
Profiling

Introduction
A serial or parallel program is normally composed by a large number of

procedures.

To optimize and parallelize a complex code is fundamental to find out the

parts where most of time is spent.

Moreover is very important to understand the graph of computation and the

dependencies and correlations between the different sections of the code.dependencies and correlations between the different sections of the code.

For a good scalability in parallel programs, it’s necessary to have a good load

and communication balancing between processes.

To discover the hotspots and the bottlenecks of a code and find out the best

optimization and parallelization strategy the programmer can follow two

common methods:

� Manual instumentation inserting timing and collecting functions

(difficult)

� Automatic profiling using profilers (easier and very powerful)

Measuring execution time

• Both C/C++ and Fortran programmers are used to instrument the code with
timing and printing functions to measure and collect or visualize the time spent in
critical or computationally intensive code’ sections.

� Fortran77

� etime(),dtime()

� Fortran90

� cputime(), system_clock(), date_and_time()� cputime(), system_clock(), date_and_time()

� C/C++

� clock()

• In this kind of operations it must be taken into account of:

� Intrusivity

� Granularity

� Relaiability

� Overhead

• Very difficult task for third party complex codes

Measuring execution time

C example:

#include <time.h>

clock_t time1, time2;

double dub_time;double dub_time;

…

time1 = clock();

for (i = 0; i < nn; i++)

for (k = 0; k < nn; k++)

for (j = 0; j < nn; j ++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

time2 = clock();

dub_time = (time2 - time1)/(double) CLOCKS_PER_SEC;

printf("Time -----------------> %lf \n", dub_time);

Measuring execution time

Fortran example:

real(my_kind), intent(out) :: t

integer :: time_array(8)

…

call date_and_time(values=time_array)

t1 =
3600.*time_array(5)+60.*time_array(6)+time_array(7)+time_array(3600.*time_array(5)+60.*time_array(6)+time_array(7)+time_array(
8)/1000.

do j = 1,n

do k = 1,n

do i = 1,n

c(i,j) = c(i,j) + a(i,k)*b(k,j)

enddo

enddo

enddo

call date_and_time(values=time_array)

t2 =
3600.*time_array(5)+60.*time_array(6)+time_array(7)+time_array(
8)/1000.

write(6,*) t2-t1

Profilers

There are many versions of commercial profilers, developed by manufacturers

of compilers and specialized software house. In addition there are free

profilers, as those resulting from the GNU, TAU or Scalasca project.

Tau Performance System Intel® VTune™ AmplifierTau Performance System

- University of Oregon

Scalasca

-Research Centre Juelich
PGPROF

Intel® VTune™ Amplifier

OPT
GNU gprof

PerfSuite
– National Center for Supercomputing Applications

Profilers

• Profilers allow the programmer to obtain very useful information on the

various parts of a code with basically two levels of profiling:

• Subroutine/Function level

– Timing at routine/funcion level, graph of computation flow– Timing at routine/funcion level, graph of computation flow

– less intrusive

– Near realistic execution time

• Construct/instruction/statement level

– capability to profile each instrumented statement

– more intrusive

– very accurate timing information

– longer profiling execution time

GNU Profiler

• The GNU profiler “gprof” is an open-source tool that allows profiling of

serial and parallel codes.

• GNU profiler how to:

– Recompile source code using compiler profiling flag:

gcc –pg source codegcc –pg source code

g++ -pg source code

gfortran –pg source code

– Run the executable to allow the generation of the files containing

profiling information:

o At the end of the execution in the working directory will be

generated a specific file generally named “gmon.out” containing

all the analytic information for the profiler

– Results analysis

gprof executable gmon.out

GNU Profiler

Code is automatically instrumented by the compiler when using the –pg flag, during
the execution:

– the number of calls and the execution time of each subroutine is collected

– a call graph containing dependences between subroutines is implemented

– a binary file containing above information is generated (gmon.out)

The profiler, using data contained in the file gmon.out, is able to give precise
information about:

1. the number of calls of each routine

2. the execution time of a routine

3. the execution time of a routine and all the child routines called by that
routine

4. a call graph profile containing timing information and relations between
subroutines

Example
#include<stdio.h>

double add3(double x){

return x+3;}

double mysum(double *a, int n){

double sum=0.0;

for(int i=0;i<n;i++)

sum+=a[i]+add3(a[i]);

return sum;

}

double init(double *a,int n){

double res; double res;

for (int i=0;i<n;i++) a[i]=(double)i;

res=mysum(a,n);

return res;

}

int main(){

double res,mysum;

int n=1000;

double a[n];

for (int i=0;i<n;i++){

res=init(a,n);

}

printf("Result %f\n",res);

return 0;}

Profiler output

The profiler gprof produces two kinds of statistical output: “flat profile” and “call

graph profile”.

