
Hierarchical Data Format 5:

Giusy Muscianisi – g.muscianisi@cineca.it

SuperComputing Applications and Innovation Department

May 17th, 2013

Outline

• What is HDF5 ?

• Overview to HDF5 Data Model and File Structure

• Overview to HDF5 APIs

2

Outline

• What is HDF5 ?

• Overview to HDF5 Data Model and File Structure

• Overview to HDF5 APIs

3

HDF5

• HDF5 : Hierarchical Data Format version 5

• File format for storing scientific data

– To store and organize all kinds of data

– To share data, to port files from one platform to another

– To overcome a limit on number and size of the objects in the file

• Software for accessing scientific data

– Flexible I/O library (parallel, remote, etc.)

– Efficient storage

– Available on almost all platforms

– C, F90, C++ , Java APIs

– Tools (HDFView, utilities)

4

HDF5 File

5

lat	lon	temp
 12 | 23 | 3.1
 15 | 24 | 4.2
 17 | 21 | 3.6

An HDF5 file is a binary

file containing scientific

data and supporting

metadata.

An HDF5 file is a

container that

holds data

objects.

6

Outline

• What is HDF5 ?

• Overview to HDF5 Data Model and File Structure

• Overview to HDF5 APIs

7

HDF Data Model & Implementation

• HDF implements a model for managing and storing data.

• The model includes

– an abstract data model and an abstract storage model (the data format)

– libraries to implement the abstract model and to map the storage model

to different storage mechanisms.

• The HDF5 library

– provides a programming interface to a concrete implementation of the

abstract models.

– implements a model of data transfer, i.e., efficient movement of data

from one stored representation to another stored representation.

8

HDF Data Model & Implementation

Relationships between the model and implementation

9

HDF Data Model & Implementation

• The Abstract Data Model is a conceptual model of data, data types, and

data organization. The abstract data model is independent of storage

medium or programming environment.

• The Storage Model is a standard representation for the objects of the

abstract data model. The HDF5 File Format Specification defines the

storage model.

• The Programming Model is a model of the computing environment and

includes platforms from small single systems to large multiprocessors and

clusters. The programming model manipulates (instantiates, populates, and

retrieves) objects from the abstract data model.

• The Library is the concrete implementation of the programming model. The

Library exports the HDF5 APIs as its interface.

– In addition to implementing the objects of the abstract data model, the Library

manages data transfers from one stored form to another.

– Data transfer examples include reading from disk to memory and writing from

memory to disk.

 10

Abstract Data Model

• The abstract data model (ADM) defines concepts for defining and

describing complex data stored in files.

• The ADM is a very general model which is designed to conceptually

cover many specific models.

• Many different kinds of data can be mapped to objects of the ADM,

and therefore stored and retrieved using HDF5.

• The ADM is not, however, a model of any particular problem or

application domain. Users need to map their data to the concepts of

the ADM.

11

Abstract Data Model

• File - a contiguous string of bytes in a computer store (memory, disk, etc.),

and the bytes represent zero or more objects of the model

• Group - a collection of objects (including groups)

• Dataset - a multidimensional array of data elements with attributes and

other metadata

• Dataspace - a description of the dimensions of a multidimensional array

• Datatype - a description of a specific class of data element including its

storage layout as a pattern of bits

• Attribute - a named data value associated with a group, dataset, or named

datatype

• Property List - a collection of parameters (some permanent and some

transient) controlling options in the library

• Link - the way objects are connected

12

HDF5 file

• An HDF5 file is a container for storing a variety of scientific data

• Is composed of two primary types of objects

– Groups: a grouping structure containing zero or more HDF5 objects,

together with supporting metadata

– Datasets: a multidimensional array of data elements, together with

supporting metadata

• Any HDF5 group or dataset may have an associated attribute list

– Attribute: a user-defined HDF5 structure that provides extra information

about an HDF5 object.

13

HDF5 Groups

A grouping structure containing zero or more HDF5 objects

– Used to organize collections

– Every file starts with a root group

– Similar to UNIX directories

– Path to object defines it

– Objects can be shared: /A/k and /B/l are the same

14

 = Group

= Dataset

temp

“/”
A

B
C

k
l

temp

HDF5 Groups

HDF5 objects are identified and located by their pathnames:

/ (signifies the root group)

/A (signifies a member of the root group called A)

/A/temp (signifies a member of the group A, which in turn is a

member of the root group)

/A/k and /B/l are the same

15

 = Group

= Dataset

temp

“/”
A

B
C

k
l

temp

HDF5 Dataset

Object used to organize and contain your “raw data values”.

