
INTRODUCTION TO MPI –
COLLECTIVE COMMUNICATIONS AND

COMMUNICATORS

Introduction to Parallel Computing with MPI
and OpenMP

Part I:
Collective communications

Communications involving a group of processes

They are called by all the ranks involved in a
communicator (or a group)

WHAT ARE COLLECTIVE
COMMUNICATIONS?

Collectives can be divided in three types:
- Synchronization collectives
-  Message passing collectives
-  Reduction collectives

•  Collective communications will not interfere with point-to-point
•  Easier to read and to implement in a code
•  All processes (in a communicator) call the collective function
•  All collective communications are blocking (not true from MPI 3.0)
•  No tags are required
•  Receive buffers must match in size (number of bytes)

 It’s a safe communication mode!!

PROPERTIES OF COLLECTIVE
COMMUNICATIONS

A SMALL EXAMPLE
Write a program that initializes an array of two elements

as (2.0,4.0) only on task 0, and than sends it to all the
other tasks

How can you do that with the knowledge you
got so far?

PROGRAM broad_cast_p2p
INCLUDE ’mpif.h’
INTEGER ierr, myid, nproc, root, i
INTEGER status(MPI_STATUS_SIZE)
REAL A(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,&
nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,&
myid, ierr)
IF(myid .EQ. 0) THEN
 a(1) = 2.0
 a(2) = 4.0
END IF
IF(myid .EQ. 0) THEN
 DO i=1,nproc-1
 CALL MPI_ISEND(a,2,MPI_REAL,i,0,&
 MPI_COMM_WORLD,ierr)
 ENDDO
ELSE
 CALL MPI_RECV(a,2,MPI_REAL,0,0,&
 MPI_COMM_WORLD,status,ierr)
ENDIF
WRITE(6,*) myid, ’: a(1)=’, a(1), ’a(2)=’, a(2)
CALL MPI_FINALIZE(ierr)
END PROGRAM

#include <mpi.h>
#include <stdio.h>
int main (int argc, char **argv) {
 int myid, nproc, root, i;
 MPI_Status status;
 float a[2];
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 if (myid ==0) {
 a[0] = 2.0;
 a[1] = 4.0;
 }
 if (myid == 0) then {
 for (i=1;i<nproc;i++)
 MPI_Isend(a,2,MPI_FLOAT,i,0,
 MPI_COMM_WORLD);
 }
 else {
 MPI_Recv(a,2,MPI_FLOAT,0,0,
 MPI_COMM_WORLD,&status);
 }
 printf(“%d : a[0]=, %f, a[1]=, %f\n”,myid,a[0],a[1]);
 MPI_Finalize();
 return 0;
}

POINT-TO-POINT SOLUTION

C :
int MPI_Bcast (void *buf, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)

FORTRAN :
MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI BROADCAST

Root process sends the buffer to all other processes with just one command!
Note that all processes must specify the same root and the same communicator

PROGRAM broad_cast
INCLUDE ’mpif.h’
INTEGER ierr, myid, nproc, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE (MPI_COMM_WORLD,&
nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,&
myid, ierr)

IF(myid .EQ. 0) THEN

 a(1) = 2.0
 a(2) = 4.0

END IF

CALL MPI_BCAST(a, 2, MPI_REAL, 0, &
MPI_COMM_WORLD, ierr)
WRITE(6,*) myid, ’: a(1)=’, a(1), ’a(2)=’, a(2)
CALL MPI_FINALIZE(ierr)
END PROGRAM

COLLECTIVE SOLUTION
#include <mpi.h>
#include <stdio.h>

int main (int argc, char **argv) {
 int myid, nproc, root, i;
 MPI_Status status;
 float a[2];
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 if (myid ==0) {
 a[0] = 2.0;
 a[1] = 4.0;
 }

 MPI_Bcast (a,2,MPI_FLOAT,0,
 MPI_COMM_WORLD);
 printf(“%d : a[0]=, %f, a[1]=, %f\n”,myid,a[0],a[1]);
 MPI_Finalize();
 return 0;
}

C :
int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt,
MPI_Datatype recvtype, int root, MPI_Comm comm)

FORTRAN :
MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI GATHER

Each process, root included, sends the content of its send buffer to the root process.
The root process receives the messages and stores them in the rank order.

#include <mpif.h>
#include <stdio.h>

int main (int argc, char** argv) {
 int myid, nproc, count, i;
 float A[16], B[2];
 MPI_Init(ierr);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 b[0] = (float) myid;
 b[1] = (float) myid;
 count = 2;
 MPI_Gather(b, count, MPI_FLOAT, a, count, MPI_FLOAT, 0, MPI_COMM_WORLD);

 if (myid == 0) {
 for (i=0; i<count*nproc; i++)
 printf(“%d : a[%d]=%f \n”, myid, i, a[i]”);
 }

 MPI_Finalize();
 return 0;
}

GATHER EXAMPLE
(C)

C :
int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran :
MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI SCATTER

The root sends a message. The message is split into n equal segments, the i-th
segment is sent to the i-th process in the group and each process receives this

message.

