
OpenMP
- exercises -

Hello world! (Fortran)

As a beginning activity let’s compile and run the Hello program, either in C or
in Fortran.

The most important lines in Fortran code are emphasized:

PROGRAM HELLO

 IMPLICIT NONE

 INTEGER :: ID, NTHREADS

 INTEGER :: OMP_GET_THREAD_NUM, OMP_GET_NUM_THREADS

!$OMP PARALLEL &

!$OMP PRIVATE(ID,NTHREADS)

 PRINT*,"Hello world!"

!$OMP END PARALLEL

 STOP

END PROGRAM HELLO

Hello world! (C/C++)

Again, the most important lines in C code are emphasized:

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

main (int argc, char *argv[])

{

#pragma omp parallel

{

 fprintf(stdout," Hello world!\n");

}

 return(0);

}

Hello world! (output)

If the program is executed with one thread the output is:

Hello world!

If the program is executed with four threads the output is:

Hello world!

Hello world!

Hello world!

Hello world!

Compiling notes

To compile programs that make use of OpenMP directives:

gfortran/gcc/g++ -fopenmp -o <executable> <file 1>

… <file n>

Where: <file n> - program source files

 <executable> - executable file

To start parallel execution:

export OMP_NUM_THREADS=<number_of_threads>

<executable>

E1 – exercise

By making use of the proper runtime functions try to add to the former
examples instructions for writing number of activated threads and thread ids.

The output generated by the program should look like:

 Hello world from:

 Thread id: 0; total number: 4

 Thread id: 2; total number: 4

 Thread id: 3; total number: 4

 Thread id: 1; total number: 4

E2 – example – Pi by quadrature

E2 – example – Pi by quadrature

Thus the program may be sketched this way:

• (if my_rank == 0) get number of intervals for quadrature

• Iterate for computing function value in the centre of each interval

• Sum up function values

• Divide by interval range and multiply by 4

Source code: Pi_integral

E3 – exercise – Montecarlo Pi

E3 – exercise – Montecarlo Pi

Therefore the program may be written this way:

Decide how many points have to be generated

Generate random points in a squared region

Calculate how many points fall in the inscribed circle

Sum up number of points in the square

Sum up number of points in the circle

Divide the two numbers

Source code: Pi_area

E4 – example – Mandelbrot set

In 1979 Benoît Mandelbrot, who was working at Thomas J. Watson

Research Center of IBM, was studying what would have been later

known as Mandelbrot set. This mathematical object may be easily

studied only by means of numerical computing, with the added

support of computer graphics.

Defining the Mandelbrot set is quite easy:

Given the transformation z -> z+z0
2 in the complex plane, iterate at

each point of the circle of radius 2 centred in the origin.

The Mandelbrot set is the set of points that do not diverge outside

this circle.

E4 - example – Mandelbrot set

Of course points inside the circle with radius 1 always remain in the set, but

there is no simple rules to decide whether the other points do belong to the

set. In fact the border of the set has fractal properties. Moreover, because of

chaos behavior coming from exponent operations, points starting very closed

together may diverge considerably.

The example program computes the Mandelbrot set in a given area (inside the

radius two circle) and creates an image on the basis of how many iterations are

needed to send a point outside the circle. The result is a well known image that

can also be used to effectively check the correctness of the program.

E4 - example – Mandelbrot set

The image is generated in PGM or PPM formats because they are very easy to
remember and realize.

PGM format:

Row 1 – P2

Row 2 - <rows> <columns>

Row 3 - <Maximum value>

… <point values> …

PPM format:

Row 1 – P3

Row 2 - <rows> <columns>

Row 3 - <Maximum value>

… <R G B point values> …

E4 - example – Mandelbrot set

The program could thus be sketched this way:

Define area in complex plane (squared for simplicity)

Define image size (squared for simplicity)

Define maximum iterations per point

Compute iterations for every point in the square

Produce image

Parallel computation may be implemented by domain decomposition or loop

distribution.

Source code: Mandel

E5 – exercise – Matrix multiply

Matrix row-column multiply is an example of program that can be easily

parallelized.

Given the matrices A(L,M), B(M,N), C(L,N) try writing a OpenMP program that

computes C = A x B

The program could be written this way:

Decide matrix sizes

Parallel computation by distributing loops iterations

Source code: MatrMult

E6 – example – Life game

John Conway’s LIFE game has been described since 1970 on Scientific

American. It consists in a very large checkerboard where there is a initial

configuration of marked (or alive) cells. At each iteration per each cell the

number F of the alive cells (taken among the 8 adjacent ones) is counted and

the cell is marked alive or not according to the following rules:

The cell survives if 2 <= F <= 3

The cell dies if 4 <= F or F <= 1

The cell gets alive if F = 3

The game rules are very simple but it is very difficult to predict the population

evolution.

E6 – example – Life game

As an example given a very simple initial configuration:

The evolution at first steps is:

E6 - example – Life game

Programming difficulties for implementing a LIFE game are closed to issues

encountered for programming PDE solvers with regular meshes.

• A sequential program may be written in the following way:

• Decide board sizes (squared for simplicity) and number of iterations

• Allocate matrix A(:,:) for current state

• Allocate matrix B(:,:) for next state

• Choose an initial configuration

• Iterate:

 store next state in matrix B by applying rules on matrix A

 swap matrices

E6 - example – Life game

Issues for parallel version:

• Decide board decomposition: divide board in disjoined portions

• Distribute portions (with boundaries) to threads

• Iterate:

 store next state in matrix B by applying rules on matrix A

 swap matrices

Source code: LifeGame

Reference: http://www.bitstorm.org/gameoflife/

E7 – exercise – Heat equation

The distribution of heat over time is described by the so called heat equation:

 +

 for a function f(x,y,t).

This formula may be discretized in a regular grid G(:,:) by computing the new

value G1(x,y) in a point (x,y) at each time step as:

G1(x,y) = G(x,y) + CX * (G(x+1,y) + G(x-1,y) - 2.0 * G(x,y))

 + CY * (G(x,y+1) + G(x,y-1) - 2.0 * G(x,y))

For each point in the grid the next value depends on the values of the four up

and down, left and right adjacent points.

Source code: Heat

