= SCAM

SuperCompuling Applicalions and Innovalion

Debugging

Andrew Emerson, Paride Dagna and others
SCAI, Cineca

CINECA

Intro to HPC programming: tools and

29/10/2014 techniques

2

CINECA E CAI
SuperCompuling Applicalions and Innovalion < O I I te I ltS

 |Introduction

* Before using the debugger
— compiler options
— analysing core files on BG/Q
* Preparing for the debugger
— IBM BG/Q
— Other architectures
* Debugging a serial program with gdb

e Parallel Program debugging with gdb, PMPI and
Totalview

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 2

SCAI -
St Introduction

* One of the most widely used methods to find out the reason of a
strange behaviour in a program is the insertion of “printf” or
“write” statements in the supposed critical area.

 However this kind of approach has a lot of limits and requires
frequent code recompiling and becomes hard to implement for
complex programs, above all if parallel. Moreover sometimes the
error may not be obvious or hidden.

 Debuggers are very powerful tools able to provide, in a targeted
manner, a high number of information facilitating the work of the
programmer in research and in the solution of instability in the
application.

* For example, with simple debugging commands you can have your
program run to a certain line and then pause. You can then see
what value any variable has at that point in the code.

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 3

W SCAl |
Debu gging process

The debugging process can be divided into four main
steps:

1. Start your program.
Make your program stop on specified conditions.

3. Examine what has happened, when your program has
stopped.

4. Change things in your program, or its compilation, so
you can experiment with correcting the effects of one
bug and go on to learn about another.

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 4

5CAI Before starting the debugger

* Before starting the debugger, check your compiler documentatlo
to see what compile or run-time checks are available.

 Some compiler options to try

— switch down the optimisation level (e.g. from —03). High or
“aggressive” optimisations can cause code changes and introduce
bugs.

— turn on compiler options such as —C or —check-bounds to look for
incorrect array indices.

— for xIf try options such as —gflttrap=enable:zerodivide
— use options for uninitialised variable detection, etc.

* For performance reasons many run-time checks are switched off by
default. Remember to switch them off again when debugging is
complete.

* |f possible also worth using a different compiler to see if the
problem persists, or more useful error or warning messages are
obtained.

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 5

" SCAI Debugging on the IBM
BG/Q

e Because of its particular architecture (cannot
login directly on the compute nodes) debugging
is more complex on BG/Q.

* |IBM provides a number of utilities which can be
used without invoking a debugger.

e For further information check out the Cineca HPC

user guide:

http://www.hpc.cineca.it/sites/default/files
/Debug%20guide 0.pdf

CINECA

29/10/2014 Intro to HPC programming: tools and techniques 6

CINECA E CAI
SuperCompuling Applicalions and Innovalion I B M BG/Q

* Sometimes it may happen that an unsuccessful job generates a
segmentation fault message where the chain of stack frames is
reported.

e addr2line is an utility that allows to get information from
this file about where the job crashed, using the syntax:

e addr2line -e ./myexe 0x400ab9

[[P90:05046] *** Process received signal ***

[P90:05046] Signal: Segmentation fault (11)

[P90:05046] Signal code: Address not mapped (1)

[P90:05046] Failing at address: 0x7fff54fd8000

[P90:05046] [0] /lib/x86_64-linux-gnu/libpthread.so.0(+0x10060) [0x7f8474777060]
[P90:05046] [1] /lib/x86_64-linux-gnu/libc.so.6(+0x131b99) [0x7f84744f7b99]

[P90:05046] [2] /usr/lib/libmpi.so.0(ompi_convertor_pack+0x14d) [0x7f84749c75dd]
[P90:05046] [3] /usr/lib/openmpi/lib/openmpi/mca_btl_sm.so(+0x1de8) [0x7f846fel4de8]
[P90:05046] [4] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1l.so(+0xd97e) [0x7f8470c6c97¢€]
[P90:05046] [5] /usr/lib/openmpi/lib/openmpi/mca_pml_obl.so(+0x8900) [0x7f8470c67900]
[P90:05046] [6] /usr/lib/openmpi/lib/openmpi/mca_btl_sm.so(+0x4188) [0x7f846fe17188]
[P90:05046] [7] /usr/lib/libopen-pal.so.0(opal_progress+0x5b) [0x7f8473f330db]

[P90:05046] [8] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0x6fd5) [0x7f8470c65fd5]
[P90:05046] [9] /usr/lib/libmpi.so.0(PMPI_Send+0x195) [0x7f84749e1805]

[P90:05046] [10] nr2(main+0xe1) [0x400c55]

[P90:05046] [11] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xed) [0x7f84743e730d]
[P90:05046] [12] nr2() [0x400ab9] I
[P90:05046] *** End of error message *** [INECA

lntra b LIDC v~ syt g b~ le oA b i A 7
LLBLALA A2\ %4 7

29/10/2014 S PpTuUsTarmmmTTmTgs . TUOUTS diTua LT UrirmimyutTo

= SCAI -
IBM BG/Q - core files

* By default Fermi IBM BG/Q produces text
core files but not necessarily very readable

+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE PORMAT wersion 1.0

++4LCE 1.0
Program 1 deadlock.exe
Job ID 1 96550
Personality:
ABCDET coordinates @ 0,0,0,0,0,3
Hank 13
Ranks per node 1 4
DDR Size (MB) 1 163E4

