
Introduction to PLX working
environment

Introduction to Parallel Computing with MPI and
OpenMP

9-10-11 December 2014

a.marani@cineca.it

Architecture: Linux Infiniband Cluster
Processor: Intel Xeon (Esa-Core Westmere)
 E5645 2.4 GHz
Number of processors (cores): 3288
Number of nodes: 274 (12 cores per node)
RAM: 14 TB (4 GB/core)
Interconnection network: Infiniband
Number of GPUs: 548 (2 per node)
Operative system: Linux
Peak performance: 32 TFlop/s (CPU);
 565 TFlop/s (GPU)
Compilers: Fortran, C, C++
Parallel libraries: MPI,OpenMP

PLX

Login: ssh <username>@login.plx.cineca.it

WORK ENVIRONMENT

Once you’re logged on PLX, you are on your home space.

It is best suited for programming environment (compilation, small
debugging sessions…)

Space available: 4 GB (PLX)

Environment variable: $HOME

Another space you can access to is your scratch space.

It is best suited for production environment (launch your jobs from there)

Space available: 32 TB (PLX)

Environment variable: $CINECA_SCRATCH

Use the command “cindata” for a quick briefing about your space occupancy

As an user, you have access to a limited number of CPU hours to
spend. They are not assigned to users, but to projects and are shared

between the users who are working on the same project (i.e. your
research partners). Such projects are called accounts and are a

different concept from your username.

ACCOUNTING

You can check the state of your account with the command “saldo –b”,
which tells you how many CPU hours you have already consumed for
each account you’re assigned at (a more detailed report is provided by

“saldo –r”.

ACCOUNTING

The account provided for this course is
“train_cmpB2014” (you have to specify it on
your job scripts). It expires in one week and
is shared between all the students; there are
plenty of hours for everybody, but don’t
waste them!

MODULES

CINECA’s work environment is organized with modules, a
set of installed tools and applications available for all users.

“loading” a module means defining all the environment
variables that point to the path of what you have loaded.

After a module is loaded, the environment variable is set of
the form “MODULENAME_HOME”

MODULE COMMANDS
>module available (or just “> module av”)
Shows the full list of the modules available in the profile you’re into, divided
by: environment, libraries, compilers, tools, applications

> module load <module_name>

Loads a specific module

> module show <module_name>
Shows the environment variables set by a specific module

> module help <module_name>
Gets all informations about how to use a specific module

COMPILING ON PLX
In PLX you can choose between three different compiler families:
gnu, intel and pgi

You can take a look at the versions available with “module av” and then
load the module you want. Defaults are: gnu 4.1.2, intel 11.1, pgi 12.8

module load intel # loads default intel compilers suite

module load intel/co-2011.6.233--binary #loads specific compilers
suite

Compiler’s
name

GNU INTEL PGI

Fortran gfortran ifortran pgf77

C gcc icc pgcc

C++ g++ icpc pgCC

Get a list of the

compilers flag with

the command man

PARALLEL COMPILING ON PLX
For parallel programming, two families of compilers are available:

openmpi (recommended) and intelMPI .

There are different versions of openmpi, depending on which compiler has
been used for creating them. Default is openmpi/1.4.5--gnu--4.1.2

module load openmpi # loads default openmpi compilers suite

module load openmpi/1.4.5--intel--11.1--binary # loads specific compilers
suite

Warning: openmpi needs to be loaded after the corresponding basic
compiler suite. You can load both compilers at the same time with
“autoload”

If another type of compiler was previously loaded, you may get a

“conflict error”. Unload the previous module with “module unload”

PARALLEL COMPILING ON PLX
Compiler’s name OPENMPI

INTELMPI

Fortran mpif90

C mpicc

C++ mpiCC

Compiler flags are the same as the basic compiler (since they are
basically MPI wrappers of those compilers)

OpenMP is provided with the thread-safe suffix “_r” (ex: mpif90_r) and
the following compiler flags:

gnu: -fopenmp

intel : -openmp

pgi: -mp

Now that we have our PLX program, it’s time to learn how
to prepare a job for its execution

