
Introduction to Standard OpenMP 3.1
Massimiliano Culpo - m.culpo@cineca.it

CINECA - SuperComputing Applications and Innovation Department

1 / 60

Outline

1 Introduction

2 Directives

3 Runtime library routines and environment variables

2 / 60

Distributed and shared memory

3 / 60

UMA and NUMA systems

4 / 60

Multi-threaded processes

5 / 60

Execution model

6 / 60

Why should I use OpenMP?

1 Standardized
• enhance portability

2 Lean and mean
• limited set of directives
• fast code parallelization

3 Ease of use
• parallelization is incremental
• coarse / fine parallelism

4 Portability
• C, C++ and Fortran API
• part of many compilers

1 Performance
• may be non-portable
• increase memory traffic

2 Limitations
• shared memory systems
• mainly used for loops

7 / 60

Structure of an OpenMP program
1 Execution model

• the program starts with an initial thread
• when a parallel construct is encountered a team is created
• parallel regions may be nested arbitrarily
• worksharing constructs permit to divide work among threads

2 Shared-memory model
• all threads have access to the memory
• each thread is allowed to have a temporary view of the memory
• each thread has access to a thread-private memory
• two kinds of data-sharing attributes: private and shared
• data-races trigger undefined behavior

3 Programming model
• compiler directives + environment variables + run-time library

8 / 60

OpenMP core elements

OpenMP language
extensions

parallel control
structures

work sharing
data

environment
synchronization

runtime
functions, env.

variables

governs flow of
control in the
program

parallel directive

distributes work
among threads

do/parallel do
and
section directives

scopes
variables

shared and
private
clauses

coordinates thread
execution

critical and
atomic directives
barrier directive

runtime environment

omp_get_thread_num()
OMP_NUM_THREADS
OMP_SCHEDULE

omp_set_num_threads()

9 / 60

OpenMP releases

October 1997 Fortran 1.0
October 1998 C and C++ 1.0

November 2000 Fortran 2.0
March 2002 C and C++ 2.0

May 2005 Fortran, C and C++ 2.5
May 2008 Fortran, C and C++ 3.0
July 2011 Fortran, C and C++ 3.1
July 2013 Fortran, C and C++ 4.0

10 / 60

Outline

1 Introduction

2 Directives

3 Runtime library routines and environment variables

11 / 60

Conditional compilation

C/C++
#ifdef _OPENMP
printf("OpenMP support:%d",_OPENMP);
#else
printf("Serial execution.");
#endif

Fortran
!$ print *,"OpenMP support"

1 The macro _OPENMP has the value yyyymm

2 Fortran 77 supports !$, *$ and c$ as sentinels
3 Fortran 90 supports !$ only

12 / 60

Directive format
C/C++

#pragma omp directive-name [clause...]

Fortran

sentinel directive-name [clause...]

1 Follows conventions of C and C++ compiler directives
2 From here on free-form directives will be considered

13 / 60

parallel construct

1 The encountering thread becomes the master of the new team
2 All threads execute the parallel region
3 There is an implied barrier at the end of the parallel region

14 / 60

Nested parallelism

PARALLEL

PARALLEL PARALLEL

foo() foo() bar()

1 Nested parallelism is allowed in OpenMP 3.1
2 Most constructs bind to the innermost parallel region

15 / 60

OpenMP: Hello world

C/C++
i n t main () {

/* Serial part */

#pragma omp parallel
{

printf("Hello world\n");

}

/* Serial part */

return 0;
}

16 / 60

OpenMP: Hello world

C/C++
i n t main () {
/* Serial part */

#pragma omp parallel
{

printf("Hello world\n");
}

/* Serial part */
return 0;

}

16 / 60

OpenMP: Hello world

Fortran
PROGRAM HELLO

! Serial code

!$OMP PARALLEL

Pr int *, "Hello World!!!"

!$OMP END PARALLEL

! Resume serial code

END PROGRAM HELLO

17 / 60

OpenMP: Hello world

Fortran
PROGRAM HELLO
! Serial code

!$OMP PARALLEL
Pr int *, "Hello World!!!"