+#+I0 Rank: 3, TGID: 337, Core: 12, HWTID:0 TID: 337 State: RUN
#+*FAILT Encountered unhandled signal OxQ000000% (9) (27%)
While executing instruction at....s..s..0x00000000011£00%c
Dereferencing memory at:.sssssassssassss0x0000000000000000
Toole attached [list of tool ids).......Mone
Currently running on hardware thread....¥
Genaral Purpose Registers:
rdi=00000000010dbefd rO1=0000001E£EEEF9R60 rO2=00000000015b2ce0 £O3=0000000000000000 rO4=0000000000000001 rOS=000000LFEEE£O840
rOE=0000000000000000 rO7=0000001 £EEEE95a0
rlE=0000000001649160 r09=0000000300%00020 r10=0000000000000000 r11=0000001£00a00020 r12=0000000024000222 r13=0000001£00707700
r14=0000000000000000 r15=0000000000000000
rlé=0000000000000000 17=0000000000000000 r1E=0000000000000000 r19=0000000000000000 r20=0000000000000001 r21=0000000000000000
r22=0000001£00728848 r23=0000000000000001
r24=0004000000000000 r25=0000000000000000 r26=00000000015£EFE8 £2T=0000000000000001 r28=0000000000000000 £29=0000000000000000
r30=0000000000000000 rI1=0000001£007326e0
Special Purpose Hegisters:
1r=00000000011£0130 cr=0000000044004222 xer=0000000000000000 ctr=000000000102a7a4
mar=00000000E002£000 dear=0000000000000000 esr=0000000000000000 fpacr=0000000000004000
mprgl=0000000000000000 aprgl=0000000000000000 mprg2=0000000000000000 sprg3=0000000000000000 =prqd=0000000000000000
mprgi=0000000000000000 aprgé=000000000056e200 sprg?=0000000000000000 sprgE=0000000000000000
arr0=00000000011£009c ercl=00000000B002£000 cercl=0000000000000000 cerrl=0000000000000000 moarc0=0000000000000000 moerrl=0000000000000000
dberd=0000000000000000 dberl=0000000000000000 dber?=0000000000000000 dber3=0000000000000000 dbar=0000000000000000
Floating Point Hegisters:
E00=5500002000000000 1000008800200019 0000000000000000 0O0OOOOOO0000000 £01=0000000000000000 Q000000000000000 00G0000000000000 0OOODDOOOCOO0000
E%I}{T@}Q@iﬂ 0000 DO0OODOOOBO0000D 0OOODOO0ODOODO00D lnwbuon e dobR 6o reng£eum mmgunhmls Iﬁﬁﬂdl}tﬂmm'ﬂq U@R0000000000000 0000000100000000

CINECA

o SCAl

SuperCompuling Applicali

IBM BG/Q core files

* Blue Gene core files are lightweight text files.

e Hexadecimal addresses in section STACK describe
function call chain until program exception.

* It’s the section delimited by tags: +++STACK / —STACK,
in particular the “Saved Link Reg” column.

* These should be passed to the addr2line command or..

29/10/2014

+++3TACK

Frame Address
0000001fffff5acO
0000001f£f£f££5bcO
0000001ff£f£f£f5c60
0000001f££££5d00
0000001ff£f££5e00
0000001£££££5£00
0000001£££££6000
-—-STACK

Intro to HPC programming: tools and techniques

Saved Link Reg

000000000000001c
00000000018b2678
00000000015046d0
00000000015738a8
00000000015734ec
000000000151a4d4
00000000015001c8

CINECA

w SCAN

SuperCompuling Applicalions and Innovalion

IBM BG/Q core files

e .. use some handy scripts.

module load superc
a2l-translate corefile

addr2line -e <exe> <

29/10/2014

+++3TACK

Frame Address
0000001fffff5acO
0000001f£f£f££5bcO
0000001ff£f£f£f5c60
0000001f££££5d00
0000001ff£f££5e00
0000001£££££5£00
0000001£££££6000
-—-STACK

Intro to HPC programming: tools and techniques

core.t0

Saved Link Reg

000000000000001c
00000000018b2678
00000000015046d0
00000000015738a8
00000000015734ec
000000000151a4d4
00000000015001c8

10

CINECA

m SCA
e MOSE popular debuggers

* Some debuggers are distributed with the
compiler suite:

— Commercial

e Portland pgdbg
* Intel idb

— Free
* Gnu gdb
* There are also some powerful, commercial
debuggers from independent vendors:
— DDT (Allinea)
— Totalview (Rogue Wave Software)
— Valgrind (particularly for Memory problems)

29/10/2014 Intro to HPC programming: tools and techniques

11

CINECA

SCA .
e Debugger capabilities

* The purpose of a debugger is to allow you to see what is goin =
on “inside” another program while it executes or what another
program was doing at the moment it crashed.

* Using specific commands, debuggers allow real-time
visualization of variable values, static and dynamic memory state
(stack, heap) and registers state.

« Common errors include:
* pointer errors
e array indexing
* memory allocation
e argument and parameter mismatches

e communication deadlocks in parallel programming
« 1/0

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 12

o SCAl Compiling rules for
- debugging

* |Inorder to debug a program effectively, the debugger needs debuggin
information which is produced compiling the program with the “-g” flag.

* This debugging information is stored in the object files fused in the
executable; it describes the data type of each variable or function and the
correspondence between source line numbers and addresses in the
executable code.

