PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

RBF Morph: mesh morphing in OpenFoam

Dr. Marco Evangelos Biancolini University of Rome "Tor Vergata"

HPC enabling of OpenFOAM for CFD applications @ CINECA, 26-28 March 2014 Cineca - BOLOGNA

RBF Morph Training – PRACE School 2013

Session #1

General Introduction of RBF Morph, Features with examples http://videolectures.net/prace2013_biancolini_rbf_morph/

Session #2

Basic Usage of RBF Morph, Examples and Live demonstration http://videolectures.net/prace2013_biancolini_rbf_morph_hands_on/

Session #3

Advanced Usage of RBF Morph, Multi-solve, Free surface Deformation, STL target, Back to CAD, WB coupling

RBF Morph Training Material

Web Portal: <u>www.rbf-morph.com</u> frequently updated with News Download Area: <u>http://rbf-morph.com/index.php/download</u>

- animations, technical papers, conference presentations
- for registered users (usr:ANSYS_COM, pwd:ANSYS_COM)

YouTube: <u>www.youtube.com/user/RbfMorph</u> video tutorials

Documentation Package (on box.com reserved area):

- User Guide / Installation Notes
- Tutorials (complete of support files folders)

Linkedin: https://www.linkedin.com/company/rbf-morph/

E-mail support: info@rbf-morph.com

RBF Morph Training

General Introduction of RBF Morph, Features with examples

Dr. Marco Evangelos Biancolini

www.rbf-morph.com

Outline

RBF Morph tool presentation

Welcome to the Wor

- Ongoing Researches
- Industrial Applications
- Hands On

(rbf-morph)

RBF Morph tool presentation

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

RBF Morph, an ANSYS Inc. Partner

www.rbf-morph.com

Morphing & Smoothing

- A mesh morpher is a tool capable to perform **mesh modifications**, in order to achieve arbitrary shape changes and related volume smoothing, without changing the mesh topology.
- In general a morphing operation can introduce a reduction of the mesh quality
- A **good** morpher has to minimize this effect, and maximize the possible shape modifications.
- If mesh quality is well preserved, then using the same mesh structure it's a **clear benefit** (remeshing introduces **noise**!).

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

RBF Morph software line

- Awarded mesh morphing software available as an add-on for ANSYS Fluent **CFD** solver
- HPC RBF general purposes library (state of the art algorithms, parallel, GPU).
- Stand alone morphing software + smoothing commands (OpenFoam, Nastran, Step, STL, Elsa, CFD++)
- ANSYS Mechanical ACT module (first release planned in June 2014)

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

RBF Morph Features

- Add on fully integrated within Fluent (GUI, TUI & solving stage) and Workbench
- Mesh-independent RBF fit used for surface mesh morphing and volume mesh smoothing
- **Parallel** calculation allows to morph **large size** models (many millions of cells) in a short time
- Management of every kind of mesh element type (tetrahedral, hexahedral, polyhedral, etc.)
- Support of the CAD re-design of the morphed surfaces
- Multi fit makes the Fluent case truly parametric (only 1 mesh is stored)
- **Precision**: exact nodal movement and exact feature preservation (**RBF** are better than **FFD**).

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

Mesh Morphing with Radial Basis Functions

- A system of radial functions is used to fit a solution for the mesh movement/morphing, from a list of source points and their displacements.
- The RBF problem definition does not depend on the mesh
- Radial Basis Function interpolation is used to derive the displacement in any location in the space, each component of the displacement is interpolated:

$$\begin{cases} v_{x} = s_{x}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{x} \phi(\|\mathbf{x} - \mathbf{x}_{k_{i}}\|) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y + \beta_{4}^{x} z \\ v_{y} = s_{y}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{y} \phi(\|\mathbf{x} - \mathbf{x}_{k_{i}}\|) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y + \beta_{4}^{y} z \\ v_{z} = s_{z}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{z} \phi(\|\mathbf{x} - \mathbf{x}_{k_{i}}\|) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y + \beta_{4}^{z} z \end{cases}$$

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

One pt at center 80 pts at border

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Effect on surface (gs-r)

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Effect on surface (cp-c4)

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

Control of volume mesh (1166 pts)

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Morphing the volume mesh

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Background: RBF Theory

- A system of radial functions is used to fit a solution for the mesh movement/morphing, from a list of source points and their displacements. This approach is valid for both surface shape changes and volume mesh smoothing.
- The RBF problem definition does not depend on the mesh
- Radial Basis Function interpolation is used to derive the displacement in any location in the space, so it is also available in every grid node.
- An interpolation function composed by a radial basis and a polynomial is defined.