According to previous example flat profile gives the following information:

Flat profile:Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

48.60 0.41 0.41 10000 41.31 81.61 init(double*, int)

27.26 0.64 0.23 10000 23.17 40.30 mysum(double*, int)

20.15 0.82 0.17 100000000 0.00 0.00 add3(double)

Flat profile

The meaning of the columns displayed in the flat profile is:

• % time: percentage of the total execution time your program spent in this

function

• cumulative seconds: cumulative total number of seconds the computer

spent executing this functions, plus the time spent in all the functions

above this one in this tableabove this one in this table

• self seconds: number of seconds accounted for by this function alone.

• calls: total number of times the function was called

• self us/calls: represents the average number of microseconds spent in

this function per call

• total us/call: represents the average number of microseconds spent in

this function and its descendants per call if this function is profiled, else

blank

• name: name of the function

Call Graph
• Call Graph Profile: gives more detailed timing and calling sequence

information through a dependency call graph.

Call graph (explanation follows)

index % time self children called name

[1] 96.4 0.00 0.82 main [1]

0.41 0.40 10000/10000 init(double*, int) [2]

0.41 0.40 10000/10000 main [1]0.41 0.40 10000/10000 main [1]

[2] 96.4 0.41 0.40 10000 init(double*, int) [2]

0.23 0.17 10000/10000 mysum(double*, int) [3]

0.23 0.17 10000/10000 init(double*, int) [2]

[3] 47.6 0.23 0.17 10000 mysum(double*, int) [3]

0.17 0.00 100000000/100000000 add3(double) [4]

0.17 0.00 100000000/100000000 mysum(double*, int)

[3]

[4] 20.2 0.17 0.00 100000000 add3(double) [4]

Line level profiling

If necessary it’s possible to profile single lines or blocks of code with the GNU pofiler

used together with the “gcov” tool to see:

– lines that are most frequently accessed

– computationally critical statements or regions

Line level profiling with gcov requires the following steps

compile with – compile with -fprofile-arcs -ftest-coverage

At the end of compilation files *.gcno will be produced

– Run the executable. The execution will produce *.gcda files

– Run gcov: gcov [options] sourcefiles

– At the end of running in the working directory will be present a specific file

with extension *.gcov which contains all the analytic information for the

profiler

NOTES:

- gcov is compatible only with code compiled with GNU compilers

- use low level optimization flags.

Example
#include <stdlib.h>

#include <stdio.h>

int prime (int num);

int main()

{

int i;

int cnt = 0;

for (i=2; i <= 1000000; i++)

if (prime(i)) {

cnt++;

if (cnt%9 == 0) {

printf("%5d\n",i);

cnt = 0;cnt = 0;

}

else

printf("%5d ", i);

}

putchar('\n');

if (i<2)

printf("OK\n");

return 0;

}

int prime (int num) {

int i;

for (i=2; i < num; i++)

if (num %i == 0) return 0;

return 1;

}

Example
Routine level profiling produces the following information:

call-graph output:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

100.99 109.74 109.74 999999 109.74 109.74 prime(int)

How is time effectively spent in routine prime??

granularity: each sample hit covers 2 byte(s) for 0.01% of 109.74 seconds

index % time self children called name

[1] 100.0 0.00 109.74 main [1]

109.74 0.00 999999/999999 prime(int) [2]

109.74 0.00 999999/999999 main [1]

[2] 100.0 109.74 0.00 999999 prime(int) [2]

Example

-: 1:#include <stdlib.h>

-: 2:#include <stdio.h>

-: 3:

-: 4:int prime (int num);

-: 5:

1: 6:int main()

-: 7: {

-: 8: int i;

1: 9: int cnt = 0;

1000000: 10: for (i=2; i <= 1000000; i++)