 Opimization should be at —00, -O1 or —02 level.

* GNU compiler:

* gcc/g++/gfortran —g [other flags] source —o executable

* INTEL compiler:

icc/icpc/ifort —g [other flags] source —o executable

e BGQ-IBM compiler
bgxlc/bgxlc++/bgxIf90 —g —qfullpath gkeepparm source —o executable

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 13

“ SCAN .
S ks Execution

 The standard way to run the debugger is:
- debugger executable name or

* debugger exe corefile

* Otherwise it’s possible to first run the debugger and then point to the
executable to debug:

GNU gdb:
gdb
>file executable

* |t's also possible to debug an already-runnnig program started outside the
debugger attaching to the process id of the program.

* Syntax:
e GNU gdb:
gdb

> attach process id

gdb attach process id CINECA

29/10/2014 Intro to HPC programming: tools and techniques 14

SCAI GDB command list

run: start debugged program

list: list specified function or line. Two arguments with comma
between specify starting and ending lines to list.

list begin,end

break <line> <function> : set breakpoint at specified line
or function, useful to stop execution before a critical point.

break filename:line
break filename:function

It’s possible to insert a boolean expression with the sintax:
break <line> <function> condition

With no <1line> <function>, uses current execution address of
selected stack frame. This is useful for breaking on return to a stack
frame.

CINECA

29/10/2014 Intro to HPC programming: tools and techniques 15

SCAI GDB command list /2

+ clear <line> <func> :Clear breakpoint at specified line Ore==
function.

* delete breakpoints [num]: delete breakpoint number
“num”. With no argument delete all breakpoints.

e If:Setabreakpoint with condition; evaluate the condition each
time the breakpoint is reached, and stop only if the value is
nonzero. Allowed logical operators: >,<,>=,<=, ==

e Example:
break 31 if i >= 12

* condition <num> < expression> :Asthe “if” command
associates a logical condition at breakpoint number “num”.

* next <count>: continue to the next source line in the current
(innermost) stack frame, or count lines.

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 16

SCAI GDB command list/3

continue: continue program being debugged, after signail'
breakpoint

where : print backtrace of all stack frames, or innermost “count”
frames.

step : Step program until it reaches a different source line. If used
before a function call, allow to step into the function. The debugger
stops at the first executable statement of that function

step count : executes count lines of code as the next
command

finish : execute until selected stack frame or function returns
and stops at the first statement after the function call. Upon return,
the value returned is printed and put in the value history.

set args :setargument list to give program being debugged when
it is started. Follow this command with any number of args, to be
passed to the program.

set var variable = <EXPR>: evaluate expression EXPR and
assign result to variable wariable, using assignment syntax

appropriate for the current language CINECA
29/10/2014 Intro to HPC programming: tools and techniques 17

= SCAI .

search <expr>: search for an expression from last line listed

reverse-search <expr> : search backward for an expression from
last line listed

display <exp>: Print value of expression exp each time the program
stops.

print <exp>: Printvalue of expression exp
This command can be used to display arrays:
print array[num el]displayselement num el
print *array@len displays the whole array

watch <exp>: Set a watchpoint for an expression. A watchpoint stops
execution of your program whenever the value of an expression changes.

info locals: printvariable declarations of current stack frame.

show values <number> : shows number elements of value history
around item number or last ten.

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 18

= SCAl :
GDB command list/5

« backtrace <number, full> : shows one line per frame,
many frames, starting with the currently executing frame (frame
zero), followed by its caller (frame one), and on up the stack. With
the number parameter print only the innermost number frames.
With the full parameter print the values of the local variables also.

- #0 squareArray (nelem in array=12, array=0x601010) at
variable print.c:67
- #1 0x00000000004005f5 in main () at variable print.c:34

« frame <number> : select and print a stack frame.

« up <number> : allow to go up number Stack frames

e down <number> : allow to go up number stack frames

« info frame : gives all informations about current stack frame
« detach: detach a process or file previously attached.

« quit: quitthe debugger

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 19

SCAI Using Core dumps for
Postmortem Analysis

°In computing, a core dump, memory dump, or storage dump consi
of the recorded state of the working memory of a computer
program at a specific time, generally when the program has
terminated abnormally.

*Core dumps are often wused to assist in diagnosing
and debugging errors in computer programs.

* In most Linux Distributions core file creation is disabled by default for
a normal user but it can be enabled using the following command :

> ulimit -c unlimited

« Once “ulimit —c” is set to “unlimited” run the program and the core
file will be created

- The core file can be analyzed with gdb using the following syntax:

» gdb -c core executable
CINECA

29/10/2014 Intro to HPC programming: tools and techniques 20

SCAI Debugging a serial program
— case study

Example program that:

1. constructs an array of 10 integers in the variable array1

gives the array to a function squarearray that executes the
square of each element of the array and stores the result
in a second array named array?2

3. After the function call, it’'s computed the difference
between array2 and arrayl and stored in array del. The
array del is then written on standard output