PROGRAM scatter
INCLUDE ’mpif.h’

INTEGER ierr, myid, nproc, count, i
REAL A(16), B(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .eq. 0) THEN
DO i = 1, 16
a(i) = REAL(i)
END DO
END IF

count = 2
CALL MPI_SCATTER(a, count, MPI_REAL, b, count, MPI_REAL, root, &
MPI_COMM_WORLD, ierr)
WRITE(6,*) myid, ’: b(1)=’, b(1), ’b(2)=’, b(2)

CALL MPI_FINALIZE(ierr)
END

SCATTER EXAMPLE
(FORTRAN)

What if the message that has to be scattered/gathered should not be split
equally among processes?

SCATTERV & GATHERV

C :
int MPI_Scatterv(void *sendbuf, int *sendcnt, int *displs, MPI_Datatype sendtype, void *recvbuf, int
recvcnt, MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran :
MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT, COMM,
IERROR

sendcounts/recvcounts is an array of integers stating how many elements should be
considered for each process

displs is an array of integers stating the position of the starting element for each process

SCATTERV & GATHERV
SCATTERV sendcounts=(5,3,2,4) displs=(0,5,9,12)

SCATTERV & GATHERV
GATHERV recvcounts=(5,3,2,4) displs=(0,5,9,12)

There are functions that combine the effects of two collective functions!
For example, MPI Allgather is a combination of a gather + a broadcast

COLLECTIVE COMBINATIONS

C :
int MPI_Allgather(void *sendbuf, int sendcount, MPI_Datatype sendtype, void
*recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

Fortran :
MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,
RECVCOUNT, RECVTYPE, COMM, IERR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVTYPE, COMM, IERROR

This function makes a redistribution of the content of each process in a
way that each process knows the buffer of all others. It is a way to

implement the matrix data transposition.

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

MPI ALLTOALL

C :
int MPI_Alltoall(void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

FORTRAN :
MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

Reduction operations permit to:

•  Collect data from each process
•  Reduce the data to a single value
•  Store the result on the root process (MPI_Reduce) or
•  Store the result on all processes (MPI_Allreduce)

REDUCTION OPERATIONS

C :
int MPI_Reduce(void* sendbuf, void* recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

FORTRAN :
MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

LIST OF REDUCTIONS

PROGRAM reduce
INCLUDE ’mpif.h’
INTEGER ierr, myid, nproc, root
REAL A(2), res(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
a(1) = 2.0
a(2) = 4.0
CALL MPI_REDUCE(a, res, 2, MPI_REAL, MPI_SUM, root, &
MPI_COMM_WORLD, ierr)
IF(myid .EQ. 0) THEN
WRITE(6,*) myid, ’: res(1)=’, res(1), ’res(2)=’, res(2)
END IF
CALL MPI_FINALIZE(ierr)
END PROGRAM

EXAMPLE: SUM REDUCTION
(FORTRAN)

It stops all processes within a communicator until they
are synchronized

int MPI_Barrier(MPI_Comm comm);
CALL MPI_BARRIER(COMM,IERROR)

SYNCHRONIZATION COMMAND:
MPI BARRIER

22

Part II:
MPI communicators and groups

Many users are familiar with the mostly used communicator:
MPI_COMM_WORLD

23

WHAT ARE COMMUNICATORS?

A communicator can be thought as a handle to a group.
-  a group is a ordered set of processes
- each process is associated with a rank

 - ranks are contiguous and start from zero

Groups allow collective operations to be operated on a subset of
processes

Intracommunicators are used for communications within a single group
Intercommunicators are used for communications between two disjoint groups

DEFINITIONS & PROPERTIES

Group management:

- All group operations are local
- Groups are not initially associated with communicators
- Groups can only be used for message passing within a communicator
- We can access groups, construct groups, destroy groups

Group accessors:

-  MPI_GROUP_SIZE
This routine returns the number of processes in the group

-  MPI_GROUP_RANK
This routine returns the rank of the calling process inside a given group

Group constructors are used to create new groups from existing
ones (initially from the group associated with

MPI_COMM_WORLD; you can use mpi_comm_group to get this).

25

GROUP CONSTRUCTORS

Group creation is a local operation: no communication is needed

After the creation of a group, no communicator has been
associated to this group, and hence no communication is

possible within the new group

-  MPI_COMM_GROUP(comm,group,ierr)

This routine returns the group associated with the communicator comm

-  MPI_GROUP_UNION(group_a, group_b, newgroup, ierr)

This returns the ensemble union of group_a and group_b

-  MPI_GROUP_INTERSECTION(group_a, group_b, newgroup, ierr)

This returns the ensemble intersection of group_a and group_b

-  MPI_GROUP_DIFFERENCE(group_a, group_b, newgroup, ierr)

This returns in newgroup all processes in group_a that rare not in group_b,

ordered as in group_a

26

GROUP CONSTRUCTORS

-  MPI_GROUP_INCL(group, n, ranks, newgroup, ierr)

This routine creates a new group that consists of all the n processes with ranks

ranks[0]... ranks[n-1]

Example:
group = {a,b,c,d,e,f,g,h,i,j}
n = 5
ranks = {0,3,8,6,2}
newgroup = {a,d,i,g,c}

GROUP CONSTRUCTORS

-  MPI_GROUP_EXCL(group,n,ranks,newgroup,ierr)

This routine returns a newgroup that consists of all the processes in the group

after removing processes with ranks: ranks[0]..ranks[n-1]

Example:
group = {a,b,c,d,e,f,g,h,i,j}
n = 5
ranks = {0,3,8,6,2}
newgroup = {b,e,f,h,j}

Communicator access operations are local, not requiring
interprocess communication

28

COMMUNICATOR MANAGEMENT

Communicator constructors are collective and may require
interprocess communications

We will cover in depth only intracommunicators, giving only some
notions about intercommunicators.