!$OMP END PARALLEL

! Resume serial code

END PROGRAM HELLO

17 / 60

OpenMP: Hello world

What’s wrong?
i n t main() {

i n t ii;
#pragma omp parallel
{

for(ii = 0; ii < 10; ++ii)
printf("iteration %d\n", i);

}
return 0;

}

18 / 60

Worksharing constructs

1 Distribute the execution of the associated region
2 A worksharing region has no barrier on entry
3 An implied barrier exists at the end, unless nowait is present
4 A nowait clause may omit the implied barrier
5 Each region must be encountered by all threads or none at all
6 Every thread must encounter the same sequence of:

• worksharing regions • barrier regions
7 The OpenMP API defines four worksharing constructs:

• loop construct
• sections construct

• single construct
• workshare contruct

19 / 60

Loop construct: syntax
C/C++

#pragma omp for [clause[[,] clause] ...]
for-loops

Fortran

!$omp do [clause[[,] clause] ...]
do-loops

[!$omp end do [nowait]]

20 / 60

Loop construct: restrictions

C/C++

for (init-expr; test-expr; incr-expr)
structured-block

init-expr: var = lb
integer-type var = lb

test-expr: relational expr.

incr-expr: addition or subtraction expr.

21 / 60

Loop construct: the rules

1 The iteration variable in the for loop
• if shared, is implicitly made private
• must not be modified during the execution of the loop
• has an unspecified value after the loop

2 The schedule clause:
• may be used to specify how iterations are divided into chunks

3 The collapse clause:
• may be used to specify how many loops are parallelized
• valid values are constant positive integer expressions

22 / 60

Loop construct: fast quiz

Right or wrong?
SUBROUTINE DO_LOOP

INTEGER I, J
DO 100 I = 1,10

!$OMP DO
DO 100 J = 1,10

CALL WORK(I,J)
100 CONTINUE
!$OMP ENDDO

END SUBROUTINE DO_LOOP

23 / 60

Loop construct: scheduling
C/C++

#pragma omp for schedule(kind[, chunk_size])
for-loops

Fortran

!$omp do schedule(kind[, chunk_size])
do-loops

[!$omp end do [nowait]]

24 / 60

Loop construct: schedule kind
1 Static

• iterations are divided into chunks of size chunk_size
• the chunks are assigned to the threads in a round-robin fashion
• must be reproducible within the same parallel region

2 Dynamic
• iterations are divided into chunks of size chunk_size
• the chunks are assigned to the threads as they request them
• the default chunk_size is 1

3 Guided
• iterations are divided into chunks of decreasing size
• the chunks are assigned to the threads as they request them
• chunk_size controls the minimum size of the chunks

4 Run-time
• controlled by environment variables

25 / 60

Loop construct: schedule kind

0
1
2
3
0
1
2
3
0
1
2
3

0 200 400 600 800 1000

Figure : Different scheduling for a 1000 iterations loop with 4 threads:
guided (top), dynamic (middle), static (bottom)

25 / 60

Loop construct: nowait clause

Where are the implied barriers?
void nowait_example(i n t n, i n t m, f l o a t *a,

f l o a t *b, f l o a t *y, f l o a t *z) {
#pragma omp parallel
{

#pragma omp for nowait
for (i n t i=1; i<n; i++)
b[i] = (a[i] + a[i-1]) / 2.0;

#pragma omp for nowait
for (i n t i=0; i<m; i++)
y[i] = sqrt(z[i]);

}
}

26 / 60

Loop construct: nowait clause

Is the following snippet semantically correct?
void nowait_example2(i n t n, f l o a t *a,

f l o a t *b, f l o a t *c, f l o a t *y) {
#pragma omp parallel
{

#pragma omp for schedule(s t a t i c) nowait
for (i n t i=0; i<n; i++)
c[i] = (a[i] + b[i]) / 2.0f;

#pragma omp for schedule(s t a t i c) nowait
for (i n t i=1; i<=n; i++)
y[i] = sqrtf(c[i-1]) + a[i];

}
}

27 / 60

Loop construct: nested loops

Am I allowed to do the following?
#pragma omp parallel
{
#pragma omp for

for(i n t ii = 0; ii < n; ii++) {
#pragma omp for

for(i n t jj = 0; jj < m; jj ++) {
A[ii][jj] = ii*m + jj;

