
MPI introduction

Introduction to Parallel Computing with MPI and OpenMP

P. Ramieri

 2014

MPI (Message Passing Interface)

MPI origin: 1992, "Workshop on Standards for Message Passing in a
Distributed Memory Environment“

• MPI-1.0: June 1994;

• MPI-1.1: June 1995;

• MPI-1.2 e MPI-2: June 1997

60 experts from more than 40 organisations (IBM T. J. Watson Research
Center, Intel’s NX/2, Express, nCUBE’s Vertex, p4, PARMACS, Zipcode, Chimp,
PVM, Chameleon, PICL, …).

Many of them coming from the most important constructors of parallel
computers or researchers from University, government and private research
centres.

MPI versions

Some of the public domain most used MPI libraries:

MPICH : Argonne National Laboratory

Open MPI : "open source" implementation of MPI-2

CHIMP/MPI : Edinburgh University

LAM : Ohio Supercomputer Center

To realize a (simple) parallel program only six MPI functions are needed.

But if the program is a complex one and the best performances are sought
for, the whole MPI library may be used, with more than a hundred functions.

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.anl.gov/
http://www.anl.gov/
http://www.anl.gov/
http://www.anl.gov/
http://www.open-mpi.org/
http://www.epcc.ed.ac.uk/epcc-projects/CHIMP/
http://www.edinburgh.ac.uk/
http://www.edinburgh.ac.uk/
http://www.edinburgh.ac.uk/
http://www.osc.edu/
http://www.osc.edu/
http://www.osc.edu/
http://www.osc.edu/

MPI introduction

What we will learn in this lesson on MPI library:

Compiling and executing MPI programs

C and Fortran calling syntax

Environment

Point to point communications

Collective communications

Synchronization

Hello world! (Fortran)

program greetings

 include 'mpif.h‘

 integer my_rank

 integer p

 integer source

 integer dest

 integer tag

 character*100 message

 character*10 digit_string

 integer size

 integer status(MPI_STATUS_SIZE)

 integer ierr call MPI_Init(ierr)

 call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierr)

 call MPI_Comm_size(MPI_COMM_WORLD, p, ierr)

 if (my_rank .NE. 0) then

 write(digit_string,FMT="(I3)") my_rank

 message = ‘Greetings from process ‘ // trim(digit_string) // ‘ !’

 dest = 0

 tag = 0

 call MPI_Send(message, len_trim(message), MPI_CHARACTER, dest, tag, MPI_COMM_WORLD, ierr)

 else

 do source = 1, p-1

 tag = 0

 call MPI_Recv(message, 100, MPI_CHARACTER, source, tag, MPI_COMM_WORLD, status, ierr)

 write(6,FMT="(A)") message

 enddo

 endif

 call MPI_Finalize(ierr)

end program greetings

Hello world! (C/C++)

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 int my_rank, numprocs;
 char message[100];
 int dest, tag, source;
 MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 if (my_rank != 0)
 {
 sprintf(message,"Greetings from process %d !\0",my_rank);
 dest = 0;
 tag = 0;
 MPI_Send(message, sizeof(message),
 MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 } else {
 for (source = 1; source <= (numprocs-1); source++)
 {
 MPI_Recv(message, 100, MPI_CHAR,
 source, tag, MPI_COMM_WORLD, &status);
 printf("%s\n",message);
 }
 }

 MPI_Finalize();

 return 0;
}

Hello world! (output)

If the program is executed with two processes the output is:

Greetings from process 1!

If the program is executed with four processes the output is:

Greetings from process 1!

Greetings from process 2!

Greetings from process 3!

Compiling notes

To compile programs that make use of MPI library:

mpif90/mpicc/mpiCC -o <executable> <file 1> <file 2> … <file n>

Where: <file n> - program source files

 <executable> - executable file

To start parallel execution on one node only:

mpirun -np <processor_number> <executable> <exe_params>

To start parallel execution on many nodes:

mpirun -np <processor_number> -machinefile <node_list_file> \

 <executable> <exe_params>

MPI syntax

C/C++

fortran

An MPI program should contain the directives:

INCLUDE ‘mpif.h’

#include "mpi.h"

The above include files contain the proper definition of MPI function prototypes and
parameters.

