Taking the absolute value of a and b using abs() will do
• gcd(a,0) is |a|

• Conditional statements will do
• gcd(0,0) is 0

• Already covered by the previous item, but let’s pay attention to
lcm()

• By the way, && is the logical AND of two logical conditions

• Try and test it:
• with pairs of small positive integers
• with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
• and with the pair: 1000000, 1000000



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

GCD & LCM: Dealing with 0 and
Negatives

#include <stdlib.h>
#include "numbertheory.h"

// Greatest Common Divisor
int gcd(int a, int b) {

a = abs(a);
b = abs(b);

if (a == 0)
return b;

if (b == 0)
return a;

do {
int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

// Least Common Multiple
int lcm(int a, int b) {

if (a == 0 && b == 0)
return 0;

return a*b/gcd(a,b);
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Beware of Type Ranges

• a*b/gcd(a,b) same as (a*b)/gcd(a,b)

• What if the result of a calculation cannot be represented in
the given type?

• Technically, you get an arithmetic overflow
• C is quite liberal: the result is implementation defined
• Best practice: be very careful of intermediate results

• Easy fix: gcd(a,b) is an exact divisor of b

• Try and test it:
• with pairs of small positive integers
• on the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
• with the pair: 1000000, 1000000
• and let’s test also with: 1000000, 1000001



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

GCD & LCM: Avoiding an Overflow

#include <stdlib.h>
#include "numbertheory.h"

// Greatest Common Divisor
int gcd(int a, int b) {

a = abs(a);
b = abs(b);

if (a == 0)
return b;

if (b == 0)
return a;

do {
int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

// Least Common Multiple
int lcm(int a, int b) {

if (a == 0 && b == 0)
return 0;

return a*(b/gcd(a,b));
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Wider Integer Types

• Sometimes an integer type with a wider range of values is
needed

• long int (commonly shortened to long)
• LONG_MAX and LONG_MIN from limits.h
• %ld conversion specifier in printf() and scanf()
• But C Standard only says: can’t be narrower than an int
• In practice, it can be 32 or 64 bits wide, depending on platform

and compiler
• As usual, use sizeof(long int) to check

• C99 long long int (shortened to long long)
• LLONG_MAX and LLONG_MIN from limits.h
• %lld conversion specifier in printf() and scanf()
• C99 Standard requires: must be at least 64 bits wide!
• As usual, use sizeof(long long) to check if you got more

than that



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

GCD & LCM: Wider Integers

#include <stdlib.h>
#include "numbertheory.h"

// Greatest Common Divisor
long long int gcd(long long int a, long long int b) {

a = llabs(a);
b = llabs(b);

if (a == 0)
return b;

if (b == 0)
return a;

do {
long long int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

// Least Common Multiple
long long int lcm(long long int a, long long int b) {

if (a == 0 || b == 0)
return 0;

return a*(b/gcd(a,b));
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Call the Right Function!

• We had to call different functions for absolute value
• labs() for long ints
• llabs() for long long ints

• What if you call, say, labs() for int or long long values?
• Automatic conversion between different types happens!
• But a narrower type cannot represent all possible values of a

wider one
• No problem when converting to a wider type
• At risk of overflow (i.e. implementation defined surprise) when

converting to a narrower one
• Best practice: enable compiler warnings or use tools like
lint to catch mistakes



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Unsigned Integer Types

• unsigned int (often shortened to unsigned)
• Same width as an int
• No negative values, only positive integers, but nearly twice the

ones in an int
• UINT_MAX (from limits.h) is its greatest value
• Use conversion specifier %u in printf() and scanf()

• And there are more unsigned types...
• Like unsigned long and unsigned long long
• ULONG_MAX and ULLONG_MAX from limits.h
• %lu and %llu in printf() and scanf()

• No arithmetic overflows!
• C Standard requires arithmetic in any unsigned type to be

exact modulo 2type width in bits

• Beware of signed to/from unsigned conversions!
• Negative values cannot be represented in an unsigned
• And vice versa for the biggest half of unsigned values
• You are in for implementation defined surprises!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A Couple of Issues

• Best practice: avoid useless work
• a*(b/gcd(a,b)) causes error if both a and b are zero
• but it’s useless anyway if a or b is zero, let’s use || (logical

OR) to avoid it

• Best practice: be loyal to C approach
• You have now a gcd() function that works on the widest

available integer type
• And you could use it safely for narrower types
• But at the cost of getting compiler warnings, even if you do it

correctly
• And this is not the C way (think of abs(), labs(), llabs())

• Let’s try an easy solution



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

GCD Flavors

#include <stdlib.h>
#include "numbertheory.h"

// Greatest Common Divisor
long long int llgcd(long long int a, long long int b) {

a = llabs(a);
b = llabs(b);

if (a == 0)
return b;

if (b == 0)
return a;

do {
long long int t = a % b;
a = b;
b = t;

} while (b != 0);

return a;
}

long int lgcd(long int a, long int b) {
return (long int)llgcd((long long int)a, (long long int)b);

}

int gcd(int a, int b) {
return (int)llgcd((long long int)a, (long long int)b);

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Getting in Control of Type
Conversions

• (type)expression
• Is an explicit cast
• Forces conversion from expression type to specified one
• And tells the compiler you know what you are doing

• The solution is not perfect
• If you are working with a lot of basic ints, you are spending a

lot of work in type conversions and wider than necessary
arithmetic

• And there are more integer types we didn’t mention yet...
• Writing specialized copies is not an option

• If you want to change something, you have to make the same
change in different places

• Best practice: avoid replicating similar code

• The preprocessor can generate specialized function
copies for you



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

GCD: 3 for the Price of 1

#include <stdlib.h>
#include "numbertheory.h"

#define GGCD(TYPE,PREFIX) \
TYPE PREFIX ## gcd(TYPE a, TYPE b) { \

a = PREFIX ## abs(a); \
b = PREFIX ## abs(b); \
if (a == 0) \
return b; \

if (b == 0) \
return a; \

do {\
TYPE t = a % b; \
a = b; \
b = t; \

} while (b); \
return a; \

}

#define GLCM(TYPE,PREFIX) \
TYPE PREFIX ## lcm(TYPE a, TYPE b) { \

if (a == 0 || b == 0) \
return 0; \

return a*(b/PREFIX ## gcd(a,b)); \
}

GGCD(int,)
GGCD(long int, l)
GGCD(long long int, ll)

GLCM(int,)
GLCM(long int, l)
GLCM(long long int, ll)



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Generating Code With Macros

• Preprocessor macros
• Their content is substituted wherever the macros appear in

the code
• Every occurrence of each parameter is replaced by the text

given as argument
• A macro must be a “one-liner”

• A \ at end of line is needed to continue on the next line
• The ## operator concatenates two neighbouring tokens

• As if they had been typed with no space in between

• Six functions are defined by macro expansion
int gcd(int a, int b)
long int lgcd(long int a, long int b)
long long int llgcd(long long int a, long long int b)
int lcm(int a, int b)
long int llcm(long int a, long int b)
long long int lllcm(long long int a, long long int b)

• Beware: debugging macros can be difficult



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

C11 Type-Generic Macros

• Still, unlike in higher level languages, you have to remember
the right function name to invoke according to argument
types

• C11 has a better way:
#define gcd(A, B) _Generic((A), \

int: gcd \
long int: lgcd \
long long int: llgcd \
) (A, B)

#define lcm(A, B) _Generic((A), \
int: lcm \
long int: llcm \
long long int: lllcm \
) (A, B)

• Now you can use gcd() and lcm() for all argument types
• Coming to a compiler near you...



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More Types and Flow Control

• There are many integer types
• With implementation dependent ranges
• Range limits are defined in limits.h
• sizeof(type) can be used to know their size in bytes

• Automatic type conversions take place
• And can be controlled with explicit casts

• Different library functions for different types
• Ditto for printf() and scanf() conversion specifiers

• Behavior on integer overflow is implementation defined
• Some control is possible using parentheses

• Variables can be declared inside a block
• Limiting access to the block scope

• Sequence of statements can be iterated according to a
logical condition

• Logical conditions can be combined using || (OR) and
&& (AND) operators



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Best Practices

• Do not rely on type sizes, they are implementation dependent
• Think of intermediate results in expressions: they can

overflow or underflow
• Unintended implicit conversions can take you by surprise

• Put compiler warnings and specialized tools to good use

• Avoid unnecessary computations
• Avoid code replication
• Be consistent with C approach

• Even if it costs more work
• Even if it costs learning more C
• Once again, you can do it in steps
• You’ll appreciate it in the future





Scientific and Technical Computing in C
Day 1

Luca Ferraro Stefano Tagliaventi
CINECA - SCAI Department



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math
Integer Types
Floating Types
Expressions
Arithmetic Conversions

6 Aggregate Types

7 Pointer Types

8 Characters and Strings

9 Input and Output

10 Managing Memory

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Data

• Computing == manipulating data and calculating results
• Data are manipulated using internal, binary formats
• Data are kept in memory locations and CPU registers

• C is quite liberal on internal data formats
• Most CPU are similar but all have peculiarities
• C only mandates what is de facto standard
• Some details depend on the specific executing (a.k.a. target)

hardware architecture and software implementation
• C Standard Library provides facilities to translate between

internal formats and human readable ones
• C allows programmers to:

• think in terms of data types and named containers
• disregard details on actual memory locations and data

movements



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

C is a Strongly Typed Language

• Each literal constant has a type
• Dictates internal format of the data value

• Each variable has a type
• Dictates content internal format and amount of memory
• Type must be specified in a declaration before use

• Each expression has a type
• And subexpressions have too
• Depends on operators and their arguments

• Each function has a type
• That is the type of the returned value
• Specified in function declaration or definition
• If the compiler doesn’t know the type, it assumes int

• Function parameters have types
• I.e. type of arguments to be passed in function calls
• Specified in function declaration or definition
• If the compiler doesn’t know the types, it will accept any

argument, applying some type conversion rules



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Integer Types (as on Most CPUs)

Type Sign Conversion Width (bits) Size (bytes)
Minimum Usual Minimum Usual

signed char +/- %hhd1
8 8 1 1

unsigned char + %hhu1

short +/- %hd
16 16 2 2short int

unsigned short + %hu
unsigned short int
int +/- %d

16 32 2 4unsigned + %u
unsigned int
long +/- %ld

32 32 or 64 4 4 or 8long int
unsigned long + %lu
unsigned long int

long long2
+/- %lld

64 64 8 8long long int2

unsigned long long2
+ %llu

unsigned long long int2

Constraint: short width ≤ int width ≤ long width ≤ long long width

1. C99, in C89 use conversion to/from int types
2. C99

• New platform/compiler? Always check with sizeof(type)

• Values of char and short types just use less memory,
they are promoted to int types in calculations