4. Code execution ends without error messages but the
elements of array del printed on standard output are all
Zeros.

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 21

CINECA 5 CAI

SuperCompuling Applicalions and Innovalion

Debugging a serial program

#include <stdio.h>
#include <stdlib.h>

int indx;

void initArray(int nelem in array, int *array);

void printArray(int nelem in array, int *array);

int squareArray(int nelem in array, int *array);

int main(void) {

const int nelem = 12;

int *arrayl, *array2, *del;

arrayl = (int *)malloc (nelem*sizeof (int)) ;
array2 = (int *)malloc(nelem*sizeof (int)) ;
del = (int *)malloc(nelem*sizeof (int)) ;

initArray (nelem, arrayl);

printf ("arrayl = "); printArray(nelem, arrayl);

array2 =

arrayl;

squareArray (nelem, array?2);

CA

w SCAI Debugging a serial
program/2

for (indx = 0; indx < nelem; indx++)
{

del[indx] = array2[indx] - arrayl[indx];
}
printf (“La difference fra array2 e arrayl e’': ");
printArray (nelem, del) ;
free (arrayl) ;
free (array2) ;
free(del) ;
return 0;}
void initArray(const int nelem in array, int *array)
{
for (indx =
{
array[indx] = indx + 2;}

0; indx < nelem in array; indx++)

<..«=CA

w SCAI Debugging a serial
program/3

int squareArray (const int nelem in array, int *array)

{
int indx;
for (indx = 0; indx < nelem in array; indx++)
{

array[indx] *= array[indx];}

return *array;

}

void printArray(const int nelem in array, int *array)
{
printf("[")
for (indx = 0; indx < nelem in array; indx++)
{
printf("$d ", array[indx]); }
printf ("]\n\n");

<..«=CA

29/10/2014 Intro to HPC programming: tools and techniques 24

= SCAl Debugging a serial
program/4

® Compiling: gcc —g —o ar diff ar diff.c

e Execution: ./arr diff

e Expected result:

— del = [2 6 12 20 30 42 56 72 90 110 132 156]

e Real result

—del = [00 00O0O0O0O0O0O0O0O0]

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 25

o SCAl Debugging a serial
program/5
 Run the debugger gdb -> gdb ar_diff

e Stepl: possible coding error in function squareArray()
* Procedure:

— list the code with the list command and insert a breakpoint
at line 35 “break 35” where there is the call to
squareArray () . Let’s start the code using the command
run. Execution stops at line 35.

— Let’s check the correctness of the function squarearray ()
displaying the elements of the array array2 using the
command disp, For example (disp array2[1] = 9)
produces the expected value

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 26

i SCAl
Debugging a serial program

« Step2: check of the difference between the element values
in the two arrays

— For loop analysis:
#35: for (indx = 0; indx < nelem; indx++)

(gdb) next

37 del[indx] = array2[indx] - arrayl[indx];
(gdb) next

35 for (indx = 0; indx < nelem; indx++)

— Visualize array after two steps in the for loop:
(gdb) disp array2[1]

array2[1]=9

(gdb) disp arrayl[1]

arrayl[1]=9

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 27

o SCAN
Debugging a serial program

* As highlighted in the previous slide the values of t
elements of arrayl and array2 are the same. But this is not
correct because array, arrayl, was never passed to the
function squareArray(). Only array2 was passed in line 38 of
our code. If we think about it a bit, this sounds very much
like a “pointer error”.

e To confirm our suspicion, we compare the memory address
of both arrays:

— (gdb) disp arrayl
— 1: arrayl = (int *) 0x607460
— (gdb) disp array?
— 2: array2 = (int *) 0x607460

e We find that the two addresses are identical. CINECA

29/10/2014 Intro to HPC programming: tools and techniques 28

= SCA . .
e Debugging a serial program

The error occurs in the statement: array2 = arrayl becausé

this way the first element in array2 points to the address of
the first element in arrayl.

Solution:
To solve the problem we just have to change the statement

arrayZ2 = arrayl;
in
for (indx = 0; 1ndex < nelem; 1ndx++)
{
array2[k] = arravyl[k]
}

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 29

“ SCAl |
Parallel debugging

e Parallel debugging is more complex than serial because
multiple processes need to be debugged simultaneously.

* Normally debuggers can be applied to multi-threaded
parallel codes, containing OpenMP or MPI directives, or
even OpenMP and MPI hybrid solutions.

* For OpenMP, the threads of a single program are akin to
multiple processes except that they share one address
space (that is, they can all examine and modify the same
variables). On the other hand, each thread has its own
registers and execution stack, and perhaps private memory.

 GDB provides some facilities for debugging OpenMP and
MPI programs but usually a dedicated debugger such as
Totalview is employed.

CINECA

29/10/2014 Intro to HPC programming: tools and techniques 30

w SCAI Debugging OpenMP
Applications

GDB facilities for debugging multi-threaded programs :
— automatic notification of new threads
— thread <thread number> command to switch among threads

— info threads command to inquire about existing threads

(gdb) info threads

* 2 Thread 0x40200940 (LWP 5454) MAIN .omp fn.0 (.omp data i=0x7fffffffd280)
at serial order bug.f90:27

1 Thread Ox2aaaaaf7d8b0 (LWp 1553) MAIN .omp fn.0
(.omp data i=0x7fffffffd280) at serial order bug.f90:27

thread apply <thread number> <all> args allow to apply a command to apply a
command to a list of threads.

 When any thread in your program stops, for example, at a breakpoint, all
other threads in the program are also stopped by GDB.

 GDB cannot single-step all threads in lockstep. Since thread scheduling is
up to your debugging target’s operating system (not controlled by GDB),
other threads may execute more than one statement while the current
thread completes a single step unless you use the command :set

scheduler-locking on.