Every Fortran subroutine in the MPI library returns, as the last argument, an INTEGER
type error code.

Every MPI C function returns an int value representing the error code.

Whenever a MPI function has exited without errors, the error code should have the
value MPI_SUCCESS.

MPI syntax

include "mpif.h"

 integer :: ierror

 call mpi_send (..., ierror)

 if (ierror .ne. mpi_success) then

 write (*,*)"SEND operation failed"

 stop 777

 end if

Error code values different from MPI_SUCCESS are
implementation dependent.

MPI syntax
Generally speaking, MPI functions have the following prototype:

call MPI_name (parameter, ..., ierror)

rt = MPI_Name (parameter, ...)

To inizialize the MPI environment the MPI_Init function must be called:

call MPI_INIT (ierror)

rt = MPI_Init(int *argc, char ***argv)

On ending parallel computations the MPI_Finalize function should be called,
otherwise processes could remain alive on local or remote computing units:

call MPI_FINALIZE (ierror)

rt = MPI_Finalize();

fortran

fortran

fortran

C/C++

C/C++

C/C++

Groups of MPI processes

A group is an ordered set of processes.

All MPI processes are organized in groups; each process belongs to one or
more groups.

Processes are sequentially ordered in a unambiguous way. In each group
every process has its own identifying number or rank.

Process identifying numbers are integer numbers in the range 0 ̵̶ N-1 where
N is the group size.

On initializing MPI a default group is created containing all the processes: this
group is associated to the defaul communicator MPI_COMM_WORLD.

Normally, if the processes are not many the default group is sufficient.
Otherwise it may be convenient to create new groups defined as subsets,
either disjoined or not, of the default group or formerly created groups.

MPI processes
The following function returns the extension of the group associated to a
communicator, i.e. the number of processes belonging to the group:

call MPI_COMM_SIZE (comm, size, ierr)

ierr = int MPI_Comm_size (MPI_Comm comm, int *size)

The following function returns the rank of the calling process:

call MPI_COMM_RANK (comm, rank, ierror)

ierr = MPI_Comm_rank (MPI_Comm comm, int *rank)

Where comm = communicator handle (at start there is only: MPI_COMM_WORLD)
 size = number of processes
 rank = process rank (a number in the range 0 - size-1)
 ierr = error code

fortran

fortran

C/C++

C/C++

Communication domains
(communicators)

On MPI initialization the default communicator MPI_COMM_WORLD is generated.
It allows all the activated processes to communicate each other.

Sometimes it is necessary to generate new communicators either by duplicating
existing ones, or by associating it to a newly created group of processes.

A new communicator should be created every time a new group of processes is
generated. A new group is always generated by choosing processes from a wider
existing group.

The creation of a group of processes is a local operation, it is realized at process
level. On the contrary, the creation of a new communicator is a global operation
and involves (hidden) communications among all the processes of the group.

Point to point communications

Point to point communications realize connections between two processes.

From the programmer point of view communications depend on a
communicator and are identified by a handle and a tag.

The communicator defines the processes that can be involved.

The tag is used to differentiate messages.

The handle may be useful whenever it is necessary to control the completion
of the communicating operation.

A communication is said to be locally completed if the process has terminated
the operation.

A communication is said to be globally completed when all the involved
processes have terminated the operation.

Point to point communications

Communication calls may be blocking or nonblocking.

The functions relevant to blocking calls do not return control unless data in
the message can be safely modified without changing the message data.

These functions (MPI_Send, MPI_Recv) are very reliable but the program
execution may be slowed down because the processes are blocked until the
message has been received.

The functions relevant to nonblocking calls are faster but care must be taken
that the sent data are actually received and are not corrupted.

Therefore data sent by nonblocking calls can not be modified unless it is safe
to do so. To check this the functions MPI_Wait or MPI_Test should be
called.

Point to point communications

There are 4 modes of sending data in MPI:

• Buffered – Data are copied in a memory area explicitly allocated in the
program. Either blocking or nonblocking calls are available, but non
blocking calls may lead to problems if the buffer is not large enough to
keep all the messages waiting to be sent.