999999: 11: if (prime(i)) {

78498: 12: cnt++;

78498: 13: if (cnt%9 == 0) {

8722: 14: printf("%5d\n",i);

8722: 15: cnt = 0;8722: 15: cnt = 0;

-: 16: }

-: 17: else

69776: 18: printf("%5d ", i);

-: 19: }

1: 20: putchar('\n');

1: 21: if (i<2)

#####: 22: printf("OK\n");

1: 23: return 0;

-: 24: }

-: 25:

999999: 26:int prime (int num) {

-: 27: /* check to see if the number is a prime? */

-: 28: int i;

37567404990: 29: for (i=2; i < num; i++)

37567326492: 30: if (num %i == 0) return 0;

78498: 31: return 1;

-: 32: }

Example
Line level profiling shows that most of time is spent in the for loop and in the if construct

contained in the prime function.

Let’s check for a more efficient algorithm.

If a number “n” is not a prime, it can be factored into two factors “a” and “b” : n = a*b

If both a and b were greater than the square root of n, a*b would be greater than n. So at least
one of those factors must be less or equal to the square root of n, and to check if n is prime,
we only need to test for factors less than or equal to the square root.

int prime (int num) {

/* check to see if the number is a prime? */

int i;

for (i=2; i <= faster(num); i++)

if (num %i == 0)

return 0;

return 1;

}

int faster (int num)

{

return (int) sqrt((float) num);

}

Example
1: 7:int main(){

-: 8: int i;

1: 9: int colcnt = 0;

1000000: 10: for (i=2; i <= 1000000; i++)

999999: 11: if (prime(i)) {

78498: 12: colcnt++;

78498: 13: if (colcnt%9 == 0) {

8722: 14: printf("%5d\n",i);

8722: 15: colcnt = 0;

-: 16: }

-: 17: else

69776: 18: printf("%5d ", i);

Results

0.96 sec Vs 109.67 sec
10^7 operations VS 10^10 operations-: 19: }

1: 20: putchar('\n');

1: 21: return 0;

-: 22: }

-: 23:

999999: 24: int prime (int num) {

-: 25: int i;

67818902: 26: for (i=2; i <= faster(num); i++)

67740404: 27: if (num %i == 0)

921501: 28: return 0;

78498: 29: return 1;

-: 30: }

-: 31:

67818902: 32: int faster (int num)

-: 33: {

67818902: 34: return (int) sqrt((float) num);

-: 35: }

10^7 operations VS 10^10 operations

gprof execution time impact

• Routine level and above all line level profiling can cause a certain

overhead in execution time:

• Travelling Salesman Problem (TSP):

g++ -pg –o tsp_prof tsp.cc

g++ -o tsp_no_prof tsp.cc

• Execution time• Execution time

time ./TSP.noprof

10.260u 0.000s 0:10.26 100.0%

time ./TSP.prof

15.480u 0.020s 0:15.87 97.6%

• Be careful when you have to choose input dataset and configuration for

profiling

Real case Air Pollution Model

• Model structure and call graph

• Fluid dynamics equations are solved over a 3D grid

Units

Horizae

Loop over time steps (24
time steps in a day of
simulation)

cgae
(main)

Setup

Comp (contains the

main loop over time steps
end calls computing and

I/O routines)

Minor computing
routines

Opspltae

Output

Horizae

Units

Ztrans

Phfact

Chemnew

Aero_iso

Loop 500 over
X-Y grid cells

Fin (finalization)

Real case Air Pollution Model

• Profiling with GNU profiler (call graph)

• 5 days of simulation. Only the computationally intensive routines of the model are shown

• Dependency call graph of “opspltae” routine

Real case air pollution model
parallelization strategy

• Opspltae is called every time step by “comp” and calls

chemnew,horizae,ztrans,aero_iso,phfact and

units routines. In these routines is spent 92,6% of simulation

time.

• The rest of time is spent for initialization, finalization and I/O

operations which are not parallelizable of which parallelization operations which are not parallelizable of which parallelization

doesn’t make sense for.

• Ideal speedup obtainable according to profiler output is:

N

P
P

NS

+−

=

)1(

1
)(14)(=NS

• Results

• Real speedup : 7.6 � Why?

Paralle codes profiling with gprof

GNU profiler can be used to profile parallel codes but result analysis is not

straightforward .