They consist of:

– Your raw data

– Metadata describing the raw data:

• Dataspace: information to describe the logical layout of the data

elements

• Datatype: information to interpret the data

• Properties: characteristics of the data

• Attributes : additional optional information that describes the data

16

HDF5 Dataset

17

Data Metadata
Dataspace

3

Rank

Dim_2 = 5

Dim_1 = 4

Dimensions

Time = 32.4

Pressure = 987

Temp = 56

(optional)

Attributes

Chunked

Compressed

Dim_3 = 7

Properties

Integer

Datatype

HDF5 Dataspaces

An HDF5 Dataspace describes the logical layout for the data

elements:

– Array

• multiple elements in dataset organized in a multi-dimensional

(rectangular) array

• maximum number of elements in each dimension may be fixed or

unlimited

– NULL

• no elements in dataset

– Scalar

• single element in dataset

18

HDF5 Dataspaces

• Dataspace – spatial info about a dataset

– Rank and dimensions

• Permanent part of dataset definition

– Subset of points, for partial I/O

• Needed only during I/O operations

• Apply to datasets in memory or in the file

19

Rank =2

Dimensions = 4 x 6

20

HDF5 Datatypes

 The HDF5 datatype describes how to

interpret individual data elements.

 HDF5 datatypes include:
− integer, float, unsigned, bitfield, …

− user-definable (e.g., 13-bit integer)

− variable length types (e.g., strings)

− references to objects/dataset regions

− enumerations - names mapped to integers

− opaque

− compound (similar to C structs)

21

HDF5 Dataset

Dataspace: Rank = 2

 Dimensions = 5 x 3
22

Datatype: 16-byte integer

3

5

 V

HDF5 Properties

• Properties (also known as Property Lists) are characteristics of

HDF5 objects that can be modified

• Default properties handle most needs

• By changing properties one can take advantage of the more

powerful features in HDF5

23

HDF5 Properties

• HDF5 Dataset properties

– I/O and Storage Properties (filters)

• HDF5 File properties

– I/O and Storage Properties (drivers)

• Datatypes

– Compound

– Variable Length

– Reference to object and dataset region

24

Storage Properties

25

Chunked

Chunked &

Compressed

Better access time

for subsets;

extensible

Improves storage

efficiency,

transmission speed

Contiguous

(default)

Data elements

stored physically

adjacent to each

other

HDF5 Attributes

• An HDF5 attribute has a name and a value

• Attributes typically contain user metadata

• Attributes may be associated with

– HDF5 groups

– HDF5 datasets

– HDF5 named datatypes

• An attribute’s value is described by a datatype and a dataspace

• Attributes are analogous to datasets except…

– they are NOT extensible

– they do NOT support compression or partial I/O

26

Outline

• What is HDF5 ?

• Overview to HDF5 Data Model and File Structure

• Overview to HDF5 APIs

27

The General HDF5 API

• The HDF5 library provides several interfaces, or APIs.

– These APIs provide routines for creating, accessing, and manipulating HDF5

files and objects.

• The library itself is implemented in C.

– To facilitate the work of FORTRAN 90, C++ and Java programmers, HDF5

function wrappers have been developed in each of these languages.

• All C routines in the HDF5 library begin with a prefix of the form H5*, where

* is one or two uppercase letters indicating the type of object on which the

function operates

• The FORTRAN wrappers come in the form of subroutines that begin

with h5 and end with _f

Example APIs:

 H5D : Dataset interface e.g. H5Dread

 H5F : File interface e.g. H5Fopen

 H5S : dataSpace interface e.g. H5Sclose

28

Order of Operations

• The library imposes an order on the operations by argument

dependencies

– Example: A file must be opened before a dataset because the dataset

open call requires a file handle as an argument

• Objects can be closed in any order, and reusing a closed object will

result in an error

29

HDF5 C Programming Issue

For portability, HDF5 library has its own defined types:

 hid_t: object identifiers (native integer)

 hsize_t: size used for dimensions (unsigned long or insigned

 long long)

 hssize_t: for specifying coordinates and sometimes for

 dimensions (signed long or signed long long)

 herr_t : function return value

 hvl_t: variable lenght datatype

For C, include #include hdf5.h at the top of your HDF5 application

For Fortran, USE HDF5

30

h5dump
command-line Utility for Viewing HDF5 Files

31

32

Create an HDF5 File

• To create an HDF5 file, an application must specify

– a file name,

– a file access mode,

– a file creation property list,

– a file access property list.