$$s(\mathbf{x}) = \sum_{i=1}^{N} \gamma_i \phi(\|\mathbf{x} - \mathbf{x}_i\|) + h(\mathbf{x})$$

$$h(\mathbf{x}) = \beta + \beta_1 x + \beta_3 y + \beta_4 z$$

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

RBF Morph, an ANSYS Inc. Partner

www.rbf-morph.com

Background: RBF Theory

- A radial basis fit exists if desired values are matched at source points with a null poly contribution
- The fit problem is associated with the solution of a linear system
- M is the interpolation matrix
- P is the constraint matrix
- g are the scalar values prescribed at source points
- γ and β are the fitting coefficients

$$s(\mathbf{x}_{k_i}) = g(\mathbf{x}_{k_i}) \quad 1 \le i \le N$$

$$0 = \sum_{i=1}^{N} \gamma_i q(\mathbf{x}_{k_i})$$

$$\begin{pmatrix} \mathbf{M} & \mathbf{P} \\ \mathbf{P}^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\gamma} \\ \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \mathbf{g} \\ \mathbf{0} \end{pmatrix}$$

$$M_{ij} = \phi(\lVert \mathbf{x}_{k_i} - \mathbf{x}_{k_j} \rVert) \quad 1 \le i \quad j \le N$$

$$\mathbf{P} = \begin{pmatrix} 1 & x_{k_1}^0 & y_{k_1}^0 & z_{k_1}^0 \\ 1 & x_{k_2}^0 & y_{k_2}^0 & z_{k_2}^0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{k_N}^0 & y_{k_N}^0 & z_{k_N}^0 \end{pmatrix}$$

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Background: RBF Theory

- The radial function can be fully or compactly supported. The bi-harmonic kernel fully supported gives the best results for smoothing.
- For the smoothing problem each component of the displacement prescribed at the source points is interpolated as a single scalar field.

1 1 1 11			
$ r ^n$, n odd			
$\left r ight ^{n}\log\!\left r ight $, n even			
$\sqrt{1+r^2}$			
1			
$\overline{\sqrt{1+r^2}}$			
1			
$\overline{1+r^2}$			
e^{-r^2}			
$\int v_x = s_x(\mathbf{x}) = \sum_{i=1}^N \gamma_i^x \phi(\ \mathbf{x} - \mathbf{x}_{k_i}\) + \beta_1^x + \beta_2^x x + \beta_3^x y + \beta_4^x z$ $v_x = s_x(\mathbf{x}) - \sum_{i=1}^N \gamma_i^y \phi(\ \mathbf{x} - \mathbf{x}_{k_i}\) + \beta_1^y + \beta_2^y x + \beta_3^y y + \beta_4^y z$			

 $v_z = s_z(\mathbf{x}) = \sum_{i=1}^{N} \gamma_i^z \phi(\|\mathbf{x} - \mathbf{x}_{k_i}\|) + \beta_1^z + \beta_2^z x + \beta_3^z y + \beta_4^z z$

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Background: accelerating the solver

- The evaluation of RBF at a point has a cost of order N
- The fit has a cost of order N³ for a direct fit (full populated matrix); this limit to ~10.000 the number of source points that can be used in a practical problem
- Using an iterative solver (with a good pre-conditioner) the fit has a cost of order N²; the number of points can be increased up to ~70.000
- Using also space partitioning to accelerate fit and evaluation the number of points can be increased up to ~300.000
- The method can be further accelerated using fast preconditioner building and FMM RBF evaluation...

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

RBF Morph, an ANSYS Inc. Partner

www.rbf-morph.com

Background: solver performances escalation

- 10.000 RBF centers FIT
 - 120 minutes Jan 2008
 - 5 seconds Jan 2010
- Largest fit 2.600.000 133 minutes
- Largest model morphed 300.000.000 cells
- Fit and Morph a 100.000.000 cells model using 500.000 RBF centers within 15 minutes

	#points	2010 (Minutes)	2008 (Minutes)
	3.000	0 (1s)	15
and the second se	10.000	0 (5s)	120
and the second s	40.000	1 (44s)	Not registered
	160.000	4	Not registered
Sound States and	650.000	22	Not registered
	2.600.000	133	Not registered

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Coming soon: GPU acceleration!