 GDBis not able to show the values of private and shared variables in
OpenMP parallel regions.

29/10/2014 Intro to HPC programming: tools and techniques 31

CINECA

w SCAI Debugging OpenMP
Applications

* In the following OpenMP code, using the SECTIONS
directive, two threads initialize threir own array and than
sum it to the other

PROGRAM lock
INTEGER*8 LOCKA, LOCKB
INTEGER NTHREADS, TID, I,OMP GET NUM THREADS, OMP GET THREAD NUM
PARAMETER (N=1000000)
REAL A(N), B(N), PI, DELTA
PARAMETER (PI=3.1415926535)
PARAMETER (DELTA=.01415926535)

CALL OMP INIT LOCK (LOCKA)
CALL OMP INIT LOCK (LOCKB)

!'SOMP PARALLEL SHARED (A, B, NTHREADS, LOCKA, LOCKB) PRIVATE (TID)

TID = OMP GET THREAD NUM ()
!SOMP MASTER
NTHREADS = OMP GET NUM THREADS ()
PRINT *, 'Number of threads = ', NTHREADS
!SOMP END MASTER
PRINT *, 'Thread', TID, 'starting...'
! SOMP BARRIER CINECA

29/10/2014 Intro to HPC programming: tools and techniques 32

w SCAN

SuperCompuling Applicalions and Innovalion

Debug openMP applications

!SOMP SECTIONS
!SOMP SECTION
PRINT *, 'Thread',TID,' initializing A()'
CALL OMP SET LOCK (LOCKA)
DO I =1, N
A(I) = I * DELTA
ENDDO

CALL OMP SET LOCK (LOCKB)

DO I =1, N
B(I) = B(I) + A(I)
ENDDO
CALL OMP UNSET LOCK (LOCKB)
CALL OMP UNSET LOCK (LOCKA)

PRINT *, 'Thread',TID,' adding A() to B()'

1SOMP SECTION

PRINT *, 'Thread',6K TID,' initializing B()'
CALL OMP_SET LOCK (LOCKB)
DO I =1, N
B(I) = I * PI
ENDDO
CALL OMP_SET LOCK (LOCKA)
PRINT *, 'Thread',K TID,' adding B() toA()'
DO I =1, N
A(I) = A(I) + B(I)
ENDDO
CALL OMP UNSET LOCK (LOCKA)
CALL OMP UNSET LOCK (LOCKB)

!SOMP END SECTIONS NOWAIT
PRINT *, 'Thread',K TID,' done.'
!SOMP END PARALLEL

END

CINECA

29/10/2014 Intro to HPC programming: tools and techniques 33

o SCA Debugging OpenMP
Applications
e Compiling:

gfortran —fopenmp —g —o omp debug omp debug.f90

e Execution:
— export OMP NUM THREADS=2

- ./omp debug

— The program produces the following output
hanging:

Number of threads = 2

Thread 0 starting...

Thread 1 starting...

Thread 0O 1nitializing A()

Thread 1 1nitializing B()

29/10/2014 Intro to HPC programming: tools and techniques

before

34

CINECA

5CA| ' Debugging OpenMP Applications

SuperCompuling Applicalio

* |nthe debugger:
— List the source code from line 10 to 50:

— Insert breakpoint at beginning of parallel region and run:
list 10,50

b 20

run

2 Thread 0x40200940 (LwP 8533) MAIN .omp fn.0
(.omp data 1=0x7fffffffd2b0) at
openmp bug2 nofix.f90:20
1 Thread 0OxZaaaaaf7d8b0 (LWP 8530) MAIN .omp fn.O0
(.omp data 1=0x7fffffffd2b0) at
openmp bug2 nofix.f90:20

* The print statements aren’t executed so insert breakpoints
in the two sections:

thread apply 2 b 35
thread apply 1 b 49 CINECA

29/10/2014 Intro to HPC progra?mming: tools and -
techniques

5CA| ' Debugging OpenMP Applications

SuperCompuling Applicalio

Restart execution:

thread apply all cont

e Execution hangs so ctrl-c and check where threads
are:

thread apply all where
Thread 2 (Thread 0x40200940 (LWP 8533)):

0x00000000004010b5 in MAIN .omp fn.O
(.omp data 1=0x7fffffffd2b0) at
openmp bugZ nofix.f90:29

Thread 1 (Thread Ox2aaaaaf’7d8b0 (LWP 8530)):

0x0000000000400e6d in MAIN .omp fn.O0
(.omp data 1=0x7fffffffd2b0) at CINECA

Oopenmp bug2 nOfl>§ntrothPC pr§grammmg tools and

29/10/2014 techniques 36

w SCAI Debugging OpenMP
Applications

e Thread number 2 is stopped at line 29 on the statement:

CALL OMP_ SET LOCK (LOCKB)
e Thread number 1 is stopped at line 43 on the statement :
CALL OMP SET LOCK (LOCKA)

e Soit’s clear that the bug is in the calls to routines OMP SET LOCK that cause
execution stopping

e Looking at the order of the routine calls to OMP SET LOCK and
OMP UNSET LOCK itisclear thereis an error.

e The correct order provides that the call to OMP SET LOCK must be
followed by the corresponding OMP UNSET LOCK

e Arranging the order the code finishes successfully

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 37

SCAI Debugging MPI applications

* Even more difficult than OpenMP since in
principle could involve many thousands of tasks.