To profile parallel codes the user must follow these steps:

• Set the environment variable GMON_OUT_PREFIX• Set the environment variable GMON_OUT_PREFIX

export GMON_OUT_PREFIX=“profile_data_file”

• Compile with “–p” flag:

mpic++/mpicc/mpif70/mpif90 –p filenames

• Run the executable:

mpirun –np number executable

At the end of simulation in the working directory will be present as many

profile_data_file.pid files as MPI or OpenMP processes were used.

Each profiling file must be analyzed and than results have to be matched together:

gprof ./executable profile_data_file.pid

TAU Tuning and Analysis Utilities
• TAU Performance System® is a portable profiling and tracing toolkit for

performance analysis of serial and parallel programs written in Fortran, C,

C++, Java, and Python.

www.cs.uoregon.edu/research/tau

• 12+ years of project in which are currently involved:
– University of Oregon Performance Research Lab– University of Oregon Performance Research Lab

– LANL Advanced Computing Laboratory

– Research Centre Julich at ZAM, Germany

• TAU (Tuning and Analysis Utilities) is capable of gathering performance

information through instrumentation of functions, methods, basic blocks

and statements of serial and shared or distributed memory parallel codes

• It’s portable on all architectures

• Provides powerful and user friendly graphic tools for result analysis

TAU: architecture

TAU Installation and configuration
• During the installation phase TAU requires different configurations flags

depending on the kind of code to be analyzed.

GNU Flags

Base Serial configure -prefix=/data/apps/bin/tau/2.20.2/gnu/base_serial -

pdt=/data/apps_exa/bin/pdt/3.17/intel-c++=g++ -cc=gcc -

fortran=gfortran

Base MPI configure -prefix=/data/apps/bin/tau/2.20.2/gnu/base_mpi -mpi -

mpiinc=/usr/mpi/gcc/openmpi-1.4.1/include -

• After configuration TAU can be easily installed with:

• make

• make install

mpiinc=/usr/mpi/gcc/openmpi-1.4.1/include -

mpilib=/usr/mpi/gcc/openmpi-1.4.1/lib64 -

pdt=/data/apps_exa/bin/pdt/3.17/intel -c++=g++ -cc=gcc -

fortran=gfortran

Base OpenMP configure -prefix=/data/apps/bin/tau/2.20.2/gnu/base_openmp -

pdt=/data/apps_exa/bin/pdt/3.17/intel –openmp -opari -opari_region

-opari_construct -c++=g++ -cc=gcc -fortran=gfortran

Base MPI+OpenMP configure -prefix=/data/apps/bin/tau/2.20.2/gnu/base_mpi_openmp -openmp -

mpi -mpiinc=/usr/mpi/gcc/openmpi-1.4.1/include -

mpilib=/usr/mpi/gcc/openmpi-1.4.1/lib64 -

pdt=/data/apps_exa/bin/pdt/3.17/intel-opari -opari_region -

opari_construct -c++=g++ -cc=gcc -fortran=gfortran

TAU: introduction
• TAU provides three different methods to track the performance of your

application.

• The simplest way is to use TAU with dynamic instrumentation based on

pre-charged libraries

Dynamic instrumentation

• Doesn’t requires to recompile the executable

• Instrumentation is achieved at run-time through library pre-loading• Instrumentation is achieved at run-time through library pre-loading

• Dynamic instrumentation include tracking MPI, io, memory, cuda, opencl library calls. MPI

instrumentation is included by default, the others are enabled by command-line options to

tau_exec.

– Serial code

%> tau_exec -io ./a.out

– Parallel MPI code

%> mpirun -np 4 tau_exec -io ./a.out

– Parallel MPI + OpenMP code

%> mpirun –x OMP_NUM_THREADS=2 -np 4 tau_exec -io ./a.out

TAU: Compiler based instrumentation
• For more detailed profiles, TAU provides two means to compile your

application with TAU: through your compiler or through source

transformation using PDT.