- Single RBF complete evaluation
- Unit random cube
- GPU: Kepler 20 2496
 CUDA Cores
 GPU Clock 0.71 GHz
- CPU: quad core Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz

	#points	CPU	GPU	speed up
	5000	0,098402	0,004637	21,2
	10000	0,319329	0,011746	27,2
-	15000	0,667639	0,024982	26,7
	20000	1,135127	0,038352	29,6
1	25000	1,721781	0,054019	31,9
	30000	2,451661	0,079459	30,9
No. 1	35000	3,306897	0,108568	30,5
2	40000	4,286706	0,134978	31,8
2	45000	5,390029	0,181181	29,7
	50000	6,707721	0,2135	31,4
	100000	26,13633	0,745482	35,1
	150000	58,96981	1,735367	34,0
	200000	115,3628	2,861737	40,3

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Scaling plot

- Complexity is expected to grow as N²
- GPU observed as
 N ^{1.87}
- CPU observed as N ^{2.174}
- Estimation at one million points:
 GPU: 59 s
 CPU: 2783 s

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

How it Works: the work-flow

- *RBF Morph* basically requires three different steps:
- **Step 1 setup** and definition of the problem (source points and displacements).
- Step 2 fitting of the RBF system (write out .rbf + .sol).
- Step 3 [SERIAL or PARALLEL] morphing of the surface and volume mesh (available also in the CFD solution stage it requires only baseline mesh and .rbf + .sol files).

How it Works: the problem setup

- The problem must describe correctly the desired changes and must preserve exactly the fixed part of the mesh.
- The prescription of the **source points** and their displacements fully defines the *RBF Morph* problem.
- Each problem and its fit define a mesh modifier or a shape parameter.

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

How it Works: Fluent parallel morphing

- Interactive update using the GUI Multi-Sol panel and the Morph/Undo commands.
- Interactive update using sequential morphing by the TUI command (rbf-smorph).
- Batch update using the single morphing command (rbf-morph) in a journal file (the RBF Morph DOE tool allows to easily set-up a run).
- Batch update using several sequential morphing commands in a journal file.
- Link shape amplifications to Fluent custom parameters driven by Workbench (better if using DesignXplorer).
- More options (transient, FSI, modeFRONTIER, batch RBF fit ...)

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

RBF Morph, an ANSYS Inc. Partner

www.rbf-morph.com

How it Works: stand alone version

- Shape modifications can be defined using the stand alone RBF Morph GUI (CGNS plot based, accepts CGNS and stl) and/or Fluent Add On for each shape modifications 2 files are stored (.rbf .sol).
- Volume morphing can be executed using specific morphing commands (input: original mesh, shape modifications, shape amplifications) or directly embedding the smoothing library
- Notice that even in the case of huge meshes just the shape modifications files are required; with a very small demand of storage because just the points and the coefficients of the RBF are stored.
- A shape parametric calculation grid is obtained

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

Ongoing Researches about RBF

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

RBF Morph, an ANSYS Inc. Partner

www.rbf-morph.com

- RBF for **meta modeling** (DOE optimisation) including sensitivity data (adjoint solver)
- Mapping of magnetic loads
- Interpolation of hemodynamic flow fields acquired in vivo
- Strain and **stress calculation** (experimental data, coarse FEM, isostatic lines)
- Implicit surface modeling (used for STL targets)
- FSI pressure mapping

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

RBF Morph, an ANSYS Inc. Partner

www.rbf-morph.com

42.8% below 5% 17.4% in the range 5%-10% 14.9% in the range 10%-20% 13.9% in the range 20%-50% 11.0% over 50%

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

(rbf-morph)" Welcome to the World of Fast Morphing!

RBF for the interpolation of nemodynamics flow pattern

SuperComputing Applications and Innovation

82% below 5% 5% in the range 5%-10% 8% in the range 10%-20% 4% in the range 20%-50% 1% over 50%

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Welcome to the World of Fast Morphing!

HIRENASD & RIBES

Radial basis functions at fluid Interface Boundaries to Envelope flow results for advanced Structural analysis

	X direction	Y direction	Z direction
CFD model (N)	2.6000204E+01	3.0621133E+02	5.7518198E+03
FEM model (N)	2.94580E+01	3.163942E+02	5.809278E+03
ERROR (%)	11.7	3.2	1.0

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

CAD controlled surfaces

 A new shape known in advance can be inserted using an STL target

rbf-morph)

- In the example a fillet with radius in the range 20-30 mm is applied to one edge of the 1000 mm side cube
- Shape blending allows a continuous variation
- Accuracy of implicit surface is validated against reference analytic geometry

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Welcome to the World of Fast Morphing!

MESH2CAD - NURBS

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

Adjoint Sculpting

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Industrial Applications

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Welcome to the World of Fast Morphing!