* Many MPI errors are possible including: invalid
arguments, type matching, race conditions,
deadlocks etc.

 Debugging communications is not easy. Some
communication-related bugs may be hidden by
MPI buffering such that they occur only for
certain numbers of tasks or program inputs.

* Generally best to use the minimum no. of tasks
necessary to reproduce the unexpected
behaviour.

CINECA

29/10/2014 Intro to HPC programming: tools and techniques 38

7 SCAI Debugging MPI Applications

* There are two common ways to use serial
debuggers such GDB to debug MPI applications

1. Attach to individual MPI processes after they are
running using the “attach” method available for
serial codes launching instances of the debugger to
attach to the different MPI processes.

2. Open a debugging session for each MPI process
through the command “mpirun”.

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 39

w SCAN . N
e D@bugging MPI Applications

Attach method

— Run the application in the usual way.

mpirun —-np 4 executable

— From another shell, use the top command to find
the MPI processes which bind to the executable:

top - 15:06:40 up %1 days, 4:00, 1 user, load average: 5.31, 3.34, Z.866
Tasks: 198 total, 9 running, 188 sleeping, 0 stopped, 1 zombie

Cpufs): 97.4%us, 2.3%sy, 0.0%ni, 0.2%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st
Mem: 16438664k total, 3375504k used, 13063160k free, 12232k buffers

Swap: 16779884k total, 48328k used, 167315568k free, 1488208k cached

TIME+ COMMAND

0 E . 0.1 0: Iscla MFI Z inp
PID executable MPI 0 R 99.8 0.1 0:10.23 Isola MPI 2 inp
processes] E 99.5 0.1 0:10.15 Iscla MPI Z inp
0 E 87.5 0.1 0:09.97 Iscla MPI Z inp

5 dagna] 5 0.0 0.0 0:00.08 hash

6428 dagna 15 0 101m 2472 12% 5 0.0 0.0 0:00.06 =sshd

6429 dagna 15 0 82108 ZAGA8 1908 5 0.0 0.0 0:00.08 bash

12512 dagna 15 0 74500 33%6 2420 3 0.0 0.0 0:00.03 mpirun
12549 dagna 15 0 Z879Z 2184 14%2 R 0.0 0.0 0:00.01 top

CINECA

29/10/2014 Intro to HPC programming: tools and techniques 40

o SCAl

S~ Debugging MPI Applications

ll ”

* Runupto

instances of the debugger in “attach” mode, —

where n is the number of the MPI processes of the
application. Using this method you should have to open up

to n shells.

* Referring to the previous slide we have to run four

instances of GDB:

gdb attach 12513
gdb attach 12514
gdb attach 12515
gdb attach 12516

(shell
(shell
(shell
(shell

)
)
)
4)

* Use debugger commands for each shell as in the serial case

CINECA

29/10/2014 Intro to HPC programming: tools and techniques 41

= SCAM . .
e D@PDUQGQGING MPT Applications

* mpirun method

— This technique launches a separate window for each
MPI process in MPI_COMM_WORLD, each one
running a serial instance of GDB that will launch and
run your MPI application.

mpirun -np 2 xterm -e gdb nome eseguibile
[corsolcorsill0 Isolal$ mpirun -np 2 xterm -e gdb ./Isola MPI 2 input gdb

[[Ox]

GMU gdb (GDE) Red Hat Enterprise Linux (7.0,1-23,e15.5,2)

Copuright (C) 2009 Free Software Foundation, Inc,

Licenze GPLw3+: GHU GPL verzion 3 or later <http:/fonu,orgdlicenszes/gpl, html>
Thiz iz free zoftware; you are free to change and rediztribute it,

There iz MO WARRANTY, to the extent permitted by law, Type "show copying
and "show warranty" for details,

Thiz GIE was configured as "xB6_Bd-redhat-1inux-gnu",

For bug reporting inztructions, please zeej
<http:dAw, gnu, orgSsof tware/gdb/bugs/>, .,

Reading symbalz from Ahomescorsoscorso_debugging/lsolaslzola_WPI_2_input_gdhb, , .d
one,

{adb)]

- OX
GMU gdb (GDB) Red Hat Enterprise Linux (7,0,1-23,215_5,2)
Copyright (C) 2009 Free Software Foundation, Inc,
License GPLw3+: GNU GPL verszion 3 or later <http:/fgnu,orqslicenzes gpl,html>
This iz free software: you are free to change and redistribute it,
There iz NO WARRANTY. to the extent permitted by law, Tuype "show copying”
and "show warranty" for details,
Thiz GIB was configured as "xB6_Bd-redhat-linux—gnu",
For bug reporting instructionz. pleaze see:
<httprdfunw, gnu, orgSzof tuare/gdb bugz/ >, |,
Reading symbols from Jhomescorsoscorso_debuggingsIeoladl=ola HPI_2_input_gdb, . .d

INECA

29/10/2014 Intro to HPC programming: tools and techniques 42

= SCAIl Debugging MPI - case
study

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
void main(int argc, char *argv([]) {
int nvals, *array, myid, i;
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &myid) ;
nvals = atoi(argv[1l]);

array = (int *) malloc(nvals*sizeof (int)) ;
for (i=0; i<nvals/2; i++);
array[i] = myid;

if (myid==0) {
MPI Send(array,nvals/2,MPI INT,1,1,MPI COMM WORLD) ;