}
}

}

28 / 60

Loop construct: collapse clause

The right way to collapse nested loops
#pragma omp parallel
{
#pragma omp for collapse(2)

for(i n t ii = 0; ii < n; ii++) {
for(i n t jj = 0; jj < m; jj ++) {
A[ii][jj] = ii*m + jj;

}
}

}

1 The collapsed loops must be perfectly nested

29 / 60

Sections construct: syntax

C/C++

#pragma omp sections [clause[[,] clause]...]
{
#pragma omp section
structured-block

#pragma omp section
structured-block

...
}

30 / 60

Sections construct: syntax

Fortran

!$omp sections [clause[[,] clause]...]
!$omp section
structured-block

!$omp section
structured-block

...
!$omp end do [nowait]

31 / 60

Sections construct: some facts

1 sections is a non-iterative worksharing construct
• it contains a set of structured-blocks
• each one is executed once by one of the threads

2 Scheduling of the sections is implementation defined
3 There is an implied barrier at the end of the construct

32 / 60

Single construct: syntax
C/C++

#pragma omp single [clause[[,] clause]...]
structured-block

Fortran

!$omp single [clause[[,] clause] ...]
structured-block

[!$omp end single [nowait]]

33 / 60

Single construct: some facts

1 The associated structured block is executed by only one thread
2 The other threads wait at an implicit barrier
3 The method of choosing a thread is implementation defined

34 / 60

Workshare construct: syntax

Fortran

!$omp workshare
structured-block

!$omp end workshare [nowait]

Divides the following into shared units of work:
1 array assignments
2 FORALL statements or constructs
3 WHERE statements or constructs

35 / 60

Master construct: syntax
C/C++

#pragma omp master
structured-block

Fortran

!$omp master
structured-block

!$omp end master

36 / 60

Master construct: some facts

1 The master construct specifies a structured block:
• that is executed by the master thread
• with no implied barrier on entry or exit

2 Used mainly in:
• hybrid MPI-OpenMP programs
• progress/debug logging

37 / 60

Critical construct: syntax
C/C++

#pragma omp critical [name]
structured-block

Fortran

!$omp critical [name]
structured-block

!$omp end critical [name]

38 / 60

Critical contruct: some facts

1 The critical construct restricts the execution:
• to a single thread at a time (wait on entry)
• disregarding team information

2 An optional name may be used to identify a region
3 All critical without a name share the same unspecified tag
4 In Fortran the names of critical constructs:

• are global entities of the program
• may conflict with other names (and trigger undefined behavior)

39 / 60

Critical construct: example

Named critical regions

#pragma omp parallel
{
#pragma omp critical(long_critical_name)
doSomeCriticalWork_1();

#pragma omp critical
doSomeCriticalWork_2();

#pragma omp critical
doSomeCriticalWork_3();

}

40 / 60

Barrier construct: syntax

C/C++

#pragma omp barrier

Fortran

!$omp barrier

The barrier construct specifies an explicit barrier at the point
at which the construct appears

41 / 60

Barrier construct: example

Waiting for the master to come

int counter = 0;
#pragma omp parallel
{
#pragma omp master
counter = 1;

#pragma omp barrier
printf("%d\n", counter);

}

42 / 60

Atomic construct: syntax

C/C++

#pragma omp atomic \
[read | write | update | capture]
expression-stmt

#pragma omp atomic capture
structured-block

43 / 60

Atomic construct: syntax

Fortran

!$omp atomic read
capture-statement

[!$omp end atomic]

!$omp atomic write
write-statement

[!$omp end atomic]

44 / 60

Atomic construct: syntax

Fortran

!$omp atomic [update]
update-statement

[!$omp end atomic]

!$omp atomic capture
update-statement
capture-statement

!$omp end atomic

45 / 60

Atomic construct: some facts

1 The atomic construct:
• ensures a specific storage location to be updated atomically
• does not expose it to multiple, simultaneous writing threads

2 The binding thread set for an atomic region is all threads
3 The atomic construct with the clause:
read forces an atomic read regardless of the machine word size
write forces an atomic write regardless of the machine word size

update forces an atomic update (default)
capture same as an update, but captures original or final value

4 Accesses to the same location must have compatible types

46 / 60

Data-sharing attributes: C/C++

1 The following are always private:
• variables with automatic storage duration
• loop iteration variable in the loop construct