-  MPI_COMM_SIZE(comm,size,ierr)
Returns the number of processes in the group associated with the comm

-  MPI_COMM_RANK(comm,rank,ierr)
Returns the rank of the calling process within the group associated with the

comm

-  MPI_COMM_COMPARE(comm1,comm2,result,ierr)
Returns:

 - MPI_IDENT if comm1 and comm2 are the same handle
 - MPI_CONGRUENT if comm1 and comm2 have the same group attribute
 - MPI_SIMILAR if the groups associated with comm1 and comm2 have the
same members but in different rank order
 - MPI_UNEQUAL otherwise

29

COMMUNICATOR ACCESSORS

- MPI_COMM_DUP(comm, newcomm,ierr)
This returns a communicator newcomm identical to the

communicator comm

30

COMMUNICATOR CONSTRUCTORS

- MPI_COMM_CREATE(comm, group, newcomm,ierr)
This collective routine must be called by all the process

involved in the group associated with comm. It returns a
new communicator that is associated with the group.
MPI_COMM_NULL is returned to processes not in the
group.

Note that the new group must be a subset of the group

associated with comm!

31

EXAMPLE (C)

#include "mpi.h"
#include <stdio.h>
int main(int argc,char **argv) {
 int rank, new_rank, nprocs, sendbuf, recvbuf, ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
 MPI_Group orig_group, new_group;
 MPI_Comm new_comm;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 sendbuf = rank;
 MPI_Comm_group(MPI_COMM_WORLD, &orig_group);
 if (rank < nprocs/2)
 MPI_Group_incl(orig_group, nprocs/2, ranks1, &new_group);
 else MPI_Group_incl(orig_group, nprocs/2, ranks2, &new_group);
 MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
 MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);
 MPI_Group_rank (new_group, &new_rank);
 printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);
 MPI_Finalize();
 return 0;
}

Hypothesis: nprocs=8 credits: http://static.msi.umn.edu

MPI_COMM_SPLIT(comm, color, key, newcomm, ierr)

This routine creates as many new groups and communicators as there are

distinct values of color.

MPI COMM SPLIT

- comm is the old communicator
- color is an array of integers specifying on which group should a process

belong to in the new communicator
- key is an array of integer that defines the rank that the process will get in the

new communicator, that will be ssigned in increasing order depending on
the associated key value

- newcomm is the new communicator

The rankings in the new groups are determined by the value of the key.

MPI_UNDEFINED is used as a color when the process shouldn’t be

included in any of the new groups

MPI COMM SPLIT

if(myid%2==0){
 color=1;

}else{
 color=2;

}
MPI_COMM_SPLIT(MPI_COMM_WORLD,color,myid,&subcomm);
MPI_COMM_RANK(subcomm,mynewid);
printf(“rank in MPICOMM_WORLD %d”,myid,”rank in Subcomm %d”,mynewid);

I am rank 2 in MPI_COMM_WORLD, but 1 in Comm 1.
I am rank 7 in MPI_COMM_WORLD, but 3 in Comm 2.
I am rank 0 in MPI_COMM_WORLD, but 0 in Comm 1.
I am rank 4 in MPI_COMM_WORLD, but 2 in Comm 1.
I am rank 6 in MPI_COMM_WORLD, but 3 in Comm 1.
I am rank 3 in MPI_COMM_WORLD, but 1 in Comm 2.
I am rank 5 in MPI_COMM_WORLD, but 2 in Comm 2.
I am rank 1 in MPI_COMM_WORLD, but 0 in Comm 2.

MPI COMM SPLIT – EXAMPLE (C)

The communicators and groups from a process’ viewpoint are
just handles.

Like all handles, there is a limited number available: you could (in
principle) run out!

MPI_GROUP_FREE(group, ierr)
MPI_COMM_FREE(comm,ierr)

Remember to free your handles after they are no longer needed, it

is always a good practice (like with allocatable arrays)

35

DESTRUCTORS

Intercommunicators are associated with 2 groups of disjoint
processes.

Intercommunicators are associated with a remote group and a

local group

The target process (destination for send, source for receive) is its
rank in the remote group

A communicator is either intra or inter, never both

36

INTERCOMMUNICATORS

INTRODUCTION TO MPI –
VIRTUAL TOPOLOGIES

Introduction to Parallel Computing with MPI
and OpenMP

Topology:
-  extra, optional attribute that can be given to an intra-communicator;

topologies cannot be added to inter-communicators.
-  can provide a convenient naming mechanism for the processes of a

group (within a communicator), and additionally, may assist the
runtime system in mapping the processes onto hardware.