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

#include <limits.h>

Name Meaning Value
CHAR_BIT width of any char type ≥ 8
SCHAR_MIN minimum value of signed char ≤ −127
SCHAR_MAX maximum value of signed char ≥ 127
UCHAR_MAX maximum value of unsigned char type ≥ 255
SHRT_MIN minimum value of short ≤ −32767
SHRT_MAX maximum value of short ≥ 32767
USHRT_MAX maximum value of unsigned short ≥ 65535
INT_MIN minimum value of int ≤ −32767
INT_MAX maximum value of int ≥ 32767
UINT_MAX maximum value of unsigned ≥ 65535
LONG_MIN minimum value of long ≤ −2147483647
LONG_MAX maximum value of long ≥ 2147483647
ULONG_MAX maximum value of unsigned long ≥ 4294967295
LLONG_MIN minimum value of long long ≤ −9223372036854775807
LLONG_MAX maximum value of long long ≥ 9223372036854775807
ULLONG_MAX maximum value of unsigned long long ≥ 18446744073709551615

• Use them to make code more portable across platforms
• New platform/compiler? Always check values



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Integer Literal Constants

• Constants have types too
• Compilers must follow precise rules to assign types to integer

constants
• But they are complex
• And differ among standards

• Rule of thumb:
• write the number as is, if it is in int range
• otherwise, use suffixes U, L, UL, LL, ULL
• lowercase will do as well, but l is easy to misread as 1

• Remember: do not write spokes = bycicles*2*36;
• #define SPOKES_PER_WHEEL 36
• or declare:
const int SpokesPerWheel = 36;

• and use them, code will be more readable, and you’ll be
ready for easy changes



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Integer Types Math

• #include <stdlib.h> to use:

Function Returns
abs() absolute value of an int
labs() absolute value of a long
llabs() absolute value of a long long

• Use like: a = abs(b+i) + c;

• For values of type short or char, use abs()



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Bitwise Arithmetic

• Integer types are encoded in binary format
• Each one is a sequence of bits, each having state 0 or 1
• Bitwise arithmetic manipulates state of each bit

• Each bit of the result of unary operator ~ is in the opposite
state of the corresponding bit of the operand

• Each bit of the result of binary operators |, &, and ^ is the
OR, AND, and XOR respectively of the corresponding bits in
the operands

• Precedence
• a&b | c^d&e same as (a&b) | (c^(d&e))
• ~a&b same as (~a)&b

• Associativity is from left to right
• a | b | c same as (a | b) | c

• As usual, precedence and associativity can be overridden
using explicit ( and ), and |=, &=, and ^= are available



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Enumerated Types

enum boundary {
free_slip,
no_slip,
inflow,
outflow
};

enum boundary leftside, rightside;

enum liquid {water, mercury} fluid; //may confuse readers

leftside = free_slip;

• A set of integer values represented by identifiers
• Under the hood, it’s an int
• free_slip is an enumeration constant with value 0
• no_slip is an enumeration constant with value 1
• inflow is an enumeration constant with value 2
• ...



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Choosing Values for Enumeration
Constants

enum spokes {SpokesPerWheel = 36};

enum element {
hydrogen = 1,
helium,
carbon = 6,
oxygen = 8,
fluorine
};

• Enumeration constants can be given a specified value
• When the enumeration constant value is not specified:

• if it’s the first in the declaration, gets the value 0
• if it’s not, gets (value of the previous one+1)
• thus helium above gets 2, and fluorine gets 9
• negative values can be used too

• A convenient way to give names to related integer
constants



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Floating Types (as on Most CPUs)

Type Conversion Width (bits) Size (bytes)
Usual Usual

float %f, %E, %G2 32 4
double %lf, %lE, %lG2 64 8
long double %Lf, %LE, %LG2 80 or 128 10 or 16
float _Complex1 none NA 8
double _Complex1 none NA 16
long double _Complex1 none NA 20 or 32

Constraints:
all float values must be representable in double
all double values must be representable in long double

1. C99
2. %f forces decimal notation, %E forces exponential decimal notation,
%G chooses the one most suitable to the value

• New platform/compiler? Always check with sizeof(type)

• In practice, always in IEEE Standard binary format, but not a C Standard
requirement

• #include <complex.h> and use float complex, double complex, and
long double complex, if your program does not already uses the complex
identifier



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

#include <float.h>

Name Meaning Value
FLT_EPSILON min{x|1.0 + x > 1.0} in float type ≤ 10−5

DBL_EPSILON min{x|1.0 + x > 1.0} in double type ≤ 10−9

LDBL_EPSILON min{x|1.0 + x > 1.0} in long double type ≤ 10−9

FLT_DIG decimal digits of precision in float type ≥ 6
DBL_DIG decimal digits of precision in double type ≥ 10
LDBL_DIG decimal digits of precision in long double type ≥ 10
FLT_MIN minimum normalized positive number in float range ≤ 10−37

DBL_MIN minimum normalized positive number in long range ≤ 10−37

LDBL_MIN minimum normalized positive number in long double range ≤ 10−37

FLT_MAX maximum finite number in float range ≥ 1037

DBL_MAX maximum finite number in long range ≥ 1037

LDBL_MAX maximum finite number in long double range ≥ 1037

FLT_MIN_10_EXP minimum x such that 10x is in float range and normalized ≤ −37
DBL_MIN_10_EXP minimum x such that 10x is in double range and normalized ≤ −37
LDBL_MIN_10_EXP minimum x such that 10x is in long double range and normalized ≤ −37
FLT_MAX_10_EXP maximum x such that 10x is in float range and finite ≥ 37
DBL_MAX_10_EXP maximum x such that 10x is in double range and finite ≥ 37
LDBL_MAX_10_EXP maximum x such that 10x is in long double range and finite ≥ 37

• Use them to make code more portable across platforms
• New platform/compiler? Always check values
• “Normalized”? Yes, IEEE Standard allows for even smaller

values, with loss of precision, and calls them “denormalized”
• “Finite”? Yes, IEEE Standard allows for infinite values



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Floating Literal Constants

• Need something to distinguish them from integers
• Decimal notation: 1.0, -17., .125, 0.22
• Exponential decimal notation: 2E19 (2× 1019), -123.4E9

(−1.234× 1011), .72E-6 (7.2× 10−7)
• They have type double by default

• Use suffixes F to make them float or L to make them long
double

• Lowercase will do as well, but l is easy to misread as 1

• Never write charge = protons*1.602176487E-19;
• #define UNIT_CHARGE 1.602176487E-19
• or declare:
const double UnitCharge = 1.602176487E-19;

• and use them in the code to make it readable
• it will come handier when more precise measurements will

be available



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

double Math

Function/Macro Returns
HUGE_VAL1 largest positive finite value
INFINITY1 positive infinite value
NAN1 IEEE quiet NaN (if supported)
double fabs(double x), |x|,
double copysign(double x, double y)1 if y 6= 0 returns |x|y/|y| else returns |x|
double floor(double x), double ceil(double x), bxc, dxe,
double trunc(double x)1, if x > 0 returns bxc else returns dxe,
double round(double x)1 nearest2 integer to x
double fmod(double x, double y), x mod y (same sign as x)
double fdim(double x, double y)1 if x > y returns x− y else returns 0
double nextafter(double x, double y)1 next representable value after x toward y

double fmin(double x, double y)1 min{x, y}
double fmax(double x, double y)1 max{x, y}
1. C99
2. If x is halfway, returns the farthest from 0

• #include <math.h>
• Before C99, there were no fmin() or fmax()

• Preprocessor macros have been widely used to this aim
• Use the new functions, instead

• More functions are available to manipulate values
• Mostly in the spirit of IEEE Floating Point Standard
• We encourage you to learn more about



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

double Higher Math

Functions Return
double sqrt(double x),

√
x,

double cbrt(double x)1, 3√x,
double pow(double x, double y), xy,
double hypot(double x, double y)1

√
x2 + y2

double sin(double x), double cos(double x),
Trigonometric functionsdouble tan(double x), double asin(double x),

double acos(double x), double atan(double x)
double atan2(double x, double y) Arc tangent in (−π, π]

double exp(double x), ex,
double log(double x), double log10(double x), loge x, log10 x,
double expm1(double x)1, double log1p(double x)1 ex − 1, log(x + 1)
double sinh(double x), double cosh(double x),

Hyperbolic functionsdouble tanh(double x), double asinh(double x)1,
double acosh(double x)1, double atanh(double x)1

double erf(double x)1 error function: 2√
π

∫ x
0 e−t2 dt

double erfc(double x)1 1− 2√
π

∫ x
0 e−t2 dt

double tgamma(double x)1, double lgamma(double x)1 Γ(x), log(|Γ(x)|)
1. C99

• Again, #include <math.h>



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

double complex Math
C99 & C11

Function/Macro Returns
double complex CMPLX(double x, double y)1 x + iy,
double complex cabs(double complex z), |z|,

double complex carg(double complex z), Argument of z
(a.k.a. phase angle),

double complex creal(double complex z), Real part of z,
double complex cimag(double complex z), Imaginary part of z,
double complex conj(double complex z) Complex conjugate of z
double complex csqrt(double complex z),

√
z,

double complex cpow(double complex z, double complex w) zw

double complex cexp(double complex z), ez,
double complex clog(double complex z) loge z
1. C11

• To use them, #include <complex.h>
• You’ll also get:
csin(), ccos(), ctan(),
casin(), cacos(), catan(),
csinh(), ccosh(), ctanh(),
casinh(), cacosh(), catanh()

• And I for the imaginary unit



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

float and long double Math

• Before C99, all functions were only for doubles
• And automatic conversion of other types was applied

• But from 1999 C is really serious about floating point math
• All functions exist also for float and long double
• Same names, suffixed by f or l
• Like acosf() for arccosine of a float
• Or cacosl() for long double complex
• Ditto for macros, like HUGE_VALF or CMPLXL()

• If you find this annoying (it is!):
• #include <tgmath.h>
• and use everywhere, for all real and complex types, function

names for double type
• These are clever type generic processor macros, expanding

to the function appropriate to the argument



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Expressions

• A fundamental concept in C
• A very rich set of operators
• Almost everything is an expression
• Even assignment to a variable

• C expressions are complicated
• Expressions can have side effects
• Not all subexpressions are necessarily computed
• Except for associativity and precedence rules, order of

evaluation of subexpressions is up to the compiler
• Values of different type can be combined, and a result

produced according to a rich set of rules
• Sometimes with surprising consequences

• We’ll give a simplified introduction
• Subtle rules are easily forgotten
• Relying on them makes the code difficult to read
• When you’ll find a puzzling piece of code, you can always

look for a good manual or book



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Arithmetic Expressions

• Binary operators +, -, * (multiplication) and / have the usual
meaning and behavior

• Unary operator - evaluates to the opposite of its operand
• Unary operator + evaluates to its operand
• Precedence