2 The following are always shared:
• objects with dynamic storage duration
• variables with static storage duration

3 Arguments passed by reference inherit the attributes

47 / 60

Data-sharing attributes: Fortran

1 The following are always private:
• variables with automatic storage duration
• loop iteration variable in the loop construct

2 The following are always shared:
• assumed size arrays
• variables with save attribute
• variables belonging to common blocks or in modules

3 Arguments passed by reference inherit the attributes

47 / 60

Data-sharing clauses: syntax

C/C++

#pragma omp directive-name [clause[[,]clause]

Fortran

!$omp directive-name [clause[[,]clause]
...
!$omp end directive-name [clause]

48 / 60

Default/shared/private clauses

1 The clause default:
• is valid on parallel
• accepts shared or none in C/C++ and Fortran
• accepts private and firstprivate in Fortran
• default(none) requires each variable to be listed in a clause

2 The clause shared(list):
• is valid on parallel
• declares one or more list items to be shared

3 The clause private(list):
• is valid on parallel, for, sections, single
• declares one or more list items to be private
• allocates a new item of the same type with undefined value

49 / 60

Default/shared/private clauses

Example

int q,w;
#pragma omp parallel private(q) shared(w)
{
q = 0;

#pragma omp single
w = 0;

#pragma omp critical(stdout_critical)
printf("%d %d\n", q, w);

}

50 / 60

Firstprivate clause
Example

int q = 3, w;
#pragma omp parallel firstprivate(q) shared(w)
{
#pragma omp single
w = 0;

#pragma omp critical(stdout_critical)
printf("%d %d\n", q, w);

}

Same as private, but initializes items

51 / 60

Lastprivate clause
Example

#pragma omp parallel
{
#pragma omp for lastprivate(i)
for(i = 0; i < (n1); ++i)

a[i] = b[i] + b[i + 1];
}
a[i] = b[i];

1 valid on for, sections
2 the value of each new list item is the sequentially last value

52 / 60

Reduction clause: some facts

1 The reduction clause:
• is valid on parallel, loop and sections constructs
• specifies an operator and one or more list item

2 A list item that appears in a reduction clause must be shared
3 For each item in the list:

• a private copy is created and initialized appropriately
• at the end of the region the original item is updated

4 Aggregate types may not appear in a reduction clause
5 Items must not be const-qualified

53 / 60

Reduction clause: example

Sum over many iterations

int a = 5;
#pragma omp parallel
{
#pragma omp for reduction(+:a)
for(int i = 0; i < 10; ++i)

++a;
}
printf("%d\n", a);

54 / 60

Reduction clause: example

Fortran features?

PROGRAM REDUCTION_WRONG
MAX = HUGE(0)
M = 0

!$OMP PARALLEL DO REDUCTION(MAX: M)
DO I = 1, 100

CALL SUB(M,I)
END DO

END PROGRAM REDUCTION_WRONG

55 / 60

Copyprivate clause

C/C++

#pragma omp single copyprivate(tmp)
{
tmp = (float *) malloc(sizeof(float));

} /* copies the pointer only */

1 Valid only on single

2 Broadcasts the value of a private variable

56 / 60

Outline

1 Introduction

2 Directives

3 Runtime library routines and environment variables

57 / 60

Runtime library routines

Most used functions

int omp_get_num_threads(void);// # of threads
int omp_get_thread_num(void);// thread id
double omp_get_wtime(void);// get wall-time

1 Prototypes for C/C++ runtime are provided in omp.h

2 Interface declarations for Fortran are provided as:
• a Fortran include file named omp_lib.h
• a Fortran 90 module named omp_lib

58 / 60

Environment variables

OMP_NUM_THREAD sets the number of threads for parallel regions

OMP_STACKSIZE specifies the size of the stack for threads

OMP_SCHEDULE controls schedule type and chunk size of runtime

OMP_PROC_BIND controls whether threads are bound to processors

OMP_NESTED enables or disables nested parallelism

59 / 60

OpenMP: just take a shot at it!

60 / 60

	Introduction
	Abstract model
	OpenMP in a nutshell

	Directives
	parallel construct
	Worksharing constructs
	Master and synchronization constructs
	Data-sharing attributes

	Runtime library routines and environment variables