• Synchronous – Send operation is considered completed only if receiving
operation has been started, i.e. the receiving processes have provided the
memory space needed to copy the sent data. Therefore memory allocation
is not an issue because memory buffers are always made available by the
sender and the receiver. The problem is that if sending and receiving
processes are not synchronized the execution may be slowed down.

Point to point communications

• Standard – The operation is automatically managed by the
MPI system. If buffered communications are used, memory
space is automatically allocated. Again this may lead to
memory problems if data sent are too large.

• Ready – This mode should be used with care because when
the sender starts operation the receiving process must be
ready to receive the message. If this is not the case, errors and
undefined results are produced. Anyhow, if synchronization is
granted, this may be the fastest communication mode.

Point to point communications

Receiving calls can be blocking or nonblocking and do not
differentiate sending modes.

Summary table

SEND Blocking Nonblocking

Standard mpi_send mpi_isend

Ready mpi_rsend mpi_irsend

Synchronous mpi_ssend mpi_issend

Buffered mpi_bsend mpi_ibsend

RECEIVE Blocking Nonblocking

Standard mpi_recv mpi_irecv

Messages

The receiving process may receive messages in random order if they are sent
by different processes.

Care must be taken to insure the correct receiving order of the messages.

The following rules are always true:

• Messages with the same tag sent by the same process will be received in
the sending sequence.

• Messages sent by nonblocking calls will be received in the sending order.
This is important because otherwise large messages could be received after
smaller ones sent later.

Basic data types

MPI messages are sent as arrays of data homogeneous in type. In sending
and receiving calls only one data type can and shall be specified. The allowed
data types may be either basic or derived. Derived types shall be defined and
registered by the MPI system.

Basic types in Fortran Basic types in C

MPI_INTEGER

MPI_REAL

MPI_DOUBLE_PRECISION

MPI_COMPLEX

MPI_DOUBLE_COMPLEX

MPI_LOGICAL

MPI_CHARACTER

MPI_BYTE

MPI_PACKED

MPI_CHAR

MPI_SHORT

MPI_INT

MPI_LONG

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT

MPI_UNSIGNED

MPI_UNSIGNED_LONG

MPI_FLOAT

MPI_DOUBLE

MPI_LONG_DOUBLE

MPI_BYTE

MPI_PACKED

Data types

The MPI_BYTE type is not related to a Fortran or C data type. MPI_BYTE differs
from MPI_CHARACTER/MPI_CHAR because MPI_BYTE messages are never
translated, i.e the bit order is always maintained. Character data instead may
be represented in a slightly different manner on diverse computing platforms.

The MPI_PACKED type does not have a corresponding type neither in Fortran
nor in C because is used for bundled data.

In MPI communications the data type of the receiving message must always
match the one of the sending call.

Sending calls

fortran

C/C++

The prototype of a sending function is:

type :: buf(count)

integer :: count, datatype, dest, tag, comm, ierror

call MPI_sending(buf, count, datatype, dest, tag, &

 & comm, ierror)

ierror = MPI_Sending(void *buf, int count, MPI_Datatype
datatype,int dest, int tag, MPI_Comm comm);

where:
buf = array of data to be sent
count = how many elements are sent
datatype = data type
dest = rank of the receiving process
tag = identifier of the message
comm = communicator connecting sending and receiving processes
ierror = error code

The starting position of the array to be sent must be passed to the sending call.

Receiving calls

fortran

C/C++

The prototype of a receiving call is:

integer :: source, status(MPI_STATUS_SIZE)

call MPI_receiving(buf, count, datatype, source, &

 & tag, comm, status, ierror)

ierror = MPI_Receiving(void *buf, int count,

 MPI_Datatype datatype, int source, int tag,

 MPI_Comm comm, MPI_Status *status);

where:

source = rank of the sending process

status = message info

ierror = error code

Notes on communications
• A blocking receiving call returns only when the receiving buffer has been

completed.

• Message tags and sending processes may be wildcarded using the constant
values MPI_ANY_TAG and MPI_ANY_SOURCE respectively. These may
be used to enhance parallel efficiency.

• On exiting the status array will contain useful informations. The array
size is MPI_STATUS_SIZE and two of the most used infos are:

– status(MPI_SOURCE) = rank of the sender. It may be
particularly useful when the sender is MPI_ANY_SOURCE.