• -a*b + c/d same as ((-a)*b) + (c/d)
• -a + b same as (-a) + b

• Associativity of binary ones is from left to right
• a + b + c same as (a + b) + c
• a*b/c*d same as ((a*b)/c)*d

• Explicit ( and ) override precedence and associativity
• Only for integer types, % is the modulo operator (27%4

evaluates to 3), same precedence as /



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Hitting Limits

• All types are limited in range
• What about:

• INT_MAX + 1? (too big)
• INT_MIN*3? (too negative)

• Technically speaking, this is an arithmetic overflow
• And division by zero is a problem too
• For signed integer types, the Standard says:

• behavior and results are unpredictable
• i.e. up to the implementation

• For other types, the Standard says:
• arithmetic on unsigned integers must be exact

modulo 2type width, no overflow
• with floating types, is up to the implementation

(you can get DBL_MAX, or a NaN, or an infinity)
• Best practice: NEVER rely on behaviors observed with a

specific architecture and/or compiler



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Assignment Operator

• Binary operator =
• assigns the value of the right operand to the left operand
• and returns the value of the right operand
• thus a = b*2 is an expression with value b*2 and the side

effect of changing variable a
• a = b*2; is an assignment statement

• The left operand must be something that can store a value
• In C jargon, an lvalue
• a = 20 is OK, if a is a variable
• 20 = a is not

• Precedence is lowest (except for , operator) and associativity
is from right to left

• a = b*2 + c same as a = (b*2 + c)
• z = a = b*2 + c same as z = (a = (b*2 + c))

• You’ll read the latter form, particularly in while ()
statements, but avoid writing it



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More Assignment Operators

• Most binary operators offer useful shortcut forms:

Expression Same as
a += b a = a + b
a -= b a = a - b
a *= b a = a*b
a /= b a = a/b
a %= b a = a%b

• In heroic times, used to map some CPUs optimized
instructions

• With nowadays optimizing compilers, only good to spare
keystrokes

• You’ll find them often, particularly in for(;;) statements



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More Side Effects

• Pre-increment/decrement unary operators: ++ and --
• ++i same as (i = i + 1)
• --i same as (i = i - 1)

• Post-increment/decrement unary operators: ++ and --
• i++ increments i content, but returns the original value
• i-- decrements i content, but returns the original value

• Operand must be an lvalue
• Precedence is highest

• Quite handy in while () and for (;;) statements
• Easily becomes a nightmare inside expressions

• Particularly when you change the code



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Order of Subexpressions
Evaluation

• i is an int type variable whose value is 5
j = 4*i++ - 3*++i;
foo(++i, ++i);

• Which value is assigned to j?
• Could be

-1

• Or could as well be

6

• Which values are passed to foo()?
• Could be foo(

8

,

9

)
• Or could as well be foo(

9

,

8

)

• Order of evaluation of subexpressions is implementation
defined!

• Ditto for order of evaluation of function arguments!

• NEVER! NEVER pre/post-in/de-crement the same
variable twice in a single expression, or function call!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Logical Expressions

• Comparison operators
• == (equal), != (not equal), >, <, >=, <=
• Compare operand values
• Return int type 0 if evaluation is false, 1 if true
• Precedence lower than arithmetic operators, higher than

bitwise and logical operators
• In doubt, add parentheses, but be sober

• Logical operators
• ! is unary NOT, && is binary AND, || is binary OR
• Zero operand are considered false, non zero ones true
• Return int type 0 if comparison is false, 1 if true
• Precedence of ! just lower than ++ and --
• &&, ||: higher than = and friends
• !a&&b || a&&!b means ((!a)&&b) || (a&&(!b))
• Again: in doubt, add parentheses, but be sober



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More Logic from math.h

• Some macros to tame floating point complexity
• isfinite()

• True if argument value is finite
• isinf()

• True if argument value is an infinity
• isnan()

• True if argument value is a NaN
• And more, if you are really serious about floating point

calculations
• Mostly in the spirit of IEEE Floating Point Standard
• Learn more about it, before using them



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Being Completely Logical

• C99 defines integer type _Bool
• Only guaranteed to store 0 or 1
• Perfect for logical (a.k.a. boolean) expressions
• Use it for “flag” variables, and to avoid surprises
• Better yet, #include <stdbool.h>,

and use type bool, and values true and false

• Watch your step!
• Simply mistype & for && or vice versa
• Simply mistype || for |
• You’ll discover, possibly after hours of debugging, that (bitwise

arithmetic) != (logical arithmetic)

• C99 offers a fix to this unfortunate choice
• #include <iso646.h>
• And use not, or, and and in place of !, || and &&



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Even More Side Effects

• Right operand of || and && is evaluated after left one
• And is not evaluated at all if:

• left one is found true for an ||
• left one is found false for an &&

• Beware of “short circuit” evaluation...
• ... if the right operand is an expression with side effects!
• A life saver in preprocessor macros and a few more cases
• But makes your code less readable
• Use nested if () whenever you can

• logical-expr ? expr1 : expr2
• expr1 is only evaluated if logical-expr is true
• expr2 is only evaluated if logical-expr is false
• Again, is a life saver in preprocessor macros
• But in normal use an if () is more readable



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Mixing Types in Expressions

• C allows for expressions mixing any arithmetic types
• A result will always be produced
• Whether this is the result you expect, it’s another story

• Broadly speaking, the base concept is clear
• For each binary operator in the expression, in order of

precedence and associativity:
• if both operands have the same type, fine
• otherwise, operand with narrower range is converted to type

of other operand

• OK when mixing floating types
• The wider range includes the narrower one

• OK when mixing signed integer types
• The wider range includes the narrower one

• OK even when mixing unsigned integer types
• The wider range includes the narrower one



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Type Conversion Traps

• For the assignment operator:
• if both operands have the same type, fine
• otherwise, right operand is converted to left operand type
• if the value cannot be represented in the destination type, it’s

an overflow, and you are on your own

• We said: in order of precedence and associativity
• if a is a type long long int variable, and b is a 32 bits

wide int type variable and contains value INT_MAX, in:
a = b*2
multiplication will overflow

• and in:
a = b*2 + 1LL
multiplication will overflow too

• while:
a = b*2LL + 1
is OK



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More Type Conversion Traps

• Think of mixing floating and integer types
• Floating types have wider range
• But not necessarily more precision
• A 32 bits float has fewer digits of precision than a 32 bits
int

• And a 64 bits double has fewer digits of precision than a 64
bits int

• The result could be smaller than expected

• Think of mixing signed and unsigned integer types!
• Negative values cannot be represented in unsigned types
• Half of the values representable in an unsigned type, cannot

be represented in a signed type of the same width
• So, you are in for implementation defined surprises!
• And Standard rules are quite complicated
• We spare you the gory details, simply don’t do it!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Cast Your Subexpressions

• (type)
• Unsurprisingly, it’s an operator
• Precedence just higher than multiplication, right-to-left

associative
• Use it like (unsigned long)(sig + ned)

• Casting let you override standard conversion rules
• In previous example, you could use it like this:
a = (long long int)b*2 + 1

• Type casting is not magic
• Just instructs compiler to apply the conversion you need
• Only converts values, not type of variables you assign to

• Do not abuse it
• Makes codes unreadable
• Could be evidence of design mistakes
• Or that your C needs a refresh





Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Rights & Credits

These slides are c©CINECA 2013 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written
permission from the copyright owner. For more information
see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:
• Michela Botti
• Federico Massaioli
• Luca Ferraro
• Stefano Tagliaventi



Scientific and Technical Computing in C
Day 2

Luca Ferraro Stefano Tagliaventi
CINECA - SCAI Department



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math

6 Aggregate Types
Structure Types
Defining New Types
Arrays
Storage Classes, Scopes, and Initializers
Arrays & Functions

7 Pointer Types

8 Characters and Strings

9 Input and Output

10 Managing Memory

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

struct

struct vect3D {
double x, y, z;

};

struct vect3D va, vb;

// REMINDER: I have to make vcross() more efficient!
struct vect3d vcross(struct vect3D u, struct vect3D v) {

struct vect3D c;

c.x = u.y*v.z - u.z*v.y;
c.y = u.z*v.x - u.x*v.z;
c.z = u.x*v.y - u.y*v.x;

return c;
}

//...
vc = vcross(va, vb);

• Aggregates a single type from named, typed components
(a.k.a. members)

• The vect3D tag must be unique among structure tags
• struct components can be independently accessed

using the . binary operator



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

structs Are Flexible

struct ion {
struct vect3D r; // position
struct vect3D v; // velocity
enum element an; // atomic number
int q; // in units of elementary charges

};

struct ion a;
//...

a.r.x += dt*a.v.x; // very low order in time...

• struct components can be inhomogeneous
• And they can also be structs, of course

• To access nested struct components, chain . expressions
• Best practice: order components by decreasing size

• You’ll get better performances
• To know, you can use sizeof() operator on any type



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

structs: a Concrete Example

• structs are widely used in C Standard Library
• Like in struct tm, below, defined in time.h

• Used to convert from/to internal time representation time_t

struct tm {
int tm_sec; // seconds after the minute [0, 60]
int tm_min; // minutes after the hour [0, 59]
int tm_hour; // hours since midnight [0, 23]
int tm_mday; // day of the month [1, 31]
int tm_mon; // months since January [0, 11]
int tm_year; // years since 1900
int tm_wday; // days since Sunday [0, 6]
int tm_yday; // days since January 1 [0, 365]
int tm_isdst; // Daylight Saving Time flag

};



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

typedef

typedef struct vect3D position, velocity;

typedef enum element element; // let’s spare keystrokes

typedef int charge; // I’ll maybe switch to short or signed char

typedef struct ion {
position r;
velocity v;
element an;
charge q;

} ion;

ion a;

• typedef turns a normal declaration into a declaration of a
new type (as usual, a legal identifier)

• The new type can be used as the native ones
• Great to save keystrokes
• Even better to write self-documenting code
• Shines in hiding and factoring out implementation details

• struct tags and type identifiers belong to separate sets



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

typedef in C Standard Library

• typedef is widely used in C Standard Library
• Mostly to abstract details that may differ among

implementations

• E.g. size_t from stddef.h
• Type of value returned by sizeof()
• Different platforms allow for different memory sizes
• size_t must be “typedefed” to an integer type able to

represent the maximum possible variable size allowed by the
implementation

• E.g. clock_t from time.h
• Type of value returned by clock()
• Cast it to double, divide by CLOCK_PER_SEC, ...
• and you’ll know the CPU time in seconds used by your

program from its beginning



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Arrays

• some_type a[n];
• declares a collection of n variables of type some_type
• the variables (a.k.a. elements) are laid out contiguously in

memory
• each element can be read or written using the syntax
a[integer indexing expression]

• first element is a[0], second one is a[1],
last one is a[n-1]

• You can’t work on an array as a whole
• Use array elements (if allowed...) in expressions and

assignments
• There is no bound checking!