LAUNCHING JOBS

PLX uses a completely different scheduler with its own
syntax, called PBS. The job script scheme remains the
same:

- #!/bin/bash

- PBS keywords

- variables environment
- execution line

PBS KEYWORDS
#PBS –N jobname # name of the job
#PBS -o job.out # output file
#PBS -e job.err # error file
#PBS -l select=1:ncpus=8:mpiprocs=1 #resources requested*
#PBS -l walltime=1:00:00 #max 24h, depending on the queue
#PBS -q parallel #queue desired
#PBS -A <my_account> #name of the account

*: select = number of nodes requested

 ncpus = number of cpus per node requested

 mpiprocs = number of mpi tasks per node

 for pure MPI jobs, ncpus =mpiprocs. For OpenMP jobs, mpiprocs < ncpus

#PBS -A train_cmpB2014 # your account name

#PBS -q private # special queue reserved for you

#PBS -W group_list=train_cmpB2014 # needed for entering in private queue

LL KEYWORDS SPECIFIC FOR THE
COURSE

“private” queue is a particular queue composed by 8 nodes
reserved for internal staff and course students. Each nodes
has no more than 8 CPUs (while regular nodes have 12)

In order to grant fast runs to all the students, we ask you to
not launch jobs too big (you won’t need them, anyways).
Please don’t request more than 1 node at a time!

ENVIRONMENT SETUP AND
EXECUTION LINE

The command used to launch a parallel application is mpirun:

mpirun –n 14 ./myexe

–n is the number of cores you want to use.

The “difficult part” here is setting the environment…

In order to use mpirun, openmpi (or IntelMPI) has to be loaded. Also, if
you linked dynamically, you have to remember to load every library
module you need.

The environment setting usually start with “cd $PBS_O_WORKDIR”.
That’s because by default you are launching on your home space and
may not find the executable you want to launch.

$PBS_O_WORKDIR points at the folder you’re submitting the job from.

#!/bin/bash
#PBS -l walltime=1:00:00
#PBS -l select=1:ncpus=8:mpiprocs=8
#PBS -o job.out
#PBS -e job.err
#PBS -q private
#PBS -A train_cmpB2014
#PBS –W group_list=train_cmpB2014

cd $PBS_O_WORKDIR
module load autoload openmpi

mpirun ./myprogram

PLX JOB SCRIPT EXAMPLE

PBS COMMANDS

qsub
 qsub <job_script>
Your job will be submitted to the PBS scheduler and executed
when there will be nodes available (according to your priority and the
queue you requested)

qstat

 qstat

Shows the list of all your scheduled jobs, along with their status (idle,

running, closing,…)

Also, shows you the job id required for other qstat options

PBS COMMANDS

qstat -f <job_id>
Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, you made an error on the job script, you will
learn that the job won’t ever start

qdel

 qdel <job_id>

 Removes the job from the scheduler, killing it

JOB CLASSES

Let’s suppose you are now a regular HPC user. You won’t have access
to the “private” queue: how can you launch jobs then?

You have to modify your jobscript by changing the “PBS –q private”
keyword with something else: you will be able to submit your jobs, but

as a regular user (so expect long waiting times)

The queue you’re going into is the one you ask (it has to be specified!):

debug: max nodes= 2, wall_clock_time <= 00:30:00

parallel: max nodes=44, wall_clock_time <= 06:00:00

longpar: max nodes=22, wall_clock_time <=24:00:00

You don’t need the PBS –W keyword anymore

USEFUL DOCUMENTATION

Check out the User Guides on our website www.hpc.cineca.it

PLX:

http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0

http://www.hpc.cineca.it/content/batch-scheduler-pbs-0

http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0
http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0
http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0
http://www.hpc.cineca.it/content/batch-scheduler-pbs-0
http://www.hpc.cineca.it/content/batch-scheduler-pbs-0
http://www.hpc.cineca.it/content/batch-scheduler-pbs-0

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19