– status(MPI_TAG) = message tag. It may be particularly useful
when tag message is MPI_ANY_TAG.

The nonblocking call MPI_Irecv can not return a message status but a
message handle MPI_Request *request. It can be later used by the
function MPI_Wait to check for communication completion or by the
function MPI_Test to wait for completion.

An example
integer, dimension (2000) :: box

integer :: error_code, msg_tag=5432, sender=2

integer, dimension (mpi_status_size) :: status

....

call mpi_recv (box(1), 1500, mpi_integer, sender, &

 & msg_tag, mpi_comm_world, status, error_code)

....

call mpi_recv (box(1501), 500, mpi_integer, &

 & mpi_any_source, mpi_any_tag, mpi_comm_world, &

 & status, error_code)

In this example the first 1500 elements of the array box are received from the

process with rank 2; the remaining elements are received from whichever the
sending process is, without even specifying the message tag.

Another example

Sending and receiving the second half of an array from process 0 to process 1.
 real :: vector(100)

 integer :: status(MPI_STATUS_SIZE)

 integer :: my_rank, ierr, tag, count, dest, source

 . . .

 if (my_rank == 0) then

 tag = 47

 count = 50

 dest = 1

 call MPI_SEND (vector(51), count, MPI_REAL, dest, tag, &

 & MPI_COMM_WORLD, ierr)

 else

 tag = 47

 count = 50

 source = 0

 call MPI_RECV (vector(51), count, MPI_REAL, source, tag, &

 & MPI_COMM_WORLD, status, ierr)

 endif

Communications
Sending and receiving may be accomplished by one call only:

type :: SENDBUF, RECVBUF

integer :: SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, &

& RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR

call MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, &

 & DEST, SENDTAG, RECVBUF, RECVCOUNT, RECVTYPE, &

 & SOURCE, RECVTAG, COMM, STATUS, IERROR)

ierror = MPI_Sendrecv (void *sendbuf, int sendcount,

 MPI_Datatype sendtype,

 int dest, int sendtag, void *recvbuf, int recvcount,

 MPI_Datatype recvtype, int source, int recvtag,

 MPI_Comm comm, MPI_Status *status)

fortran

C/C++

Communications
where:

SENDBUF = data buffer to be sent

SENDCOUNT = how many sent elements

SENDTYPE = sent data type

DEST = rank of the receiving process

SENDTAG = sent message tag

RECVBUF = receiving data buffer

RECVCOUNT = how many receiving elements

RECVTYPE = receiving data type

SOURCE = rank of the sending process

RECVTAG = receiving message tag

COMM = communicator

STATUS = message info

IERROR = error code

Communications
A similar function is MPI_Sendrecv_replace, with a simpler prototype because the

sent and receiving data do share the same memory space:

 type :: BUF

integer :: COUNT, TYPE, DEST, SENDTAG, &

 & SOURCE, RECVTAG, COMM, STATUS, IERROR

call MPI_SENDRECV_REPLACE(BUF, COUNT, TYPE, &

 & DEST, SENDTAG, SOURCE, RECVTAG, COMM, &

 & STATUS, IERROR)

ierror = MPI_Sendrecv_replace(void *buf, int count,

 MPI_Datatype type,

 int dest, int sendtag,

 int source, int recvtag,

 MPI_Comm comm, MPI_Status *status)

fortran

C/C++

C/C++

fortran

Communications

The following function returns how many elements have been received. The number
of bytes received is dependent on the received data type.

call mpi_get_count (status, datatype, count, ierr)

ierror = mpi_get_count (MPI_Status *status, MPI_Datatype

 datatype, int *count)

Communications

The following functions may be used to check the completion of a communication:

call mpi_wait (request_id, return_status, ierr)

call mpi_test (request_id, flag, return_status, ierr)

ierr = MPI_Wait (MPI_Request *request_id, MPI_Status

 *return_status)

ierr = MPI_Test (MPI_Request *request_id, int *flag,

 MPI_Status *return_status)

The wait function blocks execution until the operation has been completed. The test
function returns FLAG=.TRUE. if the communication is locally completed.

On completion of the operations both functions return the array containing
informations about the message.