• The steps to create and close an HDF5 file are as follows:

– Specify File Creation and Access property lists, if necessary

– Create a file

– Close the file and property lists, if necessary

33

File access mode

• When creating a file, the file access mode specifies the action to take if the

file already exists:

– H5F_ACC_TRUNC specifies that if the file already exists, the current

contents will be deleted so that the application can rewrite the file with

new data.

– H5F_ACC_EXCL specifies that the open will fail if the file already exists.

If the file does not already exist, the file access parameter is ignored.

• In either case, the application has both read and write access to the

successfully created file.

• There are two different access modes for opening existing files:

– H5F_ACC_RDONLY specifies that the application has read access but

will not be allowed to write any data.

– H5F_ACC_RDWR specifies that the application has read and write

access.

34

File access/creation Property Lists

• A property list is a collection of values that can be passed to HDF5

functions at lower layers of the library

• File Creation Property List

– Controls file metadata: information about: size of the user-block, size of

file data structures, etc.

– Specifying H5P_DEFAULT uses the default values

• Access Property List

– Controls different methods of performing I/O on files

– Unbuffered I/O, parallel I/O, etc.

– Specifying H5P_DEFAULT uses the default value

35

Binding of H5Fcreate

hid_t H5Fcreate(const char *name, unsigned flags,

hid_t create_id, hid_t access_id)

 IN name : Name of the file to access

 IN flags : File access flags

 IN create_id : File creation property list

 identifier

 IN access_id : File access property list

 identifier

36

Binding of H5Fclose

herr_t H5Fclose(hid_t file_id)

 IN file_id : Identifier of the file to terminate

 access to

37

Example 1

#include <hdf5.h>

#define FILE "file.h5“

main() {

 hid_t file_id; /* file identifier */

 herr_t status;

 /* Create a new file using default properties. */

 file_id = H5Fcreate (FILE, H5F_ACC_TRUNC,

 H5P_DEFAULT, H5P_DEFAULT);

 /* Terminate access to the file. */

 status = H5Fclose (file_id);

}

38

Example 1: h5dump Output

HDF5 “file.h5” {

GROUP “/” {

}

}

39

“/”

When a HDF5 is created, the “/” root

group is created by default.

Use Groups

• HDF5 groups provide a mechanism for organizing meaningful and

extendable sets of datasets within an HDF5 file.

• An HDF5 group is a structure containing zero or more HDF5 objects.

• To create a group, the calling program must:

– Obtain the location identifier where the group is to be created

– Create the group

– Close the group

40

Binding of H5Gcreate

hid_t H5Gcreate(hid_t loc_id, const char

*name, hid_t lcpl_id, hid_t gcpl_id, hid_t gapl_id)

 loc_id : file or parent group identifier

 name : absolute or relative name of the new group

 lcpl_id : Link creation property list identifier

 gcpl_id : Group creation property list identifier

 gapl_id : Group access property list identifier (No group

 access properties have been implemented at this

 time; use H5P_DEFAULT.)

41

Example 2

#include "hdf5.h"

#define FILE "group.h5"

int main() {

hid_t file_id, group_id; /* identifiers */

herr_t status;

file_id = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT,

H5P_DEFAULT);

/* Create a group named "/MyGroup" in the file. */

group_id = H5Gcreate(file_id, “/MyGroup", H5P_DEFAULT,

H5P_DEFAULT, H5P_DEFAULT);

/* Close the group. */

status = H5Gclose(group_id);

status = H5Fclose(file_id);

}

42

Example 2: h5dump Output

HDF5 “group.h5” {

GROUP “/” {

 GROUP “Mygroup” {

 }

}

}

43

“/”

“Mygroup”

Open an existing Group

hid_t H5Gopen(hid_t loc_id, const char

* name, hid_t gapl_id)

 loc_id : File or group identifier specifying the

 location of the group to be opened

 name : Name of the group to open

 gapl_id : Group access property list identifier

 (No group access properties have been

 implemented at this time; use H5P_DEFAULT.)