• Use a negative index, or an index too big, and you are
accessing something else, if any

• Compiler options to (very slowly) check every access
• A common mistake:

• to access from double a[1] to double a[n]
• Fortran programmers beware!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Arrays of(Arrays of(Arrays of(...)))

• C has no concept of multidimensional arrays
• But array is a regular C type (you can even
sizeof(double[150]))

• Thus, arrays of arrays can be declared
• A simple, practical abstraction
• Very annoying to Fortran or Matlab programmers

• int a[12][31];
• declares an array of 12 elements
• and each element is itself an array of 31 ints

• double b[130][260][260];
• declares an array of 130 elements
• and b[37] is itself an array of 260 elements
• and b[37][201] is again an array of 260 doubles

• By the way, you can also use sizeof(b), it works



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Array Memory Layout

int a[10];

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

int b[5][2];

b[0] b[1] b[2] b[3] b[4]

b[0][0] b[0][1] b[1][0] b[1][1] b[2][0] b[2][1] b[3][0] b[3][1] b[4][0] b[4][1]



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A Very Important Digression

• Storage duration
• To make it simple, the life time of a variable
• Also influences the part of memory where it’s allocated

• Scope
• The region where a variable or function is accessible, a.k.a.

“visible”

• Qualifiers
• The value in a const variable cannot be changed
• There are more, but we’ll not discuss them

• Initializers
• Values assigned to a variable at declaration



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Storage Duration

• A variable can be
• Automatic: it can be created when needed, and destroyed

when not needed anymore
• Static: it persists for the whole duration of the program

• Variables declared outside of any functions (i.e. at file scope)
are static

• By default, are automatic:
• all variables declared inside a compound statement
• function parameters

• The default can be overridden using static

• Functions are static too, because to call them you need
their code to persist in memory



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Scopes

• By default, variables declared at file scope and functions are
extern

• i.e. visible to the linker, and to the whole program
• Unless you declare them to be static only

• Variables declared at file scope and functions are visible to all
blocks in the same source file

• Variables declared in a block are only visible in the block and
in all scopes it encloses

• Unless you declare them extern
• But in most cases that’s a symptom of bad design

• A variable declared in a block hides anything declared with
the same name in enclosing scopes



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Variable Initializers

• The content of an automatic variable is uninitialized until the
variable is assigned a value

• Uninitialized is a polite form for ”unpredictable rubbish”

• double f = 2.5; is a practical shorthand for:
double f;
f = 2.5;

• Expressions can be used as initializers, as long as they can
be computed at that point:
double pi = acos(-1.0);
double pihalf = pi/2.0;

is legal, while the following:
double pihalf = pi/2.0;
double pi = acos(-1.0);

obviously is not



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More on Variable Initializers

• structs can be initialized too, as in:
struct vect3D V = {0.0, 1.0, 0.0};

• Same for arrays, as in:
float rot[2][2] = {{0.0, -1.0}, {1.0, 0.0}};

• {0.0, 1.0, 0.0} and {{0.0, -1.0}, {1.0, 0.0}}
are said compound literals

• By default, static variables are initialized to 0
• But they can be initialized to different values
• Expressions can also be used, with some restrictions

• For a static variable, initialization expression must be
computed at compile time

• I.e. it must be a constant expression, containing only
constants

• No variables, no function calls are permitted



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Fast Fibonacci

#include <limits.h>
#include <errno.h>
#include "fibonacci.h"

#define UINT_MAX_FIB_N 47

unsigned int FibonacciNumbers[UINT_MAX_FIB_N+1];

void fibinit(void) {
int i;
FibonacciNumbers[0] = 0;
FibonacciNumbers[1] = 1;

for (i = 2; i <= UINT_MAX_FIB_N; ++i)
FibonacciNumbers[i] = FibonacciNumbers[i-1] + FibonacciNumbers[i-2];

}

unsigned int fib(unsigned int n) {
if (n > UINT_MAX_FIB_N) {
errno = ERANGE;
return UINT_MAX;

}
return FibonacciNumbers[n];

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Arrays

• some_type name[n]
• declares a collection of n variables of type some_type
• the variables are laid out contiguously in memory
• each variable can be read or written using the syntax
name[index]

• where index is an integer expression ranging from 0 to n-1

• Variables declared at file scope
• Variables declared outside of any function
• Persist for the whole program life
• By default, they can be accessed by any function...
• ...except where the same name is used for a parameter or

local variable

• n can also be an expression, as long as it can be
evaluated at compile time



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

for (;;), and Some void Too

• for (init-expr;logical-condition;incr-expr)
statement

same as
init-expr;
while (logical-condition)
{
statement
incr-expr;
}

• But it’s more compact and makes iteration bounds explicit in
a single line

• What type is void?
• As a return type, it tells a function returns nothing
• As a parameter, it tells no arguments are accepted

• Why there is no return statement in fibinit()?
• It returns nothing and completes at the closing brace



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Hiding Implementation Details

• Array FibonacciNumbers is by default visible to the whole
program

• It could be accidentally modified or clash with another variable
of the same name

• Declaring it static will make it invisible to other modules
• fibinit() must be called in advance for fib() to return

correct results
• What if the call is omitted? Let’s automate the process
• Declaring it static, we make a function invisible to other

modules
• A variable declared in a function “disappears” when function

returns, static will make it persist from call
to call

• Best practices:
• always hide irrelevant implementation details
• if possible, automate initialization mechanisms



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Fast Fibonacci: More Robust

#include <limits.h>
#include <stdbool.h>
#include <errno.h>
#include "fibonacci.h"

#define UINT_MAX_FIB_N 47

static unsigned int FibonacciNumbers[UINT_MAX_FIB_N+1];

static void fibinit(void) {
int i;
FibonacciNumbers[0] = 0;
FibonacciNumbers[1] = 1;

for (i = 2; i <= UINT_MAX_FIB_N; ++i)
FibonacciNumbers[i] = FibonacciNumbers[i-1] + FibonacciNumbers[i-2];

}

unsigned int fib(unsigned int n) {
static bool doinit = true;

if (doinit) {
fibinit();
doinit = false;

}
if (n > UINT_MAX_FIB_N) {

errno = ERANGE;
return UINT_MAX;

}
return FibonacciNumbers[n];

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Arrays and Storage Classes

• Static arrays must be dimensioned with constant expressions

• Before C99, this was true for automatic arrays too
• So to use an array in a function, you had to dimension it for

the largest possible amount of work
• A waste of memory and error prone

• C99 has a much better way

• Variable length arrays
• Arrays whose size is unknown until run time
• Automatic arrays can have their dimension specified by a

nonconstant expression
• Every time execution enters the block, the expression is

evaluated
• And the array size is determined, up to exit from the block



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Arrays as Function Arguments

• Arrays can be huge
• And usually are, in S&T computing
• Passing them by value would be too costly

• Moreover, arrays cannot be used in assignments
• Thus a function cannot return an array

• The solution
• The address of the array is passed to a function
• And elements can be accessed by it
• (Later on, you’ll understand how)

• This allows elements to be assigned to
• Thus a function has a way to “return” an array result
• A mixed blessing: allows changes to happen by mistake

• Best practice: declare an array parameter const if your
only intent is reading its elements



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Averaging, the C99 Way

• Let’s write a function to average an array of doubles
• And make it generic in the array length
• Variable length array parameters come to the rescue

double avg(int n, const double a[n]) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i];

return sum/n;
}

Beware: double avg(double a[n], int n) does not work!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Averaging, the Old Way

• Before C99, there were no VLAs
• The solution was simple

• Compiler just uses type size to find the right element
• No bounds checking, no bound needed

• Many still write that way: it’s equivalent, but less readable

double avg(int n, const double a[]) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i];

return sum/n;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Calling avg()

• New or old style, simply pass array dimension and name
• If avg() is written using VLAs, pedantic compilers may give

a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydata[N];
double mydata_avg;

// read or compute N doubles into mydata[]

mydata_avg = avg(N, mydata);



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Averaging Arrays of Arbitrary
Length

• Let’s generalize the average to set of m numbers
• And make it generic, as usual
• Again, VLA parameters come to the rescue

void avg(int n, int m, const double a[n][m], double b[m]) {

int i, j;

for (j=0; j<m; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<m; ++j)

b[j] += a[i][j];

for (j=0; j<m; ++j)
b[j] /= n;

}

Notice: this order of loops nesting gives faster execution



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Calling Generic avg()

• Again, simply pass array dimension and name
• Using casts for arrays of doubles
• If avg() is written using VLAs, pedantic compilers may give

a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydata1[N][12];
double mydata1_avg[12];
double mydata2[N][7];
double mydata2_avg[7];
double mydata3[N][1];
double mydata3_avg[1];
double mydata4[N];
double mydata4_avg[1];

// read or compute N 12-uples of doubles into mydata1[]
// read or compute N 7-uples of doubles into mydata2[]
// read or compute N 1-uples of doubles into mydata3[]
// read or compute N doubles into mydata4[]

avg(N, 12, mydata1, mydata1_avg);
avg(N, 7, mydata2, mydata2_avg);
avg(N, 1, mydata3, mydata3_avg);
avg(N, 1, (double [N][1])mydata4, mydata4_avg);



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Matrix Algebra, the C99 Way

• Let’s write a function to compute the trace of a matrix of
doubles

• And make it generic in the matrix size
• Again, variable length array parameters come to the rescue
• Again, you may get warnings on calls, and they could prove

wrong

double tr(int n, const double a[n][n]) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i][i];

return sum;
}

Beware: compiler will not check the array dimensions match!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Matrix Algebra, the Old Way

• Before C99, there were no VLAs
• The solution was not that simple...

• Only the ‘first dimension’ of an array parameter could be left
unspecified at compile time

• To understand the solution, you have to learn more



Scientific and Technical Computing in C
Day 2

Luca Ferraro Stefano Tagliaventi
CINECA - SCAI Department



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math

6 Aggregate Types

7 Pointer Types
Pointers Basics
Pointers and Arrays
Generic Pointers

8 Characters and Strings

9 Input and Output

10 Managing Memory

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

You May Need More

• You may find yourself in need to return more than one result
from a function

• And you may find yourself in need to pass a big struct to a
function, without paying the price of copying its value

• And, believe it or not, in some part of your program you may
find yourself in need to access a variable whose name is not
known

• And to represent things as multiblock, unstructured grids, or
building structures, or complex molecules, you may find
yourself in need to access variables that don’t even have a
name

• In all these cases, you have to use memory addresses



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Memory? Addresses?

• You can think of memory as a huge array of units of storage
(usually 8 bits bytes)

• The index in this array is termed address
• But how many bytes are needed to store a value?

• It depends on value type and platform
• And it’s even worse...

