
MPI introduction 
- exercises - 

Introduction to Parallel Computing with MPI and OpenMP 

 

P. Ramieri 

 

 

            2014 



Hello world! (Fortran) 
As an ice breaking activity try to compile and run the Hello program, either in C or in 
Fortran. 

The most important lines in Fortran code are emphasized: 
 

PROGRAM HelloWorld 
    INCLUDE 'mpif.h' 
    INTEGER my_rank, p 
    INTEGER source, dest, tag 
    INTEGER ierr, status(MPI_STATUS_SIZE) 
    .   .   .     
    CALL MPI_Init(ierr) 
    CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierr) 
    CALL MPI_Comm_size(MPI_COMM_WORLD, p, ierr) 
 
    WRITE(*,FMT="(A,I)") “Hello world from process ”, my_rank 
 
    CALL MPI_Finalize(ierr) 
END PROGRAM HelloWorld 

 



Hello world! (C/C++) 

The most important lines in C code are emphasized: 
 

#include "mpi.h" 
 
int main( int argc, char *argv[])  
{ 
    int my_rank, numprocs; 
    int dest, tag, source; 
    MPI_Status status; 
 
    MPI_Init(&argc,&argv); 
    MPI_Comm_rank(MPI_COMM_WORLD,&my_rank); 
    MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
 
    printf(“Hello world from process %d\n",my_rank); 
 
    MPI_Finalize(); 
    return 0; 
} 

 



Hello world! (output) 

If the program is executed with one process the output is: 

  

Hello world from process 0  

  

If the program is executed with four processes the output is: 

  

Hello world from process 0  

Hello world from process 1 

Hello world from process 2 

Hello world from process 3 

 



Compiling notes 

To compile programs that make use of MPI library:     

mpif90/mpicc/mpiCC -o <executable> <file 1> <file 2> … <file n>       

Where: <file n>  - program source files 

 <executable>  - executable file 

 

To start parallel execution on one node only:      

mpirun -np <processor_number> <executable> <exe_params> 

 

To start parallel execution on many nodes:      

mpirun -np <processor_number> -machinefile <node_list_file> \ 

 <executable> <exe_params> 

 



E1 – exercise – ping-pong 

ping-pong is perhaps the simplest example of point to point 
communication. 

 

In a two process execution of a ping-pong program the process 0 
sends a message to process 1 and this sends it back to process 0. 
This could be easily generalized in a round robin fashion if more 
than two processes are engaged.  

 

Try modifying the Hello World example in order of realizing 
round robin communications. 



E2 – example – Pi by quadrature 



E2 – example – Pi by quadrature 

Thus the program may be sketched this way: 

• (if my_rank == 0) get number of intervals for quadrature 

• Broadcast number of intervals to all the processes 

• Assign the intervals to the processes (they should not overlap) 

• Sum function values in the centre of each interval  

• Divide by interval range and multiply by 4 

 

Source code: Pi_integral 

 



E3 – exercise – Montecarlo Pi  



E3 – exercise – Montecarlo Pi 

Therefore the program may be written this way: 

• Divide a square in an number of parts (as many as the processes) 

• Generate a number of random points in the area of each process 

• Calculate how many points fall in the inscribed circle 

• Sum up number of points in the square 

• Sum up number of points in the circle 

• Divide the two numbers 

 

Source code: Pi_area 

 



E4 – example – Mandelbrot set 

In 1979 Benoît Mandelbrot, who was working at Thomas J. Watson Research 

Center of IBM, was studying what would have been later known as 

Mandelbrot set. This mathematical object may be easily studied only by 

means of numerical computing, with the added support of computer 

graphics. 

Defining the Mandelbrot set is quite easy:  

Given the transformation z -> z2 in the complex plane, iterate it at each point 

of the circle of radius 2 centred in the origin.  

The Mandelbrot set is the set of points that do not diverge outside this circle.  

 



E4 - example – Mandelbrot set 

Of course points inside the circle with radius 1 always remain in the set, but 

there is no simple rules to decide whether the other points do belong to the 

set. In fact the border of the set has fractal properties. Moreover, because of 

chaos behavior coming from exponent operations, points starting very closed 

together may diverge considerably. 

 

The example program computes the Mandelbrot set in a given area (inside 

the radius two circle) and creates an image on the basis of how many 

iterations are needed to send a point outside the circle. The result is a well 

known image that can also be used to effectively check the correctness of the 

program. 



E4 - example – Mandelbrot set 

The image is generated in PGM or PPM formats because they are very easy to remember 

and realize. 

 

 

 

 

 

 

PGM format: 

Row 1 – P2 

Row 2 - <rows> <columns> 

Row 3 - <Maximum value> 

… <point values> … 

 

PPM format: 

Row 1 – P3 

Row 2 - <rows> <columns> 

Row 3 - <Maximum value> 

… <R G B point values> … 

 



E4 - example – Mandelbrot set 

The program could thus be sketched this way: 

Define area in complex plane (squared for simplicity) 

Define image size (squared for simplicity) 

Define maximum iterations per point 

Broadcast data to all processes 

Parallel computation by domain decomposition 

Gather results 

Produce image 

 

Source code: Mandel 

 



E5 – exercise – Matrix multiply 

Matrix row-column multiply is an example of program that can be easily 

parallelized and should have embarassingly parallel behavior too.  

Given the matrices A(L,M), B(M,N), C(L,N) try writing a parallel program that 

computes C = A x B 

 

The program could be written this way: 

Decide matrix sizes 

Decide how to distribute computation  

Parallel computation 

Collect results 

 



E5 - exercise – Matrix multiply 

Hint: given a range of rows and columns in the resulting matrix, their values 

depend only on a corresponding range of rows in A matrix and columns in B 

matrix 
C A B 

= x 



E6 – example – Life game 

John Conway’s LIFE game has been described since 1970 on Scientific American. It 

consists in a very large checkerboard where there is a initial configuration of 

marked (or alive) cells. At each iteration per each cell the number F of the alive 

cells (taken among the 8 adjacent ones) is counted and the cell is marked alive or 

not according to the following rules: 

The cell survives if  2 <= F <= 3  

The cell dies if   4 <= F or F <= 1 

The cell gets alive if  F = 3 

 

The game rules are very simple but it is very difficult to predict the population 

evolution. 

 



E6 – example – Life game 

As an example given a very simple initial configuration: 

 

The evolution at next steps are: 



E6 - example – Life game 

Programming difficulties for implementing a LIFE game are closed to issues 

encountered for programming PDE solvers with regular meshes. 

• A sequential program may be written in the following way: 

• Decide board sizes (squared for simplicity) and number of iterations 

• Allocate matrix A(:,:) for current state 

• Allocate matrix B(:,:) for next state 

• Choose an initial configuration 

• Iterate: 

–  store next state in matrix B by applying rules on matrix A     

swap matrices 

 



E6 - example – Life game 
Issues for parallel version:  

• Decide board decomposition: divide board in disjoined portions  

• At each portion of checkerboard add 1 cell boundary 

• Distribute portions (with boundaries) to processes 

• Iterate: 

 store next state in matrix B by applying rules on matrix A 

 send edges of portions to proper processes 

 receive boundary updates 

 swap matrices 

Source code: LifeGame 

Reference: http://www.bitstorm.org/gameoflife/ 

 