44

Groups: Absolute & Relative Names

• To create an HDF5 object, we have to specify the location where the object

is to be created. This location is determined by the identifier of an HDF5

object and the name of the object to be created.

• The name of the created object can be either an absolute name or a name

relative to the specified identifier.

• HDF5 object names are a slash-separated list of components:

– component names may be any length except zero and may contain any

character except slash (/) and the null terminator.

– a full name may be composed of any number of component names separated by

slashes, with any of the component names being the special name . (a dot or

period).

– A name which begins with a slash is an absolute name which is accessed

beginning with the root group of the file; all other names are relative names and

the named object is accessed beginning with the specified group.

45

Example 3

. . .

/* Create group "MyGroup" in the root group using absolute name. */

group1_id = H5Gcreate(file_id, "MyGroup", H5P_DEFAULT, H5P_DEFAULT,

H5P_DEFAULT);

/* Create group "Group_A" in group "MyGroup" using absolute name. */

group2_id = H5Gcreate(file_id, "/MyGroup/Group_A", H5P_DEFAULT,

H5P_DEFAULT, H5P_DEFAULT);

/* Create group "Group_B" in group "MyGroup" using relative name. */

group3_id = H5Gcreate(group1_id, "Group_B", H5P_DEFAULT, H5P_DEFAULT,

H5P_DEFAULT);

/* Close groups. */

status = H5Gclose(group1_id);

status = H5Gclose(group2_id);

status = H5Gclose(group3_id);

. . .

46

Example 3: h5dump Output

HDF5 "groups.h5" {

GROUP "/" {

 GROUP "MyGroup" {

 GROUP "Group_A" {

 }

 GROUP "Group_B" {

 }

 }

}

}

47

“Group_A”

“/”

“Mygroup”

“Group_B”

Step to use Datasets 1/2

• A dataset is a multidimensional array of data elements,

 together with supporting metadata.

• To create an empty dataset (no data written) the following steps

need to be taken:

1. Obtain the location id where the dataset is to be created.

2. Define or specify the dataset characteristics:

1. Define a datatype or specify a pre-defined datatype.

2. Define a dataspace (shape of the array of the dataset).

3. Specify the property list(s) or use the default.

3. Create the dataset.

4. Close the datatype, the dataspace, and the property list(s) if

necessary.

5. Close the dataset.

48

Step to use Datasets 1/2

Regarding to the definition of the dataset characteristics:

1. Define a datatype or specify a pre-defined datatype.

2. Define a dataspace.

3. Specify the property list(s) or use the default

Note that:

• In HDF5, datatypes and dataspaces are independent objects which

are created separately from any dataset that they might be attached

to.

• Because of this, the creation of a dataset requires the definition of

the datatype and dataspace.

49

Datatypes

• A datatype is a collection of properties, all of which can be stored

on disk, and which, when taken as a whole, provide complete

information for data conversion to or from that datatype.

• There are two categories of datatypes in HDF5:

– Pre-defined: These datatypes are opened and closed by HDF5.

– Derived: These datatypes are created or derived from the pre-defined

types. (To use them, see the Datatype Interface H5T)

50

Standard Predefined Datatype

Examples:

H5T_IEEE_F64LE Eight-byte, little-endian, IEEE floating-point

H5T_IEEE_F32BE Four-byte, big-endian, IEEE floating point

H5T_STD_I32LE Four-byte, little-endian, signed two's complement

integer

H5T_STD_U16BE Two-byte, big-endian, unsigned integer

NOTE:

– These datatypes (DT) are the same on all platforms

– These are DT handles generated at run-time

– Used to describe DT in the HDF5 calls

– DT cannot be used to describe application data buffers

51

Standard Predefined Datatype

Examples:

H5T_IEEE_F64LE Eight-byte, little-endian, IEEE floating-point

H5T_IEEE_F32BE Four-byte, big-endian, IEEE floating point

H5T_STD_I32LE Four-byte, little-endian, signed two's complement

integer

H5T_STD_U16BE Two-byte, big-endian, unsigned integer

52

Architecture Programming Type

Native Predefined Datatype

Examples of predefined native types in C:

H5T_NATIVE_INT (int)

H5T_NATIVE_FLOAT (float)

H5T_NATIVE_UINT (unsigned int)

H5T_NATIVE_LONG (long)

H5T_NATIVE_CHAR (char)

NOTE:

• These datatypes are NOT the same on all platforms

• These are DT handles generated at run-time

53

Dataspaces

• A dataspace describes the layout of the data array.