• Not all locations are good for any value (at least
performancewise)

• Not all locations can be read/written
• What are the starting and ending address?
• The amount of memory seen by your program could vary

during execution
• You could have ‘holes’ in this ideal array
• Or this ideal array could be made of separate, independent

segments



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Enter C Pointers

• Dealing directly with memory addresses is cumbersome
• Easily makes the program non portable
• Makes the program difficult to manage and confusing
• Exhibits low level details you don’t really want to care about

• How to avoid it?
• Named variables leave the whole issue to the compiler

• You use the name and don’t care about address
• C pointers let you manipulate addresses in a transparent and

consistent way
• They contain memory addresses
• Allow you to manipulate addresses disregarding their actual

values
• Associate a C type to the memory location they point to
• And give you a way to read or write this memory location,

much like a named variable



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Pointers Basics

• int i, *p;
• declares an int variable i
• and a ‘pointer to int’ variable p
• in the latter, you can store the address of a memory location

suitable to store an int type value

• p = &i;
• &i evaluates to the address of variable i
• p gets a valid address in
• Got something familiar? Do you remember scanf()?

• *p = 10;
• Expression *p is an lvalue of type int
• You can performe assignment to it
• You can use it in expressions to access the stored value
• * has same precedence and associativity of unary -



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Pointer vs. Pointee

int *p = NULL;
int a = 5;

p: 0
a: 5

p = &a;
p: address of a
a: 5

*p += 10;
p: address of a
a: 15

a += 1;
p: address of a
a: 16



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Avoiding Costly Copies

struct vect3D {
double x, y, z;

};

// REMINDER: I have to make vcross() more efficient! DONE!!
struct vect3d vcross(const struct vect3D *u, const struct vect3D *v) {

struct vect3D c;

c.x = u->y*v->z - u->z*v->y;
c.y = u->z*v->x - u->x*v->z;
c.z = u->x*v->y - u->y*v->x;

return c;
}

• Copying 6 doubles for very little work
• Let’s put pointers to good use
• u->y is a convenient shorthand for (*u).y
• But now we have the address of the arguments and

could make a mistake and change their contents
• Let’s make the pointees const



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Did we say “valid”?

• A valid pointer value is an address that:
• is in the process memory space
• points to something which exists
• and whose type matches

• Invalid pointers
• uninitialized pointers (point to the wrong place, at best)
• the address of a variable that does not exist anymore
• the address of one type put in pointer to another type (unless

you REALLY know what you are doing)
• a null pointer, i.e. a 0 address

• Dereferencing (with *) a null pointer forces runtime error

• Good practice:
• Always initialize pointers
• If you don’t know yet the right address, use NULL from
stddef.h

• 0 may also be used, but less readable



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A Naive Mistake

struct vect3D {
double x, y, z;

};

// REMINDER: I have to make vcross() more efficient! DONE!! Trying to do better...
struct vect3d *vcross(const struct vect3D *u, const struct vect3D *v) {

struct vect3D c;

c.x = u->y*v->z - u->z*v->y;
c.y = u->z*v->x - u->x*v->z;
c.z = u->x*v->y - u->y*v->x;

return &c; // MADNESS!!
}

• Sparing another copy it’s tempting...
• But it’s very naive!
• c is an automatic variable, and it’s gone when the pointer is

used
• And probably the memory locations have been already

reused and overwritten!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Pointers and Arrays

• double *p[10]
• it’s an array of 10 pointers to double

• and double *p[10][3]
• it’s an array of 10 arrays, each of 3 pointers to double

• while double (*p)[10]
• it’s a pointer to array of 10 doubles

• and double (*p)[10][3]
• it’s a pointer to an array of 10 arrays, each of 3 doubles

• Confusing? It’s logical: operator [] has higher precedence
than *

• But easily becomes nasty!
• What’s double (*p[10])[3]?
• And double (*(*p[10])[3][5])[8][2]?

• Best practice: use cdecl tool to familiarize and decrypt



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Pointers Arithmetic

• Useful to poke around in arrays
• p + 7

• will give you an address
• that is 7*sizeof(*p) after the one in p

• You can also use -, +=, -=, ++, and --
• p1 - p2

• if of the same pointer type, will give you an integer value
• more precisely, of ptrdiff_t type (from stddef.h)
• the displacement from p2 to p1 in units of sizeof(*p1)

• Pointer comparison
• == (equal), !=, >, <, >=, <= can be used on pointers of the

same type
• Pointer casting

• Pointer values can be cast to pointers of different type
• Do it VERY carefully, it’s easy to do the wrong thing
• Pointers may also be cast to some integer type, but

it’s highly non portable, don’t do it



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Pointers and Array Equivalence

• *(p+7) can be shortened to p[7]

• Aha!
• Can a pointer be used as an array?

• true

• I see... so is the array name a pointer?
• true, but it’s constant, you can’t change it

• But if I have int a[N], and int *p, may I assign p=a?
• true, you can

• Then, what’s the difference between an array variable and a
pointer variable declarations?

• An array declaration allocates memory for data
• A pointer declaration allocates memory for a data address

only
• And between array and pointer function parameters?

• Irrelevant, an array argument passes a pointer
• You are now ready to understand good old C tricks



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Skeptical? Try to Believe

#include <stdio.h>

double a[] = {1.0, 2.0, 3.0, 4.0, 5.0};

int main() {

double *p;

p = a; // variable p now stores the address of array a

printf("%lf\n", a[2]); // will print 3.0
printf("%lf\n", *(p+2)); // will print 3.0

p[2] = 7.0; // reassigns a[2]

printf("%lf\n", p[2]); // will print 7.0
printf("%lf\n", a[2]); // ditto, it’s the same location

return 0;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Array Names and Pointers

int a[10];
int *p = a + 5;

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a�
?

p 6
int b[5][2];

b[0] b[1] b[2] b[3] b[4]

b[0][0] b[0][1] b[1][0] b[1][1] b[2][0] b[2][1] b[3][0] b[3][1] b[4][0] b[4][1]

b�
?

b[0]�
?



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Averaging, with Pointers

• This one should be quite obvious
• Perfectly equivalent to using const double a[]

• You’ll often encounter something like this, particularly in
libraries

double avg(int n, const double *a) { /* which one is const? */
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i];

return sum/n;
}

const int *p is a pointer to const, int *(const p) is a const pointer



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Averaging Arrays, with Pointers

• Let’s generalize to sets of m numbers
• And make it generic, as usual
• Now you are ready for the traditional solution
• And for an application of pointer casting

void avg(int n, int m, const double (*a)[], double *b) {
int i, j;
const double *p = (const double *)a;

for (j=0; j<m; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<m; ++j)

b[j] += p[i*m + j]; /* mapping two indexes */
/* to one ‘by hand’ */

for (j=0; j<m; ++j)
b[j] /= n;

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Calling Generic avg()

• New or old style, arrays or pointers, simply pass array
dimension and name

• Using casts for arrays of doubles
• If avg() is written using VLAs, pedantic compilers may give

a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydata1[N][12];
double mydata1_avg[12];
double mydata2[N][7];
double mydata2_avg[7];
double mydata3[N][1];
double mydata3_avg[1];
double mydata4[N];
double mydata4_avg;

// read or compute N 12-uples of doubles into mydata1[]
// read or compute N 7-uples of doubles into mydata2[]
// read or compute N 1-uples of doubles into mydata3[]
// read or compute N doubles into mydata4[]

avg(N, 12, mydata1, mydata1_avg);
avg(N, 7, mydata2, mydata2_avg);
avg(N, 1, mydata3, mydata3_avg);
avg(N, 1, (double [N][1])mydata4, &mydata4_avg);



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Averaging Arrays, Another Classic
Flavor

• Again averages sets of m numbers
• For arbitrary m
• This idiom arose when compilers were not good at

optimization

void avg(int n, int m, const double (*a)[], double *b) {
int i, j;
const double *p = (const double *)a;

for (j=0; j<m; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<m; ++j) {

b[j] += *p; /* array elements ‘walked by’ */
++p; /* in the same sequence */

}

for (j=0; j<m; ++j)
b[j] /= n;

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Matrix Algebra, the Old Way

• Let’s write a function to compute the trace of a matrix of
doubles

• And make it generic in the matrix size
• And use a traditional way
• Again, you’ll often encounter something like this, particularly

in libraries

double tr(int n, const double (*a)[]) {
int i;
double sum = 0.0;
const double *p = *a; /* works like casting here, why? */

for (i=0; i<n; ++i)
sum += p[i*n + i];

return sum;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Matrix Algebra, Another Old Way

• Let’s write a function to compute the trace of a matrix of
doubles

• And make it generic in the matrix size
• And use another traditional way, from times when compilers

didn’t optimize well

double tr(int n, const double (*a)[]) {
int i;
double sum = 0.0;
const double *p = *a;

for (i=0; i<n; ++i) {
sum += *p;
p += n + 1; /* next element on diagonal */

}

return sum;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Matrix Algebra, yet Another Classic
Flavor

• Bottom line, we are working on doubles
• Call it like tr(8, (double *)mp)

• Or call it like tr(8, mp[0])

• Widely used in numerical libraries, but write new code using
VLAs

double tr(int n, const double *a) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i) {
sum += *a;
a += n + 1; /* next element on diagonal */

}

return sum;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Matrix Algebra, a Bad Way

• A way of getting rid of all complexity
• It’s the “third” use of type void

• Sometimes you’ll find sloppy code like this
• But not a good idea in this case, it’s dangerous

double tr(int n, const void *a) {
int i;
double sum = 0.0;
double *p = a;

for (i=0; i<n; ++i) {
sum += *p;
p += n + 1; /* next element on diagonal */

}

return sum;
}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

void and Pointers

• void *p; declares a generic pointer
• I.e. a pointer pointing to unknown type
• If type is unknown, size is unknown
• So no arithmetic is possible, only assignment and

comparisons
• The value of any pointer can be converted to a generic one
• A generic pointer can be converted to any pointer type

• So, what’s the danger with tr()?
• tr() assumes something pointing to doubles
• With void *, pointers at any type will do
• A pedantic compiler would warn you at any use of tr()
• And you’d get annoyed and switch off warnings

• But generic pointers are essential to other purposes



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

qsort()

• Declaration (from stdlib.h):
void qsort(
void *base,
size_t count,
size_t size,
int (*compare)(const void *el1, const void *el2) );

• Sorts an array of count elements of unknown type, starting
at base

• Each element has size size
• What’s compare?