?PI_Recv(array+nvals/2,nvals/2,MPI_INT,l,l,MPI_COMM_WORLD,&status);

else

MPI Send(array,nvals/2,MPI INT,0,1,MPI COMM WORLD) ;
MPI Recv (array+nvals/2,nvals/2,MPI INT,0,1,MPI COMM WORLD, &status)

}
printf ("myid=%d:array[nvals-1]=%dn" ,myid,array[nvals-1]) ;
MPI Finalize();

=CA

" SCAI Debugging MPI Applications
o — case study

¢ COmpile: mpicc —g —-o hung comm hung.c
* Run:

— Array dimension: 100
* mpirun —np 2 ./hung comm 100
e myid = 0: array[nvals-1] =1
e myid = 1: arrayl[nvals-1] = 0
— Array dimension: 1000
* mpirun —np 2 ./hung comm 100
e myid = 0: array[nvals-1] =1
e mylid = 1: array[nvals-1] = 0

— Array dimension 1000
* mpirun —np 2 ./hung comm 10000

With array dimension equal to 10000 the program hangs!
Why ?

CINECA
29/10/2014 Intro to HPC programming: tools and techniques a4

= SCAI Debugging MPI Applications
— case study

* Debugging hints:
— use gdb and two processes

— insert breakpoint at first MPI_SEND

— set program arguments with set args
1000000

— when program hangs, CTRL-C and where

CINECA

29/10/2014 Intro to HPC programming: tools and techniques 45

o SCAN . . :
e MPL RUN=tIME diagnostics

e Somtimes useful to know how the MPI tasks were created and
on which physical nodes they were created (binding).

===========s===o====== ALLOCATED NODES
#1/bin/bash ===============

#PBS -l walltime=30 Data for node: Name: node102 Num slots: 4 Max slots: 0

. Data for node: Name: node103ib0 Num slots: 4 Max slots:
#PBS -l select=2:ncpus=4:mpiprocs=4 |
#PBS -A cin_staff

#PBS -0 out ===========s============ JOB MAP

#PBS -eerr ToTmmmmmmmmmEemmEmEeS

Data for node: Name: node102 Num procs: 4
Process OMPI jobid: [38452,1] Process rank: O
Process OMPI jobid: [38452,1] Process rank: 1

cd SPBS—O_WORKDIR Process OMPI jobid: [38452,1] Process rank: 2

module load autoload openmpi Process OMPI jobid: [38452,1] Process rank: 3

mpirun --display-allocation --display- Data for node: Name: node103ib0 Num procs: 4
map exe Process OMPI jobid: [38452,1] Process rank: 4

Process OMPI jobid: [38452,1] Process rank: 5
Process OMPI jobid: [38452,1] Process rank: 6

O pe n m p| Process OMPI jobid: [38452,1] Process rank: 7

29/10/2014 Intro to HPC programming: tools and techniques 46

w SCAN . . :
e MPL RUN-tINNE diagnostics

#!/bin/bash
#PBS -l walltime=30
#PBS -| select=2:ncpus=4:mpiprocs=4

[0] MPI startup(): Rank Pid Node name Pin cp
[0] MPI startup():0 18836 nodel02 {0,1,2}
[0] MPI startup(): 1 18837 nodel02 {3,4,5}

#PBS -A cin_staff [0] MPI startup():2 18838 nodel02 {6,7,8}
#PBS -o out [0] MPI startup():3 18839 nodel02 {9,10,11}
#PBS -e err [0] MPI startup(): 4 32649 nodel03 {0,1,2}
[0] MPI startup():5 32650 nodel03 {3,4,5}
cd $PBS_O_WORKDIR [0] MPI startup():6 32651 nodelO3 {6,7,8}

module load autoload intelmpi [0] MPI startup(): 7 32652 nodel03 {9,10,11}

export |_MPI_DEBUG=5
mpirun ./spawnexample | ntel m pl

Also possible via the MPI_Get processor name

function call

CINECA
29/10/2014 Intro to HPC programming: tools and techniques a7

SCAI Debugging MPI with PMPI

* MPI implementations also provide a profiling interfac®
called PMPI.

* |n PMPI each standard MPI function (MPI_) has an
equivalent function with prefix PMPI_ (e.g. PMPI_Send,
PMI_RECV, etc).

 With PMPI it is possible to customize normal MPI
commands to provide extra information useful for
profiling or debugging.

* Not necessary to modify source code since the
customized MPI commands can be linked as a separate
library during debugging. For production the extra
library is not linked and the standard MPI behaviour is
used.

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 48

o SCAN
PMPI Examples

Profiling

// profiling example
static int send count=0;

int MPI Send(void*start,int count, MPI Datatype datatype, int dest,
int ¥ag, MPI_Comm comm) -

{

send count++;
return PMPI Send(start, count, datatype, dest, tag, comm);

}
Debugging

! Unsafe uses of MPI Send
! MPI Send can be implemented as MPI Ssend (synchronous send)

subroutine MPI Send(start, count, datatype, dest,

tag, comm, ierr)

integer start(*), count, datatype, dest, tag, comm

call PMPI Ssend(start, count, datatype,

dest, tag, comm, ierr) CINECA

end 29/10/2014 Intro to HPC programming: tools and techniques 49

SCAI Debugging MPI with
- totalview and RCM

* Totalview is a powerful, sophisticated,
programmable tool for debugging serial or
parallel programs.