• A dataspace is either

– simple dataspace: a regular N-dimensional array of data points,

– complex dataspace: a more general collection of data points organized

in another manner

• The dimensions of a dataset:

– can be fixed (unchanging),

– or they may be unlimited, which means that they are extensible.

• A dataspace can also describe a portion of a dataset (hyper-slab) ,

making it possible to do partial I/O operations on selections.

54

Creating a Simple Dataspace

hid_t H5Screate_simple (int rank, const hsize_t *

dims, const hsize_t *maxdims)

rank IN: Number of dimensions of dataspace

dims IN: An array of the size of each dimension

maxdims IN: An array of the maximum size of each

 dimension.

 A value of H5S_UNLIMITED specifies the

 unlimited dimension.

 A value of NULL specifies that dims and

 maxdims are the same.

55

Simple Datespace:

a regular N-dimensional array of data points

Property Lists

• Property lists are a mechanism for modifying the default behavior

when creating or accessing objects.

• The following property lists can be specified when creating a

dataset:

– Dataset Creation Property List: When creating a dataset, HDF5 allows

the user to specify how raw data is organized and/or compressed on

disk.

– Link Creation Property List: The link creation property list governs

creation of the link(s) by which a new dataset is accessed and the

creation of any intermediate groups that may be missing.

– Dataset Access Property List: Dataset access property lists are

properties that can be specified when accessing a dataset.

56

 Dataset creation property list

57

H5P_DEFAULT: contiguous

Dataset creation property list:

 information on how to organize data in storage.

Chunked

Chunked &

Compressed

Better access time for

subsets; extensible

Improves storage

efficiency,

transmission speed

Contiguous

(default)

Data elements stored

physically adjacent to

each other

 Property List example

Create the dataset creation property list, add the gzip compression filter

(deflate) and set the chunk size:

 create_plist_id = H5Pcreate(H5P_DATASET_CREATE);

 status = H5Pset_deflate(create_plist_id, 9);

 status = H5Pset_chunk(create_plist_id, ndims,

chunk_dims);

NOTE:

The property “create_plist_id” will be passed when the dataset will be created

58

Creating a Dataset

hid_t H5Dcreate (hid_t loc_id, const char

*name, hid_t dtype_id, hid_t space_id, hid_t lcpl_

id, hid_t dcpl_id, hid_t dapl_id)

 loc_id IN: Location identifier

 name IN: Dataset name

 dtype_id IN: Datatype identifier

 space_id IN: Dataspace identifier

 lcpl_id IN : Link creation property list

 dcpl_id IN : Dataset creation property list

 dapl_id IN: Dataset access property list

59

Create an empty, chunked,
 4x6 Dataset: Example 4

hid_t file_id, dataset_id, dataspace_id;

hid_t dcpl /* dataset creation property */

hsize_t dims[2]={4,6};

herr_t status;

file_id = H5Fcreate ("dset.h5", H5F_ACC_TRUNC, H5P_DEFAULT,

H5P_DEFAULT);

dataspace_id = H5Screate_simple (2, dims, NULL);

dcpl = H5Pcreate (H5P_DATASET_CREATE);

status = H5Pset_chunk (dcpl, 2, chunk);

dataset_id = H5Dcreate(file_id,"dset",H5T_STD_I32BE, dataspace_id,

H5P_DEFAULT, dcpl, H5P_DEFAULT);

status = H5Dclose (dataset_id); status = H5Sclose (dataspace_id);

status = H5Pclose (dcpl); status = H5Fclose (file_id); 60

Example 4: h5dump Output

HDF5 "dset.h5" {

GROUP "/" {

 DATASET "dset" {

 DATATYPE { H5T_STD_I32BE }

 DATASPACE { SIMPLE (4, 6) / (4, 6) }

 DATA {

 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0

 }

 }

}

}

61

“/”

“dset”

Dataset IO operations

• During a dataset I/O operation, the library transfers raw data between memory and

the file.