VIRTUAL TOPOLOGY

A process group in MPI is a collection of n processes:
 - each process in the group is assigned a rank between 0 and n-1.

 - in many parallel applications a linear ranking of processes does not
 adequately reflect the logical communication pattern of the processes
 (which is usually determined by the underlying problem geometry and

the
 numerical algorithm used).

Virtual topology:
-  logical process arrangement in topological patterns such as 2D

or 3D grid; more generally, the logical process arrangement is
described by a graph.

VIRTUAL TOPOLOGY

Virtual process topology .vs. topology of the underlying, physical
hardware:

- virtual topology can be exploited by the system in the
assignment of processes to physical processors, if this helps to
improve the communication performance on a given machine.

- the description of the virtual topology depends only on the
application, and is machine-independent.

4
5

2 6

1 7
0

3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

RING 2D-GRID

EXAMPLES

A grid of processes is easily described with a cartesian topology:
-  each process can be identified by cartesian coordinates

-  periodicity can be selected for each direction
-  communications are performed along grid dimensions only

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

41

CARTESIAN TOPOLOGY

P0
(0,0)

P1
(0,1)

P2
(0,2)

P3
(0,3)

P4
(1,0)

P5
(1,1)

P6
(1,2)

P7
(1,3)

P8
(2,0)

P9
(2,1)

P10
(2,2)

P11
(2,3)

DATA
P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

EXAMPLE: 2D DOMAIN
DECOMPOSITION

•  Returns a handle to a new communicator to which the Cartesian topology
information is attached.

•  Reorder:
•  false: the rank of each process in the new group is identical to its rank in the

old group.
•  True: the processes may be reordered, possibly so as to choose a good

embedding of the virtual topology onto physical machine.
•  If cart has less processes than starting communicator, left over processes have

MPI_COMM_NULL as return

MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder,
comm_cart)

IN comm_old: input communicator (handle)

IN ndims: number of dimensions of Cartesian grid (integer)

IN dims: integer array of size ndims specifying the number of

 processes in each dimension

IN periods: logical array of size ndims specifying whether the grid is

periodic (true) or not (false) in each dimension

IN reorder: ranking may be reordered (true) or not (false)

OUT comm_cart: communicator with new Cartesian topology (handle)

CARTESIAN CONSTRUCTOR

#include <mpi.h>

int main(int argc, char *argv[])
{

 MPI_Comm cart_comm;
 int dim[] = {4, 3};

 int period[] = {1, 0};
 int reorder = 0;

 MPI_Init(&argc, &argv);

 MPI_Cart_create(MPI_COMM_WORLD, 2, dim, period, reorder, &cart_comm);

 ...
}

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

EXAMPLE (C)

•  MPI_Dims_Create:
-  compute optimal balanced distribution of processes per coordinate

direction with respect to:
•  a given dimensionality

•  the number of processes in a group
•  optional constraints

•  MPI_Cart_coords:

-  given a rank, returns process's coordinates

•  MPI_Cart_rank:
-  given process's coordinates, returns the rank

•  MPI_Cart_shift:
-  get source and destination rank ids in SendRecv operations

CARTESIAN TOPOLOGY
UTILITIES

•  Help user to select a balanced distribution of processes per
coordinate direction, depending on the number of processes in the

group to be balanced and optional constraints that can be specified
by the user

•  if dims[i] is set to a positive number, the routine will not modify
the number of nodes in that i dimension

•  negative value of dims[i] are erroneous

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes: number of nodes in a grid (integer)

IN ndims: number of Cartesian dimensions (integer)

IN/OUT dims: integer array of size ndims specifying the number of

nodes in each dimension

MPI DIMS CREATE

dims
before call

Function call dims on
return

(0, 0)
(0, 0)
(0, 3, 0)
(0, 3, 0)

MPI_DIMS_CREATE(6, 2, dims)
MPI_DIMS_CREATE(7, 2, dims)
MPI_DIMS_CREATE(6, 3, dims)
MPI_DIMS_CREATE(7, 2, dims)

(3, 2)
(7, 1)
(2, 3, 1)
erroneous
call

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes: number of nodes in a grid (integer)

IN ndims: number of Cartesian dimensions (integer)

IN/OUT dims: integer array of size ndims specifying the number of

nodes in each dimension

47

IN/OUT OF “DIMS”

integer :: dim(3),period(3),reorder, cube_comm, ierr

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs,ierr)

dim(1) = 0 ! let MPI arrange
dim(2) = 0 ! let MPI arrange

dim(3) = 3 ! I want exactly 3 planes

CALL MPI_DIMS_CREATE(nprocs, 3, dim, ierr)

if (dim(1)*dim(2)*dim(3) .LE. nprocs) then
 print *,"WARNING: some processes are not in use!"

endif

period = (1, 1, 0)
reorder = 0

CALL MPI_CART_CREATE(MPI_COMM_WORLD, 3, dim, period, reorder, &

cube_comm,ierr)

USING MPI_DIMS_CREATE
(FORTRAN)

•  translation of the logical process coordinates to process ranks as
they are used by the point-to-point routines

•  if dimension i is periodic, when i-th coordinate is out of range,
it is shifted back to the interval 0<coords(i)<dims(i)

automatically
•  out-of-range coordinates are erroneous for non-periodic dimensions