• qsort() doesn’t know elements type
• And has no clue at how to compare them
• compare is a pointer to a function that knows more

• Yes, a function has an address and function name
evaluates to it



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Sorting with qsort()

• Define a comparison function like:
int comparedoubles(const double *a, const double *b) {

if (*a == *b)
return 0;

if (*a > *b)
return 1;

return -1;
}

• Can you see how it matches the compare parameter?
• Then, if g is an array of 10000 doubles, you can sort it in

ascending order like this:
qsort(g, 10000, sizeof(double), comparedoubles);

• Want it sorted in descending order?
• Substitute < to >

• Have an array sorted in ascending order?
• You can use bsearch() to find an element



Scientific and Technical Computing in C
Day 2

Luca Ferraro Stefano Tagliaventi
CINECA - SCAI Department



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math

6 Aggregate Types

7 Pointer Types

8 Characters and Strings
Characters
Strings
String Manipulation Functions
Parsing the Command Line

9 Input and Output

10 Managing Memory

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Characters

• In C, characters have type char

• I.e. an integer type holding the numeric character code
• But it’s implementation defined if char is signed or not
• Encoding may depend on implementation and OS
• In most implementations, characters numbered 0 to 127

match the standard ASCII character set

• Literal character constants are specified like this: ’C’
• ’\n’ is new line
• ’\t’ is tab
• ’\r’ is carriage return
• ’\\’ is backslash \
• ’\’’ is ’
• ’\"’ is "
• and ’\0’ is ASCII NUL, with code 0, quite important

despite of its value



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

#include <ctype.h>

Function Returns
int isalpha(int c) true if alphabetic character
int isdigit(int c) true if a digit character
int isalnum(int c) isalpha(c) || isdigit(c)
int isprint(int c) true if printable character (including ’ ’)
int iscntrl(int c) !isprint(c)
int islower(int c) true if lowercase alphabetic character
int isupper(int c) true if uppercase alphabetic character
int isspace(int c) true if ’ ’, ’\t’, ’\n’, ...

int tolower(int c)
converts uppercase ones to lowercase

others unchanged

int toupper(int c)
converts lowercase ones to uppercase

others unchanged

• Do you remember? char types are converted to int
in all arithmetic expressions

• Do not play with character codes, use these functions, they
make the code portable



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Strings

• Strings are not first-class citizens in C
• Simply arrays of chars
• The string must be terminated by a ’\0’ character
• Commonly referred to as null terminated strings
• This has annoying consequences

• String lengths must be computed by scanning
• No way for bounds checking
• And a source of program weaknesses

• String constants are specified like this:
"A null terminated string"

• A terminating ’\0’ is automatically appended
• You already met them using printf()

• Use a \ at end of lines to write multiline string constants



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

The Biggest Mistake

char decdigits[10];

//...

strcpy(decdigits, "0123456789");

• The string is 10 characters long
• But it has a terminating ’\0’

• So its internal representation is 11 characters long



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Fixing the Biggest Mistake

char decdigits[] = "0123456789";

• An 11 characters array will be automatically allocated
• (Yes, you could do this for any array)
• But this only fixes the problem on initialization
• Not when you build string dynamically or do simple minded

I/O
• Ever heard of ’buffer overflows’?



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

#include <string.h>

Function Does
size_t strlen(const char *s) returns actual string length
char *strncpy(char *d,

copies n characters from s to d, returns dconst char *s,
size_t n)

char *strncat(char *d,
appends n characters from s to d, returns dconst char *s,

size_t n)
int strcmp(const char *s1, lexicographic comparison of s1 and s2

const char *s2)
int strncmp(const char *s1,

lexicographic comparison of s1 and s2, up to n charactersconst char *s2,
size_t n)

char *strchr(const char *s, returns pointer to first occurrence in s
int c) of character c, NULL if not found

char *strrchr(const char *s,) returns pointer to last occurrence in s
int c) of character c, NULL if not found

char *strcspn(const char *s, returns pointer to first occurrence in s
const char *set) of any character in set, NULL if not found

char *strspn(const char *s, returns pointer to first occurrence in s
const char *set) of any character not in set, NULL if not found

char *strstr(const char *s, returns pointer to first occurrence in s
const char *sub) of string sub, NULL if not found

char *strtok(const char *s, allow to separate string s into tokens,
const char *set) read documentation

• Do you remember? char types are converted to int in many cases
• You’ll also find in use strcpy() and strcat(): dangerous! avoid them
• Way too common mistake: forgetting about and writing code doing the same
• Don’t reinvent the wheel, use library functions!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More Friends from stdlib.h

Function Returns conversion of
initial portion of s to

strtof(const char *s, char **p)
3 float1

strtod(const char *s, char **p) double1

atof(const char *s) double

strtold(const char *s, char **p)
3 long double1

atoi(const char *s) int

strtol(const char *s, char **p, int base2) long1

atol(const char *s) long

strtoul(const char *s, char **p, int base2) unsigned long1

strtoll(const char *s, char **p, int base2)3 long long1

atoll(const char *s)
3 long long

strtoull(const char *s, char **p, int base2)3 unsigned long long1

1. If p is not null, sets it to point to first character after converted portion of s
2. The base used in string representation ranges from 2 to 36 (!).
3. C99

• More practical than scanf() family in many cases
• strto...() form preferred
• Use sprintf() to convert the other way around
• Where char **p appears, pass the address of a char *

pointer variable...



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Yes, Pointers can be Pointees!

int **p = NULL;
int *q = NULL;
int a = 5;

p: 0
q: 0
a: 5

p = &q;
p: address of q
q: 0
a: 5

*p = &a;
p: address of q
q: address of a
a: 5

**p += 10;
p: address of q
q: address of a
a: 15



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

argc and argv

• Up to now, we disregarded main() parameters
• Which is legal
• And writing int main(void) is legal too

• In its full glory, main(int argc, char *argv[])
receives two arguments

• An integer count, argc
• And an array of argc pointers to string, argv
• Names are not mandatory, just a solid tradition

• On most systems
• argv[0] contains the name of program executable
• argv[1] through argv[argc-1] contain the command line

parameters specified at program invocation

• Form int main(int argc, char **argv) is fully
equivalent



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Use of argc and argv

void print_help_and_exit(){
printf("Usage: ./shapp [-l|-t|-h]\n");
exit(EXIT_FAILURE);

}
int main(int argc,char *argv[]){

if(argc < 2 || argv[1][0]!=’-’)
print_help_and_exit();

switch(argv[1][1])
{

case ’t’:
timestamp_ordering();
break;

case ’r’:
reverse_order();
break;

case ’h’:
print_help_and_exit();

default:
print_help_and_exit();

}

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More Alternatives with switch ()

• switch (integer-expression) {
case constant-expression:
statements

[ case constant-expression:
statements]

[ default:
statements]

}
1 Evaluates integer-expression
2 If value equals one constant-expression, execution jumps to

the statement following it
3 Otherwise, if default: exists, execution jumps to statement

following it
4 Otherwise execution leaves switch() and proceeds to the

following code



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A switch () ’Feature’

• Beware: once 2 or 3 above happened, encounter of another
case or of default does not imply exit from switch!

• A break; statement is needed to this purpose

• This is way too easily forgotten
• Best practices:

• Always add a break; statement at end of each ’case’
• Even if it’s unreachable, you’ll appreciate on code changes
• Unless you really intend to execute two or more ’cases’ at

once



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More break, and continue

• A break; statement forces execution to bail out from
innermost enclosing statement among:

• switch ()
• while ()
• do...while ()
• for (;;)

• A continue; statement terminates execution of current
iteration of innermost enclosing statement among:

• while ()
• do...while ()
• for (;;)

• Execution continues with next iteration





Scientific and Technical Computing in C
Day 2

Luca Ferraro Stefano Tagliaventi
CINECA - SCAI Department



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math

6 Aggregate Types

7 Pointer Types

8 Characters and Strings

9 Input and Output
Files
Text I/O
Binary I/O

10 Managing Memory

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Files

• C thinks of files as streams of data you can read/write from/to
• C has no notion of file content or structure: user knows about

• You read what you know is there
• You write what you want to put there

• Files are managed by internal data structures of FILE type
• Whose details may be implementation defined

• All functions are declared in stdio.h

• Most functions return or accept pointers to FILE structures
• You simply declare variables of FILE * type and use these

functions
• And usually may disregard details



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Three Files for Free

• When main() is called, three files have already been
opened for you

• Accessible by three expressions of FILE * type
• stdin for standard input
• stdout for standard output
• stderr for error messages output

• Usually map to user’s terminal, unless they were redirected
at command launch



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Using More Files is not Free

• If myfile is a FILE * variable, open a file using:
myfile = fopen("mydata.dat", "r");

• Second string is a mode:
• "r" to read existing text file
• "w" to create a new text file or truncate existing one to zero

length
• "a" to create a new text file or append to existing one
• Use "rb", "wb", or "ab" for binary files
• "r+" and "r+b" to both read and write to existing file

• Biggest mistake: assuming fopen() succeeded
• fopen() returns NULL on failure
• Always check and use errno to know more

• fclose(FILE *f) orderly closes an open file, do it when
you are done with it

• A string FILENAME_MAX long is big enough for any
file name



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Simple String I/O

• char *fgets(char *s, int n, FILE *stream)
• Reads in at most one less than n characters from stream and

stores them into the buffer pointed to by s. Reading stops
after an EOF or a newline.

• Returns s on success, NULL on failure
• A robust I/O function. Use it in your code.

• Use int feof(FILE *stream) to check if NULL was
returned because end of file was reached

• char *fputs(const char *s, FILE *stream)
• Writes s string to file
• Returns EOF on error

• char *puts(const char *s)
• Like fputs() on stdout, but adds a ’\n’

• You’ll encounter gets() in codes: offers no control on
maximum input size, don’t use it



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Talking to Humans

• fprintf() converts internal formats of basic data types to
human readable formats

• fprintf(file, "control string", arguments)
• Characters in control string are emitted verbatim
• But conversion specifications beginning with % cause the

conversions and output of arguments
• Arguments (i.e. expressions) must match conversion

specifications in number, types, and positions
• Conversion specification %% emits a % character and

consumes no arguments

• printf() outputs to stdout
• snprintf() and sprintf()

• Write to string instead of file
• snprintf() is preferable as maximum string length can be

specified



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Common Mistakes

• Beware: if you want to remove item c from output in
printf("Parameters: %lf, %lf, %lf\n", a, b, c);

the following is not enough:
printf("Parameters: %lf, %lf, %lf\n", a, b);

you need to update the format string too:
printf("Parameters: %lf, %lf\n", a, b);

• And on adding an item you have to add a proper conversion
specifier

• Ditto for type mismatches: no argument checking is required
• In some cases, dire consequences could follow

• A clever compiler may be able to warn you, if you ask



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

printf(): Integer Types

• In %d and %u, d and u are conversions
• Internal to base 10 text representation

• l, ll, h, and hh, are size modifiers
• Look back at integer types table if you need a refresh

• Variations on a theme
• %10d: at least 10 characters, right justified, space padded
• %.4d: at least 4 digits, right justified
• %010d: at least 10 characters, right justified, leading 0s
• %-10d: at least 10 characters, left justified, space padded
• %+d: sign is always printed (not relevant for u)
• % d: same, but a space if positive (not relevant for u)

• printf("%-5d%+6.4d", 12, 12);
Prints?