• It’s necessary to recompile the application, static instrumentation at

compile time

• TAU provides these scripts to instrument and compile Fortran, C,and C++

programs respectively:

– tau_f90.sh

– tau_cc.sh

– tau_cxx.sh

• Compiler based instrumentation needs the following steps:

– Environment configuration

– Code recompiling

– Execution

– Result analysis

TAU: Compiler based instrumentation
1. Environment configuration:

%>export TAU_MAKEFILE=[path to tau]/[arch]/lib/[makefile]

%>export TAU_OPTIONS=‘-optCompInst –optRevert’

Optional:

%>export PROFILEDIR = [path to directory with result]

2. Code recompiling:2. Code recompiling:

%>tau_cc.sh source_code.c

3. To enable callpath creation:

%>export TAU_CALLPATH=1

%>export TAU_CALLPATH_DEPTH=30

4. To enable MPI message statistics

%>export TAU_TRACK_MESSAGE=1

TAU environment variables

Environment Variable Default Description

TAU_PROFILE 1 Set to 1 to have TAU profile your code

TAU_CALLPATH 0 When set to 1 TAU will generate call-path data. Use with

TAU_CALLPATH_DEPTH.

TAU_CALLPATH_DEPTH 2 Callapath depth. 0 No callapath. 1 flat profile

TAU_SYNCHRONIZE_CLOCK
S

1 When set TAU will correct for any time discrepancies between nodes

because of their CPU clock lag.S because of their CPU clock lag.

TAU_COMM_MATRIX 0 If set to 1 generate MPI communication matrix data.

TAU_THROTTLE 1 If set to 1 enables the runtime throttling of events that are

lightweight

TAU_THROTTLE_NUMCALLS 100000 Set the maximum number of calls that will be profiled for any

function when TAU_THROTTLE is enabled

TAU_THROTTLE_PERCALL 10 Set the minimum inclusive time (in milliseconds) a function has to

have to be instrumented when TAU_THROTTLE is enabled.

TAU_OPTIONS

• Optional parameters for TAU_OPTIONS: [tau_compiler.sh –
help]

� -optVerbose Vebose debugging

� -optCompInst Compiler based instrumentation

� -optNoCompInst No Compiler based instrumentation

� -optPreProcess Fortran preprocessing before code
instrumentation

� -optTauSelectFile=“ " Selective file for the tau_instrumentor

Result analysis
• At the end of a run, a code instrumented with TAU produces a series of files

“profile.x.x.x” containing the profiling information.

• TAU provides two tools for profiling analysis :
– pprof command line, useful for a quick view summary of TAU performance
– Paraprof with a sophisticated GUI allows very detailed and powerful analysis

• Usage: pprof [-c|-b|-m|-t|-e|-i|-v] [-r] [-s] [-n num] [-f filename] [-
p] [-l] [-d] [node numbers]

-a : Show all location information available-a : Show all location information available

-c : Sort according to number of Calls

-b : Sort according to number of suBroutines called by a function

-m : Sort according to Milliseconds (exclusive time total)

-t : Sort according to Total milliseconds (inclusive time total)
(default)

-e : Sort according to Exclusive time per call (msec/call)

-i : Sort according to Inclusive time per call (total msec/call)

-v : Sort according to Standard Deviation (excl usec)

-r : Reverse sorting order

-s : print only Summary profile information

-n <num> : print only first <num> number of functions

-f filename : specify full path and Filename without node ids

-p : suPpress conversion to hh:mm:ss:mmm format

-l : List all functions and exit

-d : Dump output format (for tau_reduce) [node numbers] : prints only
info about all contexts/threads of given node numbers

Result analysis: paraprof

Paraprof

35

Example
#include<stdio.h>

double add3(double x){

return x+3;}

double mysum(double *a, int n){

double sum=0.0;

for(int i=0;i<n;i++)

sum+=a[i]+add3(a[i]);

return sum;

}

double init(double *a,int n){

double res; double res;

for (int i=0;i<n;i++) a[i]=(double)i;

res=mysum(a,n);

return res;

}

int main(){

double res,mysum;

int n=30000;

double a[n];

for (int i=0;i<n;i++){

res=init(a,n);

}

printf("Result %f\n",res);

return 0;}

Pprof

pprof output:

%> pprof

Reading Profile files in profile.*

NODE 0;CONTEXT 0;THREAD 0:

--

%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call

100.0 3 3:20.342 1 1 200342511 .TAU application

100.0 4 3:20.338 1 30000 200338851 main

100.0 2,344 3:20.334 30000 30000 6678 init

98.8 1:40.824 3:17.989 30000 9E+08 6600 mysum

48.5 1:37.164 1:37.164 9E+08 0 0 add3

Paraprof Manager Window

paraprof output:

This window is used to manage profile data. The user can upload/download profile

data, edit meta-data, launch visual displays, export data, derive new metrics, etc.

