
OpenFOAM selected solver

Roberto Pieri - SCS Italy

16-18 June 2014

Introduction to Navier-Stokes equations and RANS

Turbulence modelling

Numeric discretization

Navier-Stokes equations
Convective term︷ ︸︸ ︷
∇ · (U⊗U) − ∇ · ν∇U︸ ︷︷ ︸

Viscous term

= −1

ρ
∇P

∇ ·U = 0

I Equations are directly derived from conservation laws.

I U is the velocity vector, P is pressure and ρ is density.

I System of partial differential equations.

I Equations are valid for viscous, incompressible, steady flows in
laminar regime.

Reynolds Averaged Navier-Stokes
RANS equations

∇ ·
(
U⊗U

)
+ ∇ · (U’⊗U’)︸ ︷︷ ︸

Reynolds’ stresses tensor

−∇ · ν∇U = −∇p̄

∇ ·U = 0

I U = U + U’.

I Equations are obtained decomposing velocity vector and averaging.

I The term ∇ · (U’⊗U’) represents a new unknown.

I A closure equation is required.

I p = P/ρ, it is only a mathematical function (equation of state is not
present).

Turbulence modelling

There are two different class of models:

Eddy-viscosity models
I Based on Boussinesq hypotesis

I Very large number of models

I Different models for different
flow conditions

Reynolds stress models
I More recent

I Equations for every term of
Reynolds’ stress tensor are
required

We are going to discuss the first class of models.

Turbulence modelling
Eddy-viscosity models (I)

I Effective viscosity νe is defined as follow:

νe (x) = ν + νt (x)

I Reynolds’ stress tensor can be rewritten as follow:

∇ · (U’⊗U’) = ∇ ·
(
νt (x)∇U

)
I Momentume equation can be rewritten:

∇ ·
(
U⊗U

)
−∇ · νe∇U = −∇p̄

Turbulence modelling
Eddy-viscosity models (II)

The new system of equations is:{
∇ ·
(
U⊗U

)
−∇ · νe (x)∇U = −∇p̄

∇ ·U = 0

with
νe (x) = ν + νt (x)

I In this formulation the model is totally confinated in νt (x).

I A model for the effective viscosity is needed.

Turbulence modelling
Eddy-viscosity models (III)

Eddy-viscosity models are divided in three classes depending on the
number of differential equations needed for the closure of the problem.

I 0-equation models (mixing length).

I 1-equation models (Spalart-Allmaras, k equation, ...).

I 2-equations models (k − ε, k − ω, ...).

Turbulence modelling
Eddy-viscosity models (IV)

An example of a 2-equation model is k − ω.

I An equation for k is needed.

I An equation for ω is needed.

I The model is complete:

νt = Cµ
k

ω

where Cµ is a constant (possible tuning).

OpenFOAM solvers

I Large number of solvers.

I Choose the solver that best suits your case study
(compressible/incompressible, heat transfer, multiphase...).

I A first setup is always given by the tutorials.

I Attention: tutorials’ setup may not work for your case.

One of the most used solvers is simpleFoam.

OpenFOAM solvers
Semi-Implicit Method for Pressure-Linked Equations (simpleFoam)

I Suitable for incompressible, steady-state, viscous flows in laminar or
turbulent regime.

I Used for internal and external flows.

I Very large documentation and test cases from the user community.

OpenFOAM solvers

SIMPLE algorithm

OpenFOAM solvers
SIMPLE implementation in OpenFOAM

s o l v e
(

fvm : : d i v (phi , U)
+ tu rbu l e n c e−>d i vDevRe f f (U)
==
− f v c : : grad (p)

) ;

I Top level code represents the equations being solved.

I OpenFOAM has functions for derivatives. e.g. div, grad, laplacian,
curl.

I fvc:: returns a field, it is used to calculate the pressure gradient with
current values (explicit).

I fvm:: returns an fvMatrix, it is used in order to discretise a term into
matrix equation you wish to solve (implicit).

I solve function solves the equation.

OpenFOAM solvers
Other solvers

I pisoFoam: transient solver for incompressible flow;

I pimpleFoam: merged PISO-SIMPLE
I can run transient; no Courant number limited, unlike PISO;
I can run pseudo-transient: big time step to reach steady-state with

minimal under-relaxation;
I can be used in substitution of SIMPLE, gaining in stability of the

solver.

I buoyantBoussinesqSimpleFoam: steady-state solver for buoyant,
turbulent flow of incompressible fluids including Boussinesq
approximation for stratified flow

%k = 1− β
(
T̄ − T0

)

	Introduction to Navier-Stokes equations and RANS
	Turbulence modelling
	Numeric discretization

