
Profiling Exercise

Matrix Multiplication

The program (molt_mat.f90, molt_mat.c), given the matrices A(L,M), B(M,N), C(L,N) computes C
= A x B. Moreover if the value of the external loop counter is even, to the element (i,j) of the C
matrix we add 4*i^i, otherwise 9*i^i. Check with gprof and gcov the hot spots inside the source
and try to find out a solution to increase the efficiency.

// Matrix multiplication

for(i=0;i<a_r; i++) {

 for(j=0;j<b_c; j++) {

 for(k=0;k<a_c; k++){

 if (i%2==0) {

 inc=4*pow((double)i,(double)i);

 c[i][j]=c[i][j]+a[i][k]*b[k][j] +inc;

 }

 else {

 inc=9*pow((double)i,(double)i);

 c[i][j]=c[i][j]+a[i][k]*b[k][j] +inc;

 }

 }

 }}

file:///E:/Corsi/Corso HPC profiling_nuovo/esercizi_profiling/molt_mat.f90
file:///E:/Corsi/Corso HPC profiling_nuovo/esercizi_profiling/molt_mat.f90
file:///E:/Corsi/Corso HPC profiling_nuovo/esercizi_profiling/molt_mat.f90
file:///E:/Corsi/Corso HPC profiling_nuovo/esercizi_profiling/molt_mat.f90

Pi by quadrature
•

Pi by quadrature

Using paraprof profiler execute the following steps:

•Compile the source pi.c or pi.f90 using tau configuration scripts

–tau_cc.sh -o pi pi.c

•Run the executable with 4 MPI processes using the input file “iterations.inp” and visualize the

results with the TAU profiler.

–mpirun –np 4 pi.exe < iterations.inp

–paraprof

•Analyze the results using the following windows:

–“Bar chart”, “Statistic Test”, “Statistic Table”, “Call graph”, “Call Path Relations”

Source code: pi.c

Pi by quadrature

•The timing information on the function “f()” is correct?

•Disable function throttle and run again the executable and TAU with “paraprof”

•Can you see any difference on the timing result and on the weight of the function

“f()” respect to total execution time?

•Try to find a solution to optimize the code.

Source code: pi.c

c

Matrix Multiplication

• Use TAU compiler instrumentation to profile matrix multiplication program

• Analize result with paraprof

• Create a selective intrumentation file for pdb

• Perform pdt-based profile analysis and use paraprof to visualize result

Source code: matrix.cc

Rarefied Gas Dynamics Code

The serial code “Raref_gas_dyn.c” solves the semi-deterministic Boltzmann equation
for studying turbulence and instability of rarefied gas dynamics.

In the code we have two main functions “streaming()” and “collision()” while all the
other ones are only utility functions.

•The flow chart of the code can be sketched this way

Main

Initialization

Streaming

Collision

Output to file

Main iteration loop over time
steps

At each iteration the arrays gPP, gMP,
gMM, gPM are passed between the
«Streaming» and «Collision»

Dimension of the main arrays in collision and
streaming:
gPP,gPM,gMM,gMP[NX,NY,N3]
C[N6,N3] (used in collision, readonly)

Rarefied Gas Dynamics Code
•Compile the code using the TAU scripts

•Analyze the results

–Use the windows “Bar chart”, “Statistic Table”

–Can you find any function where most of time is spent?

•Look at that function in the source code and analyze carefully the loops:

–for(int i=0; i<NX;i++){

– for(int j=0; j<NY;j++){

•Can you find any parallelization strategy using OpenMP?

–Take care about shared and private variables inside the loops above

•Insert the OpenMP directives inside the function collision according to your strategy

•Test the speedup obtained with OpenMP making a scalability test from 1 to 4 cores

–If parallelization is correct, you should obtain the following results

Rarefied Gas Dynamics Code
•Compile the code using the TAU scripts

•Analyze the results

–Use the windows “Comparison Window”, “3D Visualization”

–The load balancing among threads is good?

•OpenMP has the limit to work just on a single node.

•Look again at the function “collision” in the source code . In addition to the strategy implemented with
OpenMP can you find a way to add a domain decomposition with the MPI directives thus to exploit the
computing power of a cluster.

•Look at the following dependency graph for hints. Do you think it’s possible to decompose along the k
dimension of the loop “for(int k=0;k<N3;k++)” contained in “collision”?

Source code: Rgas_MPI_OpenMP_guided.c

Main

Initialization

Streaming

Collision

Output to file

Main iteration loop over time
steps

At each iteration the arrays gPP,
gMP, gMM, gPM are passed
between the functions
«Streaming» and «Collision»

Rarefied Gas Dynamics Code
•Try to implement the domain decomposition following the guidelines in the source code :
Rgas_MPI_OpenMP_guided.c

•Compile and run the code

–Use the script compile_openmp_mpi_tau.sh

–Run the executable : mpirun –np 2 –x OMP_NUM_THREADS=2 executable

•Analyze the results using TAU

–Use the windows “Comparison Window”, “3D Visualization” and “Statistic Table”

–The load balancing among threads remains good?

•Looking at the main function in the program you can notice that the “streaming” function is
executed only by the master process which broadcasts the arrays gPP, gMM, gMP, gPM to the
other processes.

•For large simulations the MPI_Bcast() time, which is done at each iteration, can increase
significantly.

–Can you find a better solution to the use of MPI_Bcast()?

Source code: Rgas_MPI_OpenMP_guided.c

Source code: Rgas_MPI_OpenMP_optim.c