MPI_CART_RANK(comm, coords, rank)

IN comm: communicator with Cartesian structure

IN coords: integer array (of size ndims) specifying the Cartesian

coordinates of a process

OUT rank: rank of specified process

FROM COORDINATE
TO RANK

•  For each MPI process in Cartesian communicator, the
coordinate whitin the cartesian topology are returned

MPI_CART_COORDS(comm, rank, maxdim, coords)

IN comm: communicator with Cartesian structure

IN rank: rank of a process within group of comm

IN maxdims: length of vector coords in the calling program

OUT coords: integer array (of size ndims) containing the Cartesain

coordinates of specified process

FROM RANK TO
COORDINATE

int cart_rank;
MPI_Comm_rank(cart_comm, &cart_rank);

int coords[2];
MPI_Cart_coords(cart_comm, cart_rank, 2, coords);

// set linear boundary values on bottom/left-hand domain

if (coords[0] == 0 || coords[1] == 0) {

 SetBoundary(linear(min, max), domain);
}

// set sinusoidal boundary values along upper domain

if (coords[0] == dim[0]) {
 SetBoundary(sinusoid(), domain);

}

// set polynomial boundary values along right-hand of domain

if (coords[1] == dim[1]) {
 SetBoundary(polynomial(order, params), domain);

}

51

MAPPING OF
COORDINATES (C)

Circular shift is another tipical MPI communication
pattern:

•  each process communicate only with its neighbors
along one direction

•  periodic boundary conditions can be set for letting
first and last processes partecipate in the

communication

4
5

2 6

1 7
0

3

CARTESIAN SHIFT:
A 1D CARTESIAN TOPOLOGY

0 1 7

such a pattern is nothing more than a 1D cartesian grid
topology with optional periodicity

•  Depending on the periodicity of the Cartesian group in the specied
coordinate direction, MPI_CART_SHIFT provides the identifiers for a

circular or an end-o shift.
•  In the case of an end-o shift, the value MPI_PROC_NULL may be returned

in rank_source or rank_dest, indicating that the source or the destination
for the shift is out of range.

•  provides the calling process the ranks of source and destination processes
for an MPI_SENDRECV with respect to a specified coordinate direction and

step size of the shift

MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)

IN comm: communicator with Cartesian structure

IN direction: coordinate dimension of shift

IN disp: displacement (>0: upwards shift; <0: downwards shift

OUT rank_source: rank of source process

OUT rank_dest: rank of destination process

MPI CART SHIFT

...

integer :: dim = nprocs
integer :: period = 1

integer :: source, dest, ring_comm, status(MPI_STATUS_SIZE),ierr

CALL MPI_CART_CREATE(MPI_COMM_WORLD, 1, dim, period, 0,ring_comm,ierr)

CALL MPI_CART_SHIFT(ring_comm, 0, 1, source, dest, ierr)

CALL MPI_SENDRECV(right_bounday, n, MPI_INT, dest, rtag, left_boundary,
n, MPI_INT, source, ltag, ring_comm, status, ierr)

...

EXAMPLE (FORTRAN)

•  It is often useful to partition a cartesian communicator into
subgroups that form lower dimensional cartesian subgrids

-  new communicators are derived

-  lower dimensional communicators cannot communicate

among them (unless inter-communicators are used)

PARTITIONING OF
CARTESIAN STRUCTURES

	

int	
 dim[]	
 =	
 {2,	
 3,	
 4};	

	

int	
 remain_dims[]	
 =	
 {1,	
 0,	
 1};	
 //	
 3	
 comm	
 with	
 2x4	
 processes	
 2D	

grid	

...	

int	
 remain_dims[]	
 =	
 {0,	
 0,	
 1};	
 //	
 6	
 comm	
 with	
 4	
 processes	
 1D	

topology	

MPI_CART_SUB(comm, remain_dims, newcomm)

IN comm: communicator with Cartesian structure

IN remain_dims: the i-th entry of remain_dims specifies whether the

i-th dimension is kept in the subgrid (true) or is dropped (false)

(logical vector)

OUT newcomm: communicator containing the subgrid that includes the

calling process

56

MPI CART SUB

INTRODUCTION TO MPI –
MPI DATATYPES

Introduction to Parallel Computing with MPI
and OpenMP

What are?
Derived datatypes are datatypes that are built from the basic MPI

datatypes (e.g. MPI_INT, MPI_REAL, …)

DERIVED DATATYPE

Why datatypes?
•  Since all data is labeled by type, an MPI implementation can

support communication between processes on machines with
very different memory representations and lenghts of
elementary datatypes (heterogeneous communication)

•  Specifying application-oriented layout of data in memory
- can reduce memory-to memory copies in the implementaion

- allows the use of special hardware (scatter/gather) when available

•  Specifying application-oriented layout of data on a file can
reduce systems calls and physical disk I/O

You may need to send messages that contain:
 1. non-contiguous data of a single type (e.g. a sub-block of a matrix)

 2. contiguous data of mixed types (e.g., an integer count, followed by a sequence of
real numbers)

 3. non-contiguous data of mixed types

DERIVED DATATYPE

Possible solutions:
1. make multiple MPI calls to send and receive each data element

 → If advantegeous, copy data to a buffer before sending it
2. use MPI_pack/MPI_Unpack to pack data and send packed data (datatype

MPI_PACKED)
3. use MPI_BYTE to get around the datatype-matching rules. Like

MPI_PACKED, MPI_BYTE can be used to match any byte of storage (on a
byte-addressable machine), irrespective of the datatype of the variable that

contains this byte.