Thread bar chart

This display graphs each function on a particular thread for comparison. The

metric, units, and sort order can be changed from the Options menu.

Call Graph

• This display shows callpath data in a graph

using two metrics, one determines the

width, the other the color.

• The full name of the function as well as

the two values (color and width) are

displayed in a tooltip when hovering overdisplayed in a tooltip when hovering over

a box.

• By clicking on a box, the actual ancestors

and descendants for that function and

their paths (arrows) will be highlighted

with blue.

• This allows you to see which functions

are called by which other functions since

the interplay of multiple paths may

obscure it.

Thread Call Path Relations Window

• For example “mysum” is called from “init” 30000 times for a total of 64.5 seconds and calls

“add3” function.

• TAU automatically throttles short running functions in an effort to reduce the amount of

overhead associated with profiles of such functions, default throttle limit is:

• numcalls> 100000 && usecs/call < 10

• To change default settings TAU gives the following environment variables:

• TAU_THROTTLE_NUMCALLS, TAU_THROTTLE_PERCALL

• To disable TAU throttle : export TAU_THROTTLE=0

Thread Statistics Table

This display shows the callpath data in a table. Each callpath can be traced

from root to leaf by opening each node in the tree view.

A colorscale immediately draws attention to "hot spots" areas that contain

highest values.

Tau profiler: parallel codes

TAU provides a lot of tools to analyze OpenMP, MPI or OpenMP + MPI parallel

codes.

Profiling the application the user can obtain a lot of useful information which

can help to identify the causes of an unexpected low parallel efficiency.can help to identify the causes of an unexpected low parallel efficiency.

Principal factors which can affect parallel efficiency are:

– load balancing

– communication overhead

– process synchronization

– Latency and bandwidth

Tau profiler: parallel codes
• Configure:

%>export TAU_MAKEFILE=[path to tau]/[arch]/lib/[makefile]

%>export TAU_OPTIONS=-optCompInst

• Compile:

Tau_cc.sh –o executable source.c (C)Tau_cc.sh –o executable source.c (C)

Tau_cxx.sh –o executable source.cpp (C++)

Tau_f90.sh –o executable source.f90 (Fortran)

• Run the application:

mpirun -np #procs ./executable

At the end of simulation, in the working directory or in the path specified with

the PROFILEDIR variable, the data for the profiler will be saved in files

profile.x.x.x

Unbalanced load
include <cstdlib>

include <iostream>

include <iomanip>

include <cmath>

using namespace std;

include "mpi.h"

void compute(float * data, int start, int stop){

for (int i=0;i<1000000;i++){

for(int j=start;j<stop;j++){

data[j]=pow((double)j/(j+4),3.5);}}

}

int main (int argc, char *argv[])int main (int argc, char *argv[])

{

int count;

float data[24000];

int dest,i,num_procs,rank,tag;

MPI::Status status;

float value[12000];

MPI::Init (argc, argv);

rank = MPI::COMM_WORLD.Get_rank ();

if (rank == 0)

{

num_procs = MPI::COMM_WORLD.Get_size ();

cout << " The number of processes available is " << num_procs << "\n";

}

Unbalanced load
if (rank == 0)

{

tag = 55;

MPI::COMM_WORLD.Recv (value,12000, MPI::FLOAT, MPI::ANY_SOURCE, tag,

status);

cout << "P:" << rank << " Got data from process " <<

status.Get_source() << "\n";

count = status.Get_count (MPI::FLOAT);

cout << "P:" << rank << " Got " << count << " elements.\n";

compute(value,0,12000);

}

else if (rank == 1)

{

cout << "\n";

cout << "P:" << rank << " - setting up data to send to process 0.\n";

for (i = 0; i <24000; i++)

{

data[i] = i;

}

dest = 0;

tag = 55;

MPI::COMM_WORLD.Send (data, 12000, MPI::FLOAT, dest, tag);

compute(data,12000,24000);

}

Unbalanced load
else

{

cout << "\n";

cout << "P:" << rank << " - MPI has no work for me!\n";

}

MPI::Finalize ();

if (rank == 0)

{

cout << " Normal end of execution.\n";

}

return 0;

}

Output:

The number of processes available is 4

P:0 Got data from process 1

P:0 Got 12000 elements.