Formula 1 Front Wing

www.rbf-morph.com

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

Morphing Preview (A1=0, A2=0, A3=0, A4=0, A5=0, A6=0, A7=0, A8=0)

Jun 06, 2011 ANSYS FLUENT 13.0 (3d, pbns, vof, sstkw)

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Morphing Preview (A1=0, A2=0, A3=0, A4=0, A5=0, A6=0, A7=0, A8=0)

Jun 06, 2011 ANSYS FLUENT 13.0 (3d, pbns, vof, sstkw)

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Engine Air box shape (STV FSAE Team)

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

Welcome to the World of Fast Morphing!

(rbf-morph)"

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Optimized vs. Original - Streamlines

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com RBF Morph, an ANSYS Inc. Partner

14.0

(rbf-morph)" Welcome to the World of Fast Morphing!

Optimization of nacelle (D'Appolonia) Z Morphing Preview (A=-1) × Zx DAPPOLONIA

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Morphing Preview (A=-1)

Apr 16, 2012 ANSYS FLUENT 14.0 (3d, pbns, rke)

ANSYS

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

Apr 16, 2012 ANSYS FLUENT 14.0 (3d, pbns, rke)

EU Project RBF4AERO – FP7Transport

- "Innovative Benchmark Technology for Aircraft Engineering Design and Efficient Design Phase Optimisation" – GA no. ACP3-GA-2013-605396
- www.rbf4aero.eu

RBF4AERO

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

WIRA Reference cal (MIRA Itd)

MIRA Reference Car

Shape Optimisation using RBF-Morph

Smarter Thinking.

© MIRA Ltd 2011

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA www.rbf-morph.com

(rbf-morph)[™] Welcome to the World of Fast Morphing!

ANSYS

(intel)

HPC enabling of 28 March 2014 (

Sol=sol-01-c, A=0 Surface Grid

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

(rbf-morph)" Welcome to the World of Fast Morphing!

Generic Formula 1 Front End

Sol=sol-03-a, A=-5 Surface Grid

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

LET'S PLAY TOGETHER!

What is MorphLab?

Morph lab is the convergence point of academic research, industrial innovation, software and hardware development, where people, companies and developers can work together to push knowledge to a higher level.

Why MorphLab?

- partners can find fast solutions to specifical morph related industrial cases,
- hardware and software products can be tested and improved in demanding applications,
- **product developers** can advance their knowledge in the field of mesh morphing sharing data and workflows.

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

RBF Morph, an ANSYS Inc. Partner

Tor Vergata

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA www.rbf-morph.com

(rbf-moroh)"	Mode	Disp(mm)	Max err(mm)	Max err (%)
Welcome to the World of Fast Morphing!	1	7,19	1,61	22,39
	2	7,19	0,86	12,00
	3	6,98	0,85	12,15
	4	6,90	0,66	9,50
	5	6,85	0,19	2,76
	2 Ways FSI	6,98	0,00	0,00
Aeroelastic Analy Formula 1 Front	The second se			

HPC enabling of OpenFo 28 March 2014 Cineca -

Morphing Preview (A=0)

May 31, 2011 ANSYS FLUENT 12.1 (3d, pbns, rke) (rbf-morph)TM Welcome to the World of Fast Morphing!

Contours of Static Pressure (pascal) 54kph

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

AN

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

www.rbf-morph.com

Welcome to the World of Fast Morphing!

Morphing Preview (A=-1)

www.rbf-morph.com

(rbf-morph)

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Hands On

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Conclusions

- A shape parametric CFD model can be defined using ANSYS Fluent and RBF Morph – new stand alone tools allow to widen the range of solvers (CFD, FEA) supported by RBF Morph technology.
- Parametric CFD model can be easily coupled with preferred optimization tools to steer the solution to an optimal design that can be imported in the preferred CAD platform (using STEP)
- Proposed approach dramatically reduces the man time required for set-up widening the CFD calculation capability
- Local mesh control allows to enable multi-physics as well (FSI, Icing, adjoint)
- **M.E. Biancolini**, Mesh morphing and smoothing by means of Radial Basis Functions (RBF): a practical example using Fluent and RBF Morph in Handbook of Research on Computational Science and Engineering: Theory and Practice (http://www.cse-book.com/).

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

Thank you for your attention!

Dr. Marco Evangelos Biancolini

E-mail: info@rbf-morph.com

Web: www.rbf-morph.com

YouTube: www.youtube.com/user/RbfMorph

HPC enabling of OpenFOAM for CFD applications 28 March 2014 Cineca - BOLOGNA

RBF Morph, an ANSYS Inc. Partner

www.rbf-morph.com