Additional latency costs due to multiple calls
Additional latency costs due to memory copy

Not portable to a heterogeneous system using MPI_BYTE or
MPI_PACKED

Datatype solution:
1.  The idea of MPI derived datatypes is to provide a simple, portable, elegant

and efficient way of communicating non-contiguous or mixed types in a
message.

•  During the communication, the datatype tells MPI system where to
take the data when sending or where to put data when receiving.

2.  The actual performances depend on the MPI implementation
3.   Derived datatypes are also needed for getting the most out of MPI-I/O.

DERIVED DATATYPE

A general datatype is an opaque object able to describe a buffer layout in memory by
specifing:

l  A sequence of basic datatypes
l  A sequence of integer (byte) displacements.

DEFINITION

Typemap = {(type 0, displ 0), … (type n-1, displ n-1)}
– pairs of basic types and displacements (in byte)

Type signature = {type 0, type 1, … type n-1}
– list of types in the typemap
– gives size of each elements

– tells MPI how to interpret the bits it sends and received

Displacement:
– tells MPI where to get (when sending) or put (when receiving)

Example:
Basic datatype are particular cases of a general datatype, and are

predefined:

 MPI_INT = {(int, 0)}

General datatype with typemap

 Typemap = {(int,0), (double,8), (char,16)}

int char

double
derived datatype

TYPEMAP

General datatypes (differently from C or Fortran) are created
(and destroyed) at run-time through calls to MPI library routines.

HOW TO USE

Implementation steps are:
1. Creation of the datatype from existing ones with a datatype constructor.

2. Allocation (committing) of the datatype before using it.

3. Usage of the derived datatype for MPI communications and/or for MPI-I/O

4. Deallocation (freeing) of the datatype after that it is no longer needed.

MPI_TYPE_COMMIT (datatype)

 INOUT datatype: datatype that is committed (handle)

•  Before it can be used in a communication or I/O call, each derived
datatype has to be committed

COMMITTING AND FREEING

MPI_TYPE_FREE (datatype)
 INOUT datatype: datatype that is freed (handle)

Mark a datatype for deallocation

Datatype will be deallocated when all pending operations are finished

•  MPI_TYPE_CONTIGOUS constructs a typemap consisting of the
replication of a datatype into contiguous locations.

•  newtype is the datatype obtained by concatenating count copies of
oldtype.

MPI_TYPE_CONTIGUOUS (count, oldtype, newtype)
 IN count: replication count (non-negative integer)

 IN oldtype: old datatype (handle)
 OUT newtype: new datatype (handle)

MPI TYPE CONTIGUOUS

Example

MPI TYPE CONTIGUOUS

•  Consists of a number of elements of the same datatype repeated
with a certain stride

MPI_TYPE_VECTOR (count, blocklength, stride, oldtype, newtype)
 IN count: Number of blocks (non-negative integer)

 IN blocklen: Number of elements in each block
 (non-negative integer)

 IN stride: Number of elements (NOT bytes) between start of
 each block (integer)

 IN oldtype: Old datatype (handle)
 OUT newtype: New datatype (handle)

MPI TYPE VECTOR

Example

•  It’s identical to MPI_TYPE_VECTOR, except that stride is given in bytes,
rather than in elements

•  “H” stands for heterogeneous

MPI_TYPE_CREATE_HVECTOR (count, blocklength, stride, oldtype, newtype)

 IN count: Number of blocks (non-negative integer)
 IN blocklen: Number of elements in each block (non-negative integer)

 IN stride: Number of bytes between start of each block (integer)
 IN oldtype: Old datatype (handle)

 OUT newtype: New datatype (handle)

MPI TYPE HVECTOR

•  Creates a new type from blocks comprising identical elements
•  The size and displacements of the blocks can vary

MPI_TYPE_INDEXED (count, array_of_blocklengths, array_of_displacements,
 oldtype, newtype)

 IN count: number of blocks – also number of entries in
 array_of_blocklenghts and array_of_displacements

 (non-negative integer)
 IN array_of_blocklengths: number of elements per block

 (array of non-negative integers)
 IN array_of_displacements: displacement for each block, in multiples of oldtype extent

 (array of integer)
 IN oldtype: old datatype (handle)

 OUT newtype: new datatype (handle)

oldtype

newtype

count=3, array_of_blocklenghths=(/2,3,1/), array_of_displacements=(/0,3,8/)

MPI TYPE INDEXED

Example 1

! upper triangular matrix
real, dimension(100,100) :: a

integer, dimension(100) :: displ, blocklen
integer :: i, upper, ierr

! compute start and size of the rows

do i=1,100
 displ(i) = 100*i+i

 blocklen(i) = 100-i

end do

! create and commit a datatype for upper triangular matrix
CALL MPI_TYPE_INDEXED (100, blocklen, disp, MPI_DOUBLE, upper,ierr)

CALL MPI_TYPE_COMMIT (upper,ierr)
! … send it ...