P:1 - setting up data to send to process 0.

P:3 - MPI has no work for me!

P:2 - MPI has no work for me!

Normal end of execution.

Unstacked bars

• Very useful to compare individual functions across threads in a global

display

Comparison window

Very useful to compare the behavior of process and threads in all the

functions or regions of the code to find load unbalances.

3D Visualizer

MPI_Finalize()

MPI_Init()

This visualization method shows two metrics for all functions, all threads. The height

represents one chosen metric, and the color, another. These are selected from the

drop-down boxes on the right.

To pinpoint a specific value in the plot, move the Function and Thread sliders to cycle

through the available functions/threads.

compute()

Balanced load
Balancing the load:

int main (int argc, char *argv[])

{

MPI::Init (argc, argv);

rank = MPI::COMM_WORLD.Get_rank ();

float data[24000];

if (rank == 0)

{

num_procs = MPI::COMM_WORLD.Get_size ();

cout << " The number of processes available is " << num_procs << "\n";cout << " The number of processes available is " << num_procs << "\n";

}

int subd = 24000/num_procs

if (rank!= 0)

{

tag = 55;

MPI::COMM_WORLD.Recv (data,subd, MPI::FLOAT, MPI::ANY_SOURCE, tag, status);

cout << "P:" << rank << " Got data from process " <<

status.Get_source() << "\n";

count = status.Get_count (MPI::FLOAT);

cout << "P:" << rank << " Got " << count << " elements.\n";

compute(data,rank*subd,rank*subd+subd);

printf("Done\n");

}

Balanced load
else if (rank == 0)

{

cout << "\n";

cout << "P:" << rank << " - setting up data to send to processes.\n";

for (i = 0; i <24000; i++)

{

data[i] = i;

}

tag = 55;

printf("Done\n");

for(int el=1;el<num_procs;el++){for(int el=1;el<num_procs;el++){

MPI::COMM_WORLD.Send (&data[subd*el], subd, MPI::FLOAT, el, tag);

}

compute(data,0,subd);

}

MPI::Finalize ();

if (rank == 0)

{

cout << " Normal end of execution.\n";

}

return 0;

}

Balanced load

• Output:
The number of processes available is 6

P:0 - setting up data to send to processes.

Done

P:5 Got data from process 0

P:5 Got 4000 elements.

P:1 Got data from process 0

P:1 Got 4000 elements.

P:2 Got data from process 0P:2 Got data from process 0

P:2 Got 4000 elements.

P:3 Got data from process 0

P:3 Got 4000 elements.

P:4 Got data from process 0

P:4 Got 4000 elements.

Done

Done

Done

Done

Done

Normal end of execution.

Balanced load

MPI_Finalize()

MPI_Init()

compute()

Real Case Air Pollution Model

Metric: TIME

Minor computing
routines

Units

Horizae

Loop 500

Loop over time steps

InclusiveExclusive Calls/Tot.Calls

Metric: TIME

Sorted By: Exclusive

Units: seconds

Opspltae

Output

Horizae

Units

Ztrans

Phfact

Chemnew

Aero_iso

Real Case Air Pollution Model

Amdahl law

Theoretical speedup

P=0.93 � S(N)=14
6

8

10

12

14

16

18

S
p

e
e

d
 u

p

speed up

ideal speed up

Real speedup = 7.6 ����

Let’s check communication and load balncing !!

0

2

4

6

1 2 4 8 12 16
cores

Real Case Air Pollution Model

Master process Slave processes

The imbalance of computational load causes an overhead in the MPI directives

due to long synchronization times reducing the scalability

Load balancing issuesCommunication issues

TAU source instrumentation with PDT
• TAU provides an API which can be useful when it’s necessary to focus on particular

sections of code to have more detailed information.

• Sometimes, for complex routines manual source instrumentation can become a

long and error prone task.

• With TAU, instrumentation can be inserted in the source code using an automatic

instrumentor tool based on the Program Database Toolkit (PDT).