12 +0012
(notice: 4 space characters)



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

printf(): Floating Types

• Conversions
• %f: float to base 10 decimal text
• %E: float to base 10 exponential text
• %G: most suitable of the above ones

• l and L are size modifiers
• Look back at floating types table if you need a refresh

• Variations on a theme
• %10f: at least 10 characters, right justified, space padded
• %.4f: 4 digits after decimal point (f and E only)
• %.7G: 7 significant digits
• %010f: at least 10 characters, right justified, leading 0s
• %-10f: at least 10 characters, left justified, space padded
• %+f: sign is always printed
• % f: same, but a space if positive

• printf("%+8.2lf %.4lE", 12.0, 12.0);
Prints?

+12.00 1.2000E+01



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

printf(): Characters and Strings

• %c: emits character with specified code
• No variations

• %s: emits a string
• Variations on a theme

• %10s: at least 10 characters, right justified, space padded
• %.7s: exactly(!) 7 characters from string
• %-10s: at least 10 characters, left justified, space padded

• printf("%-7s%4.3s", "Vigna", "Vigna");
Prints?

Vigna Vig
(notice: 3 space characters)

• And more conversions are defined, but we’ll not cover
them



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Listening to Humans

• fscanf() converts human writable formats of basic data
types to internal ones

• fscanf(file, "control string", arguments)
• Arguments must be pointers!
• Arguments must match conversion specifications in number,

types, and positions
• White-space in control string matches an arbitrary

sequence of zero or more spaces
• All other characters must match verbatim with characters in

input

• scanf() reads from stdin

• sscanf() reads from string instead of file



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

scanf() Conversions

• Conversions discussed for printf() work, the other way
around

• They skip white-space characters before reading and
converting, except for %c

• Number too big for the type? Result is implementation
defined

• Fewer variations on the theme (for most conversions)
• %10d: no more than 10 characters considered (not for %c)
• %*d: looks for text matching an int, but ignores it

• scanf("%4d%*6d%3d", &i1, &i2);
Input: 12 34567890 (notice: 3 space characters)
Reads?

12 in i1, 90 in i2



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Common Mistakes

• Any mismatch in input to a scanf() will stop input and
conversions

• scanf() always returns the number of conversions
performed, do not discard it:
itemsread = scanf("%lf ,%lf", &a, &b);

check the result, and take correcting actions (or fail
gracefully)

• Giving fewer arguments than conversion specifiers, as in:
itemsread = scanf("%lf ,%lf ,%lf", &a, &b);

is a very good recipe for disaster, and one difficult to debug
• So is giving the wrong pointer or a pointer to the wrong type



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

User Input

//...

printf("Enter t max: ");

scanf("%lf", &tmax);

• User mistypes U.0 for 7.0
• Program behaves in unintended ways
• Could check scanf() return value and fail gracefully, but

let’s give user a chance



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Wrong Solution

int itemsread;
//...
do {

printf("Enter t max: ");

itemsread = scanf("%lf", &tmax);

} while (itemsread == 0);

• Again, user mistypes U.0 for 7.0
• Program stops responding, burning CPU cycles
• scanf() is very finicky about input

• As soon as a character doesn’t match the format string,
puts it back in input buffer

• To find it again at each iteration



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Better Solution

int itemsread;
//...
do {

char s[257];

printf("Enter t max: ");
if (fgets(s, sizeof(s), stdin) == NULL)

exit(EXIT_FAILURE);

itemsread = sscanf(s, "%lf", &tmax);

} while (itemsread == 0);

• This form causes wrong input to be consumed and removed
• Use fscanf() for rigidly formatted files
• With imprecise formats (as user input is), use fgets(), then
sscanf()



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Dealing with Many Data

• Text I/O is human readable
• Text I/O is platform independent
• But text I/O is huge

• Because of issues in base 2 vs. base 10 representation
• To recover exact binary form of a floating type, you need:

• at least 9 decimal digits in text I/O for a float
• at least 19 decimal digits in text I/O for a double

• And text I/O is slow
• Because of size
• And because conversions take time

• Best practice:
• Use text I/O to talk to humans or as a last resort for some

programs
• Use binary I/O otherwise



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Binary Reads and Writes

size_t fread(void *data, size_t elsz,
size_t count, FILE *f);

size_t fwrite(const void *data, size_t elsz,
size_t count, FILE *f);

• Read/write count elements of size elsz from/to file f
to/from address data

• Both return the number of elements actually read/written
• Can be less than requested if error occurred, or (fread()

only) end of file was encountered
• Use feof() or ferror() to determine cause

• Best practice:
• do binary I/O in chunks as large as possible
• performance will sky-rocket



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Walking Around in a File

• Each I/O operation takes place from the position in the file
where the last one ended

• But position can be changed
• Not special to binary files, but mostly used with them
• fseek(f, 4096L, wherefrom) moves forward by 4096

bytes relative to:
• file beginning, if wherefrom is SEEK_SET
• current position, if wherefrom is SEEK_CUR
• file end, if wherefrom is SEEK_END
• and returns zero if successful, non zero otherwise

• ftell(f) returns the current position (long)
• on failure, returns -1L and sets errno

• This is a 64 bits world: files can be huge!
• In case, use fsetpos() and fgetpos()
• They use an fpos_t type large enough



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Dealing with Fortran Binary Files

• You may need to read Fortran binary files
• And Fortran adds two extra 32 or 64 bits integers, one at

beginning and one at end of each record (i.e. of each WRITE
for unformatted files)

• Option 1: skip them with fseek()

• Option 2: read them and forget the values

• Option 3: write the file from Fortran opening it in STREAM
mode

• Designed to match the C file concept
• Introduced in Fortran 2003
• But already available in most implementations





Scientific and Technical Computing in C
Day 2

Luca Ferraro Stefano Tagliaventi
CINECA - SCAI Department



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math

6 Aggregate Types

7 Pointer Types

8 Characters and Strings

9 Input and Output

10 Managing Memory
Dynamic Memory Allocation
Sketchy Ideas on Data Structures

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A PDE Problem

• Let’s imagine we have to solve a PDE
• On a dense, Cartesian, uniform grid

• Mesh axes are parallel to coordinate ones
• Steps along each direction have the same size
• And we have some discretization schemes in time and space

to solve for variables at each point



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A Rigid Solution

#define NX 200
#define NY 450
#define NZ 320

double deltax; // Grid steps
double deltay;
double deltaz;
//...
double u[NX][NY][NZ]; // x velocity component
double v[NX][NY][NZ]; // y velocity component
double w[NX][NY][NZ]; // z velocity component
double p[NX][NY][NZ]; // pressure

• We could write something like that at file scope
• But it has annoying consequences

• Recompile each time grid resolution changes
• A slow process, for big programs
• And error prone, as we may forget about

• Couldn’t we size data structures according to user input?



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Looking for Flexibility

int main(int argc, char *argv[]) {
double deltax, deltay, deltaz; // Grid steps
int nx, ny, nz

//...
double u[nx][ny][nz];
double v[nx][ny][nz];
double w[nx][ny][nz];
double p[nx][ny][nz];

• We could think of declaring variable length arrays inside
main() or other functions

• This is unwise
• Automatic arrays are usually allocated on the process stack
• Which is a precious resource
• And limited in most system configurations



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

A Better Approach

#define MAX_NX 400
#define MAX_NY 400
#define MAX_NZ 400

double u[MAX_NX*MAX_NY*MAX_NZ];
double v[MAX_NX*MAX_NY*MAX_NZ];
double w[MAX_NX*MAX_NY*MAX_NZ];
double p[MAX_NX*MAX_NY*MAX_NZ];

void my_pde_solver(int nx, int ny, int nz,
double u[nx][ny][nz],
double v[nx][ny][nz],
double w[nx][ny][nz],
double p[nx][ny][nz]);

• We could use VLA parameters
• But we should cast on calls, to avoid compiler warnings

• How would you cast u[MAX_NX*MAX_NY*MAX_NZ] into
double u[nx][ny][nz]?

• Maximum problem size is program limited: nx*ny*nz
must be less than MAX_NX*MAX_NY*MAX_NZ + 1



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Slightly More Comfortable, the Old
Way

void my_pde_solver(int nx, int ny, int nz,
double u[],
double v[],
double w[],
double p[]) {

// variable declarations and solver code...

u[(i*ny + j)*nz + k] = ...;
v[(i*ny + j)*nz + k] = ...;
w[(i*ny + j)*nz + k] = ...;
p[(i*ny + j)*nz + k] = ...;

// more solver code...

• We could write code as the above, no need for casting on
my_pde_solver() calls

• And you’ll encounter code like this, that was a C89 way
• But so old fashioned!! Don’t do that for new codes
• And remember, maximum problem size is limited



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

More Comfortable, Thanks to C99

void my_pde_solver(int nx, int ny, int nz,
double um[],
double vm[],
double wm[],
double pm[]) {

double (*u)[ny][nz] = (double (*)[ny][nz])um;
double (*v)[ny][nz] = (double (*)[ny][nz])vm;
double (*w)[ny][nz] = (double (*)[ny][nz])wm;
double (*p)[ny][nz] = (double (*)[ny][nz])pm;

// solver code using u, v, w, and p as humans do

• Let’s rewrite my_pde_solver() like this (and update
function declaration as well!)

• Definitely easier to use
• No casting on my_pde_solver() calls
• And writing my_pde_solver() is easier too

• Maximum problem size still program limited, however



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Removing Limitations

• Being program limited is annoying

• It’s much better to accommodate to any user specified
problem size

• Right, as long as there is enough memory
• But if memory is not enough, not our fault
• It’s computer or user’s fault

• And there are many complex kinds of computations
• Those in which memory need cannot be foreseen in advance
• Those in which arrays do not fit
• Those in which very complex data structures are needed



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Enter Dynamic Allocation (from
stdlib.h)

void *malloc(size_t size)
void *calloc(size_t el_count, size_t el_size)

• malloc() allocates a memory area suitable to host
a variable whose size is size

• Allocated memory is uninitialized.
• Use it like this:

a_ion_ptr = (ion *)malloc(sizeof(ion));

• calloc() allocates a memory area suitable to host
an array of count elements, each of size size

• Allocated memory is initialized to zero: can be slow, but useful
• Use it like this:

a_flt_ptr = (float *)calloc(nx*ny*nz, sizeof(float));

• Best practice: always cast return values, gives less
compiler warnings and helps readability



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

The Biggest Mistake

• Assuming malloc() or calloc() succeeded!
• Where all these ‘dynamic allocated memory’ comes from?