* Being a graphical tool, for best results
recommended to use a remote visualization tool
such as RCM (Remote Connection Manager),
rather than just an X-display (slow).

* |tis also a commercial product, so licenses are
limited!

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 50

SCAI Debugging MPI with
- Totalview and RCM

1. Download and install RCM on workstation:
http://www.hpc.cineca.it/content/remote-
visualization-rcm

2. Launch RCM and log on to PLX/Fermi. You will
be given a Linux-style desktop.

3. Open a terminal and prepare a PBS/Loadleveler
job script. Insert the DISPLAY number in the job
script. Or open an interactive PBS session (not

BG/Q).

CINECA

29/10/2014 Intro to HPC programming: tools and techniques 51

5CA| Debugging MPI with totalview
~ and RCM

 #!/bin/bash

#PBS -1 walltime=00:30:00

#PBS -1 select=1l:ncpus=4:mpiprocs=4:mem=15gb
#PBS -N totalview

#PBS -o job.out

#PBS -e job.err

#PBS -g debug

##4# account number (type saldo -b)

#PBS -A your account here

module load profile/advanced
module load autoload openmpi/l.6.3--gnu--4.7.2
module load totalview/8.12.0-1

export DISPLAY=node(097:1

cd $PBS O WORKDIR
mpirun —-tv -n 4 poisson.exe

CINECA

29/10/2014 Intro to HPC programming: tools and techniques 52

CINECA 5 CAI

SuperCompuling Applicalions and Innovalion

F; ProcessWindow <@node353>

File Edit ¥iew Group Process

Debugging MPI with totalview
and RCM

Thread Action Point

Debug Tools

Window

Group (Control) _"_| & II - Ib

Go Halt Kill Restart

59 3

Mext Step Out Run To

°

Record GoBack Prev Un3tep Caller BackTo

Rank 0: mpiexec.hydra=<poisson-default.exe=.0 (Stopped)

Thread 1 (47617747993328): poisson-default.exe (Stopped)

Stack Trace =] Stack Frame
iPNT Init Ext, FP=Tffdlagfoop (|| FUnction "poisson”: j
PMI Tnit Ext, FP=T£ffd1=6£0h0 " °l'°‘f€f‘ﬂ!‘:’§ls-)
InitPg, FR=TEffdlabEhT0 S (LOGICAL*4 (2))
MPID_Tnit, FE=Tfffdlabfell 1;?“? 3¢ SINTEGER*4 (2})
MPIE_Init_thread, FP=TEf£d1a70030 M
e SETEEETST00Sh type ligne: 792727792 (0x2f4010£0)
i Bl code 788562808 {0x2£008378)
R FPTEEEA1LTOAED conm2d.: 794832944 {0x2£603030)
HE - - CONVELgence : false. (-777582968)
mairmn, FE=Tfffd1a705al B 6.95331739009117]
Tihc_start_main, FP=TE£fdlaT066D 5 : e 10 cdonormaly
A S Seotifeatatoero |7 B 2.61355912474366e-315 <denormal; 7
= 3 Rttt] | NP R PN n
Function poisson in poisson.F30 A
46 IMPI Initialization i - .
271 Cari MBI THTTfoedo) - Tutalvlﬁw 8.14.0 Elbﬁ@nudeﬁa':-_-__
49 #ifdef HPCT HPM File Edit “iew Tools Window Help
EE CALL %pm_lnlt() Labal e == s = e i,
CALL tart(’ ! — y—
T3 gl ALL hpm_start{’global’) =| IDA| Rank | Host | Status | Diescription
ca
?51 CALL MPT_COMM_RANK({ MPI_GOMM WORLD, rang, cods) <local= B mpie=ec.bydra (1 active threads)
5B CALL MPI_COMM_SIZE(MPI_COMM WORLD, nb_procs, code) 0 <local= T mpiexec. hydra=poisson-default exe
'E-Tl:lF'
=] OPEN (10, FILE='poisson. data', STATUS='0LD') i i =
gg Rea0 833 wo 1 <local= T mpie=ec.hydra=<poisson-default.exe
» 1Mms s dims i i o
1 READ (10,4} it max ¢ =local= T mpie=ec.hydra=poisson-default exe
[READ {10, +*) prec : : i
€3 CLOSE (109 J =local= T mpiexec.hydra=poisson-default exe
B4
65 if (rang == 0} then
BE print *, 'Grid dimensions: ', e ny
67 print *, 'it max :', 1t max
68 print *, 'prec :',prec
=
Action Points] Prgcesses] Th[eads] P_||P+]
1 poisson FRO#ST poisson+0x=56 Ay

CINECA

Intro to HPC programming: Is and techniques 53

SCAI
Summary

e All programs have bugs.

* Parallel programs are particularly difficult because of
the need to debug multiple processes and possibly,
complex communication patterns.

* A debugging strategy should include:

— compiler options to lower side-effects of optimisation and
increase the level of compile-time and run-time checking.

— post-mortem analysis of stack traces and core files
— run-time diagnostic options
— the use of debuggers such as gdb or Totalview

— in tandem with profilers or similar tools to understand
better what the program is doing

CINECA
29/10/2014 Intro to HPC programming: tools and techniques 54