C/C++

fortran

fortran

C/C++

Communications
Whenever is necessary to control completion of a lot of communication
operations, the following functions may be used instead.

MPI_Waitall does block execution until the operations in LIST_REQUEST are
all completed.

MPI_Testall checks if all the operations in LIST_REQUEST are completed
(FLAG=.TRUE.).

call mpi_waitall(count, list_requests, list_status,

ierr)

call mpi_testall(count, list_requests, flag, list_status,

ierr)

ierr = MPI_Waitall (int count, MPI_Request

list_requests[], MPI_Status list_status[])

ierr = MPI_Testall (int count, MPI_Request

list_requests[], int *flag, MPI_Status list_status[])

fortran

C/C++

Communications
The function MPI_WAITANY blocks execution until at least one of the operations in
LIST_REQUEST is locally completed.

The function MPI_TESTANY checks if at least one of the operations in
LIST_REQUEST is locally completed. On output INDEX is the position in
LIST_REQUESTS of the completed operation and RETURN_STATUS contains infos
about it.

call mpi_waitany(count, list_requests, index,

 return_status, ierr)

call mpi_testany(count, list_requests, index, flag,

 return_status, ierr)

ierr = MPI_Waitany (int count, MPI_Request

 list_requests[], int *index, MPI_Status

 *return_status)

ierr = MPI_Testany(int count, MPI_Request

 list_requests[], int *index, int *flag, MPI_Status

 *return_status)

fortran

C/C++

Communications

The functions MPI_WAITSOME e MPI_TESTSOME checks if some of the operations
in LIST_REQUEST have been locally completed:

call mpi_waitsome (count, list_requests, count_done,

 list_index, list_status, ierr)

call mpi_testsome(count, list_requests, count_done,

 list_index, list_status, ierr)

ierr = MPI_Waitsome (int incount, MPI_Request

 list_requests[], int *outcount, int list_index[],

 MPI_Status list_status[])

ierr = MPI_Testsome(int incount, MPI_Request

 array_of_requests[], int *outcount, int

 array_of_indices[],MPI_Status array_of_statuses[])

Exercise

ping-pong is perhaps the simplest example of point-to-point
communication.

In a two-process ping-pong process 0 sends a message to
process 1 and this sends it back to process 0. Try writing a
program that realizes this operations.

Examples:

– ping-pong.c.txt

– ping-pong.f.txt

Collective communications

Communications is a very important issue in MPI programs, therefore their
optimization is a mandatory effort.

In many cases communications involve a lot of processors and realizing them by
point-to-point communications become inefficient and an error prone exertion.
For this reason MPI library contains functions optimized to accomplish collective
communications. Therefore using collective communications in such cases is
much more effective than using point-to-point communications.

Collective communications do not need tags for messages.

All collective communications are blocking.

Collective communication calls carry out both sending and receiving operations.

The calls to collective communication functions should be issued by all the
processes of a given communicator.

Collective communications

Collective communications may be of two types: data transfer and global
computations.

Data transfer functions can be:

•broadcast - data are shared among all the processes

•gather - data are collected from every process

•scatter - data are distributed to the processes

Global computation functions can be:

•reduction - the result is a computed value

•scanning – partial reduction results

Collective communications

The following function may be used to send the same data to all the processes
belonging to a communicator. A loop performing point-to-point communications
to all the processes gives the same results but is much less efficient.

type :: array

integer :: count, datatype, root, comm, ierror

call MPI_BCAST(array, count, datatype, root, comm, ierror)

ierror = MPI_Bcast(void *buffer, int count, MPI_Datatype
 datatype, int root, MPI_Comm comm)

where: array = data to be sent
 count = how many elements
 datatype = data type of the elements
 root = process owing data to be sent
 comm = communicator
 ierror = error code

fortran

C/C++

Collective communications example
subroutine GetData (a, b, n, my_rank)

real :: a, b

integer :: n, my_rank, ierr

include ‘mpif.h’

if (my_rank == 0) then

 print *, ‘Enter a, b, and n’

 read *, a, b, n

endif

call MPI_BCAST (a, 1, MPI_REAL , 0, MPI_COMM_WORLD, ierr)

call MPI_BCAST (b, 1, MPI_REAL , 0, MPI_COMM_WORLD, ierr)

call MPI_BCAST (n, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

end subroutine GetData

fortran

C/C++

Collective communications
The following function may be used whenever data dispersed among the processes have to
be collected in one ROOT process

where:

SEND_COUNT - how many elements are sent

RECV_COUNT - how many elements have to be received

type :: SEND_BUF(*), RECV_BUF(*)

integer :: SEND_COUNT, SEND_TYPE, RECV_COUNT, RECV_TYPE, ROOT, &

 & COMM, IERROR, DISP(comm_size)

call MPI_Gather (SEND_BUF, SEND_COUNT, SEND_TYPE, RECV_BUF, &

 & RECV_COUNT, RECV_TYPE, ROOT, COMM, IERROR)

ierror = MPI_Gather (void *send_buf, int send_count, MPI_Datatype

 sendtype, void *recv_buf, int recv_count, MPI_Datatype

 recv_type, int root, MPI_Comm comm)

fortran

C/C++

Collective communications

The following function may be used to collect data dispersed among the
processes if each process owns a different number of elements.

In the function variants with an ending "v"“ the array RECV_COUNT(:) specify
how many elements are stored in each process.

The array DISP(:) specifies the position in the receiving buffer where data
coming from ith process must be copied.

call MPI_Gatherv (SEND_BUF, SEND_COUNT, SEND_TYPE, RECV_BUF, &

 & RECV_COUNT, DISP, RECV_TYPE, ROOT, COMM, IERROR)

ierro = MPI_Gatherv (void *send_buf, int send_count, MPI_Datatype

 send_type, void *recv_buf, int *recv_count,

 int *disp, MPI_Datatype recv_type, int root, MPI_Comm comm)

Collective communications

Every process in the communicator send the content of send_buf to the
root process that receives data and orders them in the recv_buf array
according to the rank of the sending processes.

u a t d m

m d a t u

u a t m d

fortran

C/C++

Collective communications

type :: SEND_BUF(*), RECV_BUF(*)

integer :: SEND_COUNT, SEND_TYPE, RECV_COUNT, &

 & RECV_TYPE, ROOT, COMM, IERROR

call MPI_Scatter (SEND_BUF, SEND_COUNT, SEND_TYPE, &

 RECV_BUF, RECV_COUNT, RECV_TYPE, &

 ROOT, COMM, IERROR)

ierror = MPI_Scatter (void *send_buf, int send_count,

 MPI_Datatype send_type,

 void *recv_buf, int recv_count, MPI_Datatype

 recv_type, int root, MPI_Comm comm)

Collective communications

The root process disperses the content of send_buf array to the other
processes of the communicator group.

Data are scattered according to the order of the processes.

u

m d a t u

m d a t u

a t d m

C/C++

fortran

Collective communications

type :: SEND_BUF(*), RECV_BUF(*)

integer :: SEND_COUNT, SEND_TYPE, RECV_COUNT, RECV_TYPE,

COMM, IERROR

call MPI_Allgather (SEND_BUF, SEND_COUNT, SEND_TYPE,

 RECV_BUF, RECV_COUNT, RECV_TYPE, COMM, IERROR)

ierror = MPI_Allgather (void *send_buf, int send_count,

MPI_Datatype send_type,

void *recv_buf, int recv_count, MPI_Datatype recv_type,

MPI_Comm comm)

The above function may be used to collect data from all the processes to all the processes.
It is equivalent to a sequence of calls to MPI_Gather in which each call identifies a
different process as root.

Collective communications

Every process in the communicator send the content of send_buf to all the
other processes that receive data and order them in the recv_buf array
according to the rank of the sender.

d

m d a t u

a t u m

d a t u m

m d a t u m d a t u m d a t u m d a t u

Collective communications

Collective communications include global computations, of a reduction type.