• From an internal area, often termed “memory heap”
• When that is exhausted, OS is asked to give the process more

memory
• And if OS is short of memory, or some configuration limit is

exhausted...
• On failure, malloc() and calloc() return null pointers

• Dereferencing it forces program termination (usually a
“segmentation fault”)

• We could say you deserve it
• But all time spent in previous computations would be lost

• Best practice: ALWAYS, ALWAYS, always check
if ((p = malloc(some_size)) == NULL) {

// save your precious data, if any
// and fail gracefully

}



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Resizing

void *realloc(void *ptr, size_t new_size)

• realloc() takes a previously allocated memory area, and
gives you a new area whose size is size

• Original area contents are copied in the new area, up to
min(oldsize,size)

• Use it like this:
new_ptr = (float *)realloc(a_flt_ptr,

nx*ny*2*nz*sizeof(float));

• Particularly handy to shrink or lengthen arrays
• On failure, returns null pointer and leaves old area

unchanged

• Biggest mistakes
• Assuming realloc() succeeded: always check
• Assuming only size changes and address remains

the same: it can happen, but only in particular cases



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Getting Rid of Memory Areas

void free(void *ptr)

• An allocated memory area persists until it is “freed”

• Of course, heap allocated memory is claimed back at
process termination

• But better give back a memory area to the dynamic memory
“pool” for reuse, as soon as you are over with it

• Just imagine you are processing one item at a time...
• Allocating new memory areas at each item without freeing

previously allocated ones...
• Your process size will grow until...
• In jargon, this is a memory leak

• Remember: programmers causing memory leaks have
particularly bad reputation



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

The First Big Mistake with free()

char s[BIG_STRING + 1];
char *p;

//....
if ((p = malloc(BIG_STRING + 1)) == NULL) {

// save your precious data, if any
// and fail gracefully

}
strncpy(p, s, BIG_STRING);

while (++p) {
// process characters

}
free(p); // p has been incremented!
free(s); // MADNESS: s not ‘malloced’!

• free() MUST be passed a pointer returned by malloc()
and friends

• Otherwise behavior is implementation defined
• In most practical cases, program execution is aborted



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

The Second Big Mistake with
free()

int *p, i;
long long *q;

if ((p = malloc(sizeof(int)*n)) == NULL) { /*take action*/ }
// process some data
free(p);

if (!(q = malloc(sizeof(long long)*m))) { /*take action*/ }
for(i=0; i<m; ++i)

p[i] = i - m; // a typo!
//...

• Memory still there, but could have been reused!
• Or could have not been reused as well...
• Could appear to work, very difficult to catch
• Good advice: always zero a pointer after freeing it

• Can be done “automagically” if you
#define free(ptr_var) (free(ptr_var), ptr_var = NULL)



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

The Third Big Mistake with free()

typedef struct mydata {
int n;
double *somedata;
int *moredata;

} mydata;

mydata *p = calloc(1, sizeof(mydata));
if (!p) { /* take action */ }

p->n = datasize;
p->somedata = calloc(datasize, sizeof(double));
p->moredata = calloc(datasize, sizeof(int));
if (!p->somedata || !p->moredata) { /* take action */ }

//input and process data

free(p); // forgot something?

• Freeing p, p->somedata and p->moredata are gone,
so we can’t free their pointees, memory leak!

• Free p->somedata and p->moredata first, then p



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Memory Friends from string.h

Function Does
void *memmove(void *d,

copies a len bytes sized memory area from s to d, returns dconst void *s,
size_t len)

void *memset(void *p, writes len copies of (unsigned char)val
int val, starting from address p,
size_t len) returns p

• You’ll happen to encounter memcpy() too
• Copies almost as memmove() does
• If memory areas happen to overlap, memmove() is safe and

does the right thing
• While memcpy() could be faster, but is unsafe
• Be prudent, and prefer memmove()
• Surprisingly, memmove() is also faster in quite a few

implementations!

• Way too common mistake: forgetting about and writing code
doing the same

• Don’t reinvent the wheel, use library functions!



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Comfortable, and User Friendly

void my_pde_solver(int nx, int ny, int nz,
// physical parameters
) {

//...
double (*u)[ny][nz] = (double (*)[ny][nz])calloc(nx*ny*nz, sizeof(double));
double (*v)[ny][nz] = (double (*)[ny][nz])calloc(nx*ny*nz, sizeof(double));
double (*w)[ny][nz] = (double (*)[ny][nz])calloc(nx*ny*nz, sizeof(double));
double (*p)[ny][nz] = (double (*)[ny][nz])calloc(nx*ny*nz, sizeof(double));

if (u == NULL || v == NULL || w == NULL || p == NULL) {
fprintf(stderr, "Not enough memory!\n");
exit(exit_failure);

}

// solver code using u, v, w, and p in as humans do

• Now available memory is the limit
• And still easy to use



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Nonuniform Grids

• Let’s imagine we have to solve a PDE
• On a dense, Cartesian, non uniform grid

• Mesh axes are parallel to coordinate ones
• Steps along each direction differ in size from point to point



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Keeping Information Together

typedef struct nonuniform_grid {
int nx, ny, nz;

double *deltax; // Grid steps
double *deltay;
double *deltaz;

} nonuniform_grid;
//...
nonuniform_grid my_grid;

//...

mygrid.deltax = calloc(nx - 1, sizeof(double));
mygrid.deltay = calloc(ny - 1, sizeof(double));
mygrid.deltaz = calloc(nz - 1, sizeof(double));
// Check immediately for NULL pointers!

• Related information is best kept together
• Grid size and grid steps are related information



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Structured Grids in General Form

• Let’s imagine we have to solve a PDE
• On a dense structured mesh

• Could be continuously morphed to a Cartesian grid
• Need to know coordinates of each mesh point



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Sketching a Mesh Description

typedef vect3D meshpoint;
typedef vect3D normal;

typedef struct mesh {
int nx, ny, nz;

meshpoint *coords;

normal *xnormals;
normal *ynormals;
normal *znormals;

double *volumes;
} mesh;
//...
nonuniform_grid my_grid;

mygrid.coords = calloc(nx*ny*nz, sizeof(meshpoint));
mygrid.xnormals = calloc(nx*ny*nz, sizeof(normal));
mygrid.ynormals = calloc(nx*ny*nz, sizeof(normal));
mygrid.znormals = calloc(nx*ny*nz, sizeof(normal));
mygrid.volumes = calloc((nx-1)*(ny-1)*(nz-1), sizeof(double));
// Check immediately for NULL pointers!

• No VLAs allowed in structures
• Cast to VLA array pointer in functions using it



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Multiblock Meshes and More

• A multiblock mesh is an assembly of connected structured
meshes

• You could dynamically allocate a mesh array
• Or build a block type including a mesh and connectivity

information

• Adaptive Mesh Refinement
• You want your blocks resolution to adapt to dynamical

behavior of PDE solution
• Which means splitting blocks to substitute part of them with

more resolved meshes

• Eventually, you’ll need more advanced data structures
• Like lists (and recursion comes handy)
• Like binary trees, oct-trees, n-ary trees (and recursion

becomes essential)



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

If You Read Code Like This...

struct block_item;

typedef struct block_item {
block *this_block;

struct block_item *next;
} block_item;

//...
while (p) {

advance_block_in_time(p->this_block);
p = p->next;

}

• It is processing a singly-linked list of mesh blocks
• You need to learn more on abstract data structures
• Don’t be afraid, it’s not that difficult



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

And If You Read Code Like This...

struct block_tree_node;

typedef struct block_tree_node {
block *this_block;

int children_no;
struct block_tree_node **childrens;

} block_tree_node;

//...
void tree_advance_in_time(block_tree_node *p) {

int i;

for(i=0; i<p->children_no; ++i)
tree_advance_in_time(p->childrens[i]);

advance_block_in_time(p->this_block);
}

• It is processing a tree of mesh blocks (AMR, probably)
• You need to learn more on abstract data structures
• Don’t be afraid, it’s not that difficult



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Outline

1 Introduction

2 C Basics

3 More C Basics

4 Integer Types and Iterating

5 Arithmetic Types and Math

6 Aggregate Types

7 Pointer Types

8 Characters and Strings

9 Input and Output

10 Managing Memory

11 Conclusions



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

What We Left Out (1 of 2)

• More preprocessor magic, like:
• lots of predefined macros to automatically adapt your code to

platforms and compilers
• macros to write function with variable number of arguments

• More types, like:
• extended integer types
• wide and Unicode characters and related facilities
• unions and bit fields, mostly used for OS programming

• More facilities to:
• control the floating point environment
• interact with the process environment
• localize your program

• More facilities for robustness:
• static and dynamic assertions
• bounds checking functions for I/O and string management

(C11 Annex K)
• precise control of process termination



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

What We Left Out (2 of 2)

• More facilities for performance:
• inline functions
• control of data alignment in memory

• C11 threads support
• More functions

• More C practice
• That’s your job

• More about programming
• Code development management tools
• Debugging tools
• Look among Cineca HPC courses



Intro

Basics
1st Program

Choices

More T&C

Wrap Up 1

More C
1st Function

Testing

Compile and Link

Robustness

Wrap Up 2

Integers
Iteration

Test&Fixes

Overflow

Wider Ints

Polishing

Wrap Up 3

Arithmetic
Integers

Floating

Expressions

Mixing Types

Aggregate
Structures

Defining Types

Arrays

Storage & C.

More Arrays

Pointers
Basics

And Arrays

void

Strings
Chars

Strings

Manipulations

Command Line

I/O
Files

Text

Binary

Memory
Allocation

Data Structures

Finale

Looking for More

ANSI WG14
C Standard and Technical Corrigenda
http://www.open-std.org/jtc1/sc22/wg14/www/standards
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

S. Summit
comp.lang.c Frequently Asked Questions
http://www.c-faq.com/

D. Dyer
The Top 10 Ways to get screwed by the "C" programming language
http://www.andromeda.com/people/ddyer/topten.html

S. Harbison, G. Steele
C A Reference Manual
Prentice Hall, 5th ed., 2002

A. Kelley, I. Pohl
C by Dissection: The Essentials of C Programming
Addison Wesley, 4th ed., 2000

A. Koenig
C Traps and Pitfalls
Addison Wesley, 1989




	Introduction
	C Basics
	My First C Program
	Making Choices
	More Types and Choices
	Wrapping it Up 1

	More C Basics
	My First C Functions
	Making it Correct
	Compile and Link
	Making it Robust
	Wrapping it Up 2

	Integer Types and Iterating
	Play it Again, Please
	Testing and Fixing it
	Hitting Limits
	Wider Integer Types
	Polishing it Up
	Wrapping it Up 3

	Arithmetic Types and Math
	Integer Types
	Floating Types
	Expressions
	Arithmetic Conversions

	Aggregate Types
	Structure Types
	Defining New Types
	Arrays
	Storage Classes, Scopes, and Initializers
	Arrays & Functions

	Pointer Types
	Pointers Basics
	Pointers and Arrays
	Generic Pointers

	Characters and Strings
	Characters
	Strings
	String Manipulation Functions
	Parsing the Command Line

	Input and Output
	Files
	Text I/O
	Binary I/O

	Managing Memory
	Dynamic Memory Allocation
	Sketchy Ideas on Data Structures

	Conclusions