CALL MPI_SEND (a, 1, upper, dest, tag, MPI_COMM_WORLD, ierr)
MPI_Type_free (upper, ierr)

MPI TYPE INDEXED
EXAMPLE (FORTRAN)

•  This function is identical to MPI_TYPE_INDEXED, except that block
displacements in array_of_displacements are specified in bytes, rather

that in multiples of the oldtype extent

MPI_TYPE_CREATE_HINDEXED (count, array_of_blocklengths,
 array_of_displacements, oldtype, newtype)

 IN count: number of blocks – also number of entries in array_of_blocklengths and

 array_of_displacements (non-negative integer)
 IN array_of_blocklengths: number of elements in each block

 (array of non-negative integers)
 IN array_of_displacements: byte displacement of each block (array of integer)

 IN oldtype: old datatype (handle)
 OUT newtype: new datatype (handle)

MPI TYPE HINDEXED

•  Similar to MPI_TYPE_INDEXED, except that the block-length is the same for
all blocks.

•  There are many codes using indirect addressing arising from unstructured
grids where the blocksize is always 1 (gather/scatter). This function allows

for constant blocksize and arbitrary displacements.

MPI_TYPE_CREATE_INDEXED_BLOCK (count, blocklengths,
 array_of_displacements, oldtype, newtype)

 IN count: length of array of displacements (non-negative integer)

 IN blocklengths: size of block (non-negative integer)
 IN array_of_displacements: array of displacements (array of integer)

 IN oldtype: old datatype (handle)
 OUT newtype: new datatype (handle)

MPI TYPE INDEXED BLOCK

The subarray type constructor creates an MPI datatype describing an n
dimensional subarray of an n-dimensional array. The subarray may be

situated anywhere within the full array, and may be of any nonzero size up to
the size of the larger array as long as it is confined within this array.

MPI_TYPE_CREATE_SUBARRAY (ndims, array_of_sizes, array_of_subsizes,
 array_of_starts, order, oldtype, newtype)

 IN ndims: number of array dimensions (positive integer)
 IN array_of_sizes: number of elements of type oldtype in each

 dimension of the full array (array of positive integers)
 IN array_of_subsizes: number of elements of type oldtype in each

 dimension of the subarray (array of positive integers)
 IN array_of_starts: starting coordinates of the subarray in each

 dimension (array of non-negative integers)
 IN order: array storage order flag

 (state: MPI_ORDER_C or MPI_ORDER_FORTRAN)
 IN oldtype: array element datatype (handle)

 OUT newtype: new datatype (handle)

MPI TYPE SUBARRAY

double subarray[100][25];
MPI_Datatype filetype;

int sizes[2], subsizes[2], starts[2];
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

sizes[0]=100; sizes[1]=100;

subsizes[0]=100; subsizes[1]=25;
starts[0]=0; starts[1]=rank*subsizes[1];

MPI_Type_create_subarray(2, sizes, subsizes, starts,

MPI_ORDER_C, MPI_DOUBLE, &filetype);

MPI_Type_commit(&filetype);

MPI_TYPE_CREATE_SUBARRAY (ndims, array_of_sizes,
array_of_subsizes, array_of_starts, order, oldtype, newtype)

MPI TYPE SUBARRAY
EXAMPLE (C)

The MPI datatype for structures – MPI_TYPE_CREATE_STRUCT – requires
dealing with memory addresses and further concepts:

Typemap: pairs of basic types and displacements

Extent: The extent of a datatype is the span from the lower to the upper

bound (including “holes”)

Size: The size of a datatype is the net number of bytes to be transferred
(without “holes”)

77

int char

 derived datatype double

SIZE AND EXTENT

Basic datatypes:
•  size = extent = number of bytes used by the compiler

Derived datatypes:

•  extent include holes but...
•  beware of the type vector: final holes are a figment of our imagination

•  size = 6 x size of “old type”
•  extent = 10 x extent of “old type”

old type

new type

78

SIZE AND EXTENT

•  Returns the total number of bytes of the entry datatype

MPI_TYPE_GET_EXTENT (datatype, lb, extent)
 IN datatype: datatype to get information on(handle)

 OUT lb: lower bound of datatype (integer)
 OUT extent: extent of datatype (integer)

MPI_TYPE_SIZE (datatype, size)
 IN datatype: datatype (handle)

 OUT size: datatype size (integer)

QUERY SIZE AND EXTENT
OF DATATYPE

•  Returns the lower bound and the extent of the entry datatype

•  Extent controls how a datatype is used with the count field in a send and
similar MPI operations

•  Consider

•  What actually gets sent?

where bufb is a byte type like integer*1

•  extent is used to decide where to send from (or where to receive to in
MPI_Recv) for count>1

-  Normally, this is right after the last byte used for (i-1)

call MPI_Send(buf,count,datatype,...)

do i=0,count-1
 call MPI_Send(bufb(1+i*extent(datatype)),1,datatype,...)

enddo

EXTENT

This subroutine returns a new datatype that represents count blocks. Each
block is defined by an entry in array_of_blocklengths,

array_of_displacements and array_of_types.
•  Displacements are expressed in bytes (since the type can change!)
•  To gather a mix of different datatypes scattered at many locations in space

into one datatype that can be used for the communication.