The result of the computations may be:

• stored in one process only

• broadcasted to all the processes

• scattered to all the processes

Three functions are available:

• MPI_Reduce

• MPI_Allreduce

• MPI_Reduce_scatter

fortran

C/C++

Collective communications

The following function may be used to compute reduction operations such as sum,
product, logical, min/max and others. It must be called by all the processes of the
communicator comm. The result is stored in the process identified as root. If count
> 1 then send_buf and recv_buf are arrays and the computation is executed
element by element.

type :: send_buf, recv_buf

integer :: count, datatype, op, root, comm, ierror

call MPI_REDUCE (send_buf, recv_buf, count, &

 datatype, op, root, comm, ierror)

ierror = MPI_Reduce (void *send_buf, void *recv_buf,

 int count, MPI_Datatype datatype,

 MPI_Op op, int root, MPI_Comm comm)

Collective communications
send_buf = data to be used for computation, operands

recv_buf = result buffer (received by root process only)

count = buffer size

datatype = type of the elements

op = reduction operation (es.: MPI_SUM, MPI_MAX, …)

root = which process stores the results

comm = communicator

ierror = error code

As an example, if count=3 and op=MPI_SUM, then:

Recv_buf(0) = send_bufproc0(0) + … + send_bufprocN-1(0)

Recv_buf(1) = send_bufproc0(1) + … + send_bufprocN-1(1)

Recv_buf(2) = send_bufproc0(2) + … + send_bufprocN-1(2)

Collective communications

The available operations are:

MPI_MAX maximum

MPI_MIN minimum

MPI_SUM sum

MPI_PROD product

MPI_LAND logical AND

MPI_BAND bit-wise AND

MPI_LOR logical OR

MPI_BOR bit-wise OR

MPI_LXOR logical XOR

MPI_BXOR bit-wise XOR

MPI_MAXLOC maximum value and location

MPI_MINLOC minimum value and location

Collective communications example

The following portion of code shows how to use MPI_MAXLOC reduction operation
that requires, together with MPI_MINLOC, a struct to be defined:

 . . .

 struct

 {

 double value;

 int rank;

 } array1[len], array2[len];

 . . .

 MPI_Reduce(array1, array2, len, MPI_DOUBLE_INT,

 MPI_MAXLOC, 0, MPI_COMM_WORLD);

See the example program in Es-maxloc.c.txt.

C/C++

fortran

Collective communications

type :: OPERAND(*), RESULT(*)

integer :: COUNT, DATATYPE, OP ,COMM, IERROR

call MPI_AllReduce (OPERAND, RESULT, COUNT, DATATYPE, OP,

 COMM, IERROR)

 ierror = MPI_Allreduce (void *operand, void *result, int
 count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

This function differs from the previous one because the operation result is stored in all the
processes of the communicator comm.

C/C++

fortran

Collective communications
<type>, IN :: SENDBUF(*)

<type>, OUT :: RECVBUF(*)

INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

call MPI_REDUCE_SCATTER (SENDBUF, RECVBUF, RECVCOUNTS,

 DATATYPE, OP, COMM, IERROR)

ierror = MPI_Reduce_scatter (void *sendbuf, void *recvbuf,

 int *recvcounts, MPI_Datatype datatype, MPI_Op op,

 MPI_Comm comm)

Using the function MPI_Reduce_scatter, the reduction result is first computed element
by element, then the obtained vector is split into disjoined segments and dispersed to all the
processes. The array recvcounts(:) is used to specify how many elements each process
will store.

C/C++

fortran

Process synchronization

Whenever it is necessary that all the processes get to a determined point at the same time,
then sychronization barriers must be used. To avoid heavy loss of performances barriers
should be used with care and only if it is unavoidable, i.e. the implemented algorithm
requires it.

The following function can be used to define a synchronising point:

integer :: comm, ierror

call MPI_BARRIER (comm, ierror)

ierror = MPI_Barrier (MPI_Comm comm)

Where: comm – communicator whose processes must be synchronized

 ierror – error code.

This function returns only after all the processes have called it.

C/C++

fortran

Performance evaluation
It is often useful to measure computing time of portions of the program. The following
functions may be used. Both functions return a double floating point value.

REAL(8) :: t1, t2, elapsed

t1 = MPI_WTIME ()

…

t2 = MPI_WTIME ()

elapsed = t2 – t1

double t1, dt

t1 = MPI_Wtime() /* elapsed time in seconds */

dt = MPI_Wtick() /* time resolution in seconds */

Time values are process dependent unless MPI_WTIME_IS_GLOBAL is defined and its
value is .TRUE..