TAU source instrumentation with PDT
TAU and PDT howto:

• Parse the source code to produce the .pdb file:

– cxxparse file.cpp C++

– cparse file.c C

– f95parse file.f90 Fortran– f95parse file.f90 Fortran

• Instrument the program:

– tau_instrumentor file.pdb file.cpp –o

file.inst.cpp –f select.tau

• Complile:

– tau_compiler.sh file.inst.cpp –o file.exe

TAU source instrumentation with PDT

• The ”-f” flag associated to the command “tau_instrumentator” allows

you to customize the instrumentation of a program by using a selective

instrumentation file. This instrumentation file is used to manually control which

parts of the application are profiled and how they are profiled.

• Selective instrumentation file can contain the following sections:

1. Routines exclusion/inclusion list:

BEGIN_EXCLUDE_LIST / END_EXCLUDE_LIST

BEGIN_INCLUDE_LIST / END_INCLUDE_LIST

2. Files exclusion/inclusion list:

BEGIN_FILE_EXCLUDE_LIST / END_FILE_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST / END_FILE_INCLUDE_LIST

3. More detailed instrumentation specifics:

BEGIN_INSTRUMENT_SECTION / END_INSTRUMENT_SECTION

In a BEGIN_INSTRUMENT_SECTION/END_INSTRUMENT_SECTION block it’s

possible to specify the profiling of:

• Cycles

loops file=“filename.cpp" routine=“routinename"

TAU source instrumentation with PDT

• Memory

memory file=“filename.f90" routine=“routinename"

• I/O with dimension of read/write data

io file="foo.f90" routine=“routinename"

• Static and dynamic timers

static/dynamic timer name=“name" file=“filename.c" line=17

to line=23

TAU with PDT Real Case Air
Pollution Model

Custom profiling

Instrumentation file : instrument_rules.txt

BEGIN_FILE_INCLUDE_LIST

opspltae.f

chemnew.f

horizae.f

Minor computing
routines

Units

Horizae

Loop 500

Loop over time steps

horizae.f

ztrans.f

END_FILE_INCLUDE_LIST

BEGIN_INSTRUMENT_SECTION

loops file="opspltae.f" routine="OPSPLTAE"

loops file="chemnew.f" routine="CHEMNEW"

loops file="horizae.f" routine="HORIZAE"

loops file="ztrans.f" routine="ZTRANS"

io file="wrout1.f" routine="WROUT1"

dynamic timer name="dyn_timer" file="opspltae.f" line=183 to line=189

END_INSTRUMENT_SECTION

Opspltae

Output

Horizae

Units

Ztrans

Phfact

Chemnew

Aero_iso

TAU with PDT Real Case Air
Pollution Model

Routine opspltae: Loop 500, TAU automatic instrumentation

call TAU_PROFILE_TIMER(profiler, 'OPSPLTAE [{opspltae.f} {2,18}]')

call TAU_PROFILE_START(profiler)

call TAU_PROFILE_TIMER(t_131, ' Loop: OPSPLTAE [{opspltae.f} {131,7}-{143,12}]')

call TAU_PROFILE_TIMER(t_195, ' Loop: OPSPLTAE [{opspltae.f} {195,10}-{203,17}]')

call TAU_PROFILE_TIMER(t_247, ' Loop: OPSPLTAE [{opspltae.f} {247,7}-{592,14}]')
TAU TIMER

Initializationcall TAU_PROFILE_TIMER(t_247, ' Loop: OPSPLTAE [{opspltae.f} {247,7}-{592,14}]')

call TAU_PROFILE_TIMER(t_597, ' Loop: OPSPLTAE [{opspltae.f} {597,10}-{605,17}]')

call TAU_PROFILE_TIMER(t_639, ' Loop: OPSPLTAE [{opspltae.f} {639,10}-{647,17}]')

iugrid= iaddrs('UGRID ',1,1,1,1,1)

…………

call TAU_PROFILE_START(t_247)

do 500 i=2,nxm1

do 500 j=2,nym1

.……………….

………………..

500 continue

call TAU_PROFILE_STOP(t_247)

Initialization

TAU Loop 500 instrumentation

TAU Loop 500 end instrumentation

TAU with PDT Real Case Air
Pollution Model

Profiling time with default routine level compiler based instrumentation : 4192 sec

Profiling time with PDT and selective instrumentation : 1913 sec

Execution time without profiling overhead: 1875 sec