MPI_TYPE_CREATE_STRUCT (count, array_of_blocklengths,
 array_of_displacements, array_of_oldtypes, newtype)

 IN count: number of blocks (non-negative integer) -- also number of entries the following arrays

 IN array_of_blocklenghts: number of elements in each block
 (array of non-negative integer)

 IN array_of_displacements: byte displacement of each block
 (array of integer)

 IN array_of_oldtypes: type of elements in each block
 (array of handles to datatype objects)

 OUT newtype: new datatype (handle)

MPI TYPE STRUCT

struct {
 float x, y, z, velocity;

 int n, type;
} Particle;

Particle particles[NELEM];

MPI_Type_struct (count, blockcounts, displ, oldtypes, &particletype);
MPI_Type_commit(&particletype);

f f f f i i f f f f i i … … …

MPI_Type_extent(MPI_FLOAT, &extent);

count = 2;
blockcounts[0] = 4; blockcount[1] = 2;

oldtypes[0]= MPI_FLOAT; oldtypes[1] = MPI_INT;
displ[0] = 0; displ[1] = 4*extent;

particles[NELEM]

USING EXTENT (NOT SAFE)

struct {
 float x, y, z, velocity;

 int n, type;
} Particle;

Particle particles[NELEM];

int count, blockcounts[2];
MPI_Aint displ[2];

MPI_Datatype particletype, oldtypes[2];

count = 2;
blockcounts[0] = 4; blockcount[1] = 2;

oldtypes[0]= MPI_FLOAT; oldtypes[1] = MPI_INT;

MPI_Type_extent(MPI_FLOAT, &extent);
displ[0] = 0; displ[1] = 4*extent;

MPI_Type_create_struct (count, blockcounts, displ, oldtypes,

 &particletype);

MPI_Type_commit(&particletype);

MPI_Send (particles, NELEM, particletype, dest, tag,
 MPI_COMM_WORLD);

MPI_Free(&particletype);

USING EXTENT (NOT SAFE)

•  C struct may be automatically padded by the compiler, e.g.

•  Using extents to handle structs is not safe! Get the addresses

•  The address of the variable is returned, which can then be used to determine the
correct relative dispacements

•  Using this function helps with portability

MPI_GET_ADDRESS (location, address)
IN location: location in caller memory (choice)

OUT address: address of location (integer)

struct mystruct {
 char a;

 char gap_0[3];
 int b;

 char c;
 char gap_1[3];

} x

struct mystruct {
 char a;
 int b;

 char c;
} x

USING EXTENT (NOT SAFE)

MPI_Datatype ParticleType;
int count = 3;

MPI_Datatype type[3] = {MPI_CHAR, MPI_DOUBLE, MPI_INT};
int blocklen[3] = {1, 6, 7};

MPI_Aint disp[3];

MPI_Get_address(&particle[0].class, &disp[0]);
MPI_Get_address(&particle[0].d, &disp[1]);
MPI_Get_address(&particle[0].b, &disp[2]);

/* Make displacements relative */
disp[2] -= disp[0]; disp[1] -= disp[0]; disp[0] = 0;

MPI_Type_create_struct (count, blocklen, disp, type,

&ParticleType);
MPI_Type_commit (&ParticleType);

MPI_Send(particle,100,ParticleType,dest,tag,comm);

MPI_Type_free (&ParticleType);

struct PartStruct {
 char class;

 double d[6];
 int b[7];

} particle[100];

USING DISPLACEMENTS

•  According to the standard the memory layout of Fortran derived data is much
 more liberal

•  An array of types, may be implemented as 5 arrays of scalars!

•  The memory layout is guaranteed using sequence or bind(C) type attributes
-  Or by using the (old style) commons...

•  With Fortran 2003, MPI_Type_create_struct may be applied to common blocks,
sequence and bind(C) derived types

-  it is implementation dependent how the MPI implementation computes the
alignments (sequence, bind(C) or other)

•  The possibility of passing particles as a type depends on MPI implementation: try
particle%x and/or study the MPI standard and Fortran 2008 constructs

type particle
 sequence

 real :: x,y,z,velocity
 integer :: n

end type particle
type(particle) :: particles(Np)

type particle
 real :: x,y,z,velocity

 integer :: n
end type particle

type(particle) :: particles(Np)

FORTRAN TYPES

 Performance depends on the datatype – more general datatypes are
often slower

l  some MPI implementations can handle important special cases: e.g., constant
stride, contiguous structures

l  Overhead is potentially reduced by:

l  Sending one long message instead of many small messages

l  Avoiding the need to pack data in temporary buffers

l  Some implementations are slow

PERFORMANCE

These slides have been written, checked and maintained by:

-  Alessandro Marani (a.marani@cineca.it)
-  Andy Emerson (a.emerson@cineca.it)
-  Giusy Muscianisi (g.muscianisi@cineca.it)
-  Luca Ferraro (l.ferraro@cineca.it)
-  Fabio Affinito (f.affinito@cineca.it)

Credits...