• The data in memory can have a datatype different from that of the file and can also

be of a different size (i.e., the data in memory is a subset of the dataset elements, or

vice versa).

• Therefore, to perform read or write operations, the application program must specify:

– The dataset

– The dataset's datatype in memory

– The dataset's dataspace in memory

– The dataset's dataspace in the file

– The dataset transfer property list.

– The data buffer

• The data transfer property list is used to control various aspects of the I/O, such as

caching hints or collective I/O information.

62

Dataset IO operations

• The steps to read from or write to a dataset are as follows:

– Obtain the dataset identifier.

– Specify the memory datatype.

– Specify the memory dataspace.

– Specify the file dataspace.

– Specify the transfer properties.

– Perform the desired operation on the dataset.

– Close the dataset.

– Close the dataspace, datatype, and property list if necessary.

63

Dataset IO operations

• Dataset I/O involves

– reading or writing

– all or part of a dataset

– Compressed/uncompressed

• During I/O operations data is translated between the source &

destination (file-memory, memoryfile)

– Datatype conversion

• data types (e.g. 16-bit integer => 32-bit integer) of the same class

– Dataspace conversion

• dataspace (e.g. 10x20 2d array => 200 1d array)

64

Partial IO

• Selected elements (called selections) from source are mapped

(read/written) to the selected elements in destination

• Selection

– Selections in memory can differ from selection in file

– Number of selected elements is always the same in source and

destination

• Selection can be

– Hyperslabs (contiguous blocks, regularly spaced blocks)

– Points

– Results of set operations (union, difference, etc.) on hyperslabs or

points

65

Binding Open Dataset

hid_t H5Dopen (hid_t loc_id, const char *name)

 loc_id IN: Identifier of the file or group in

 which to open a dataset

 name IN: The name of the dataset to access

NOTE:

File datatype and dataspace are known when a dataset is opened

66

Binding Write Dataset

herr_t H5Dwrite (hid_t dataset_id, hid_t

mem_type_id, hid_t mem_space_id, hid_t

file_space_id, hid_t xfer_plist_id, const void *

buf)

 dataset_id IN: Identifier of the dataset to write to

 mem_type_id IN: Identifier of memory datatype of the

 dataset

 mem_space_id IN: Identifier of the memory dataspace

 (or H5S_ALL)

 file_space_id IN: Identifier of the file dataspace

 (or H5S_ALL)

 xfer_plist_id IN: Identifier of the data transfer

 properties to use (or H5P_DEFAULT)

 buf IN: Buffer with data to be written to the file

67

68

Partial I/O

 File Dataspace (disk)
H5S_ALL H5S_ALL

To Modify Dataspace:

 H5Sselect_hyperslab

 H5Sselect_elements

Memory

Dataspace

status = H5Dwrite (dataset_id, H5T_NATIVE_INT,
H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata);

Binding Read Dataset

herr_t H5Dread (hid_t dataset_id, hid_t mem_type_id,

hid_t mem_space_id, hid_t file_space_id, hid_t

xfer_plist_id, const void * buf)

 dataset_id IN: Identifier of the dataset to read to

 mem_type_id IN: Identifier of memory datatype of the

 dataset

 mem_space_id IN: Identifier of the memory dataspace

 (or H5S_ALL)

 file_space_id IN: Identifier of the file dataspace

 (or H5S_ALL)

 xfer_plist_id IN: Identifier of the data transfer

 properties to use (or H5P_DEFAULT)

 buf IN: Buffer with data to be written to the file

69

Writing to an existing Dataset:
Example 5

hid_t file_id, dataset_id;

herr_t status;

int i, j, dset_data[4][6];

/* Initialize buffer */

for (i = 0; i < 4; i++)

 for (j = 0; j < 6; j++)

 dset_data[i][j] = i * 6 + j + 1;

/* Open existing file and dataset */

file_id = H5Fopen ("dset.h5", H5F_ACC_RDWR, H5P_DEFAULT);

dataset_id = H5Dopen (file_id, "dset");

/* Write to dataset

status = H5Dwrite (dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, dset_data);

70

Example 5: h5dump Output

HDF5 "dset.h5" {

GROUP "/" {

 DATASET "dset" {

 DATATYPE { H5T_STD_I32BE }

 DATASPACE { SIMPLE (4, 6) / (4, 6) }

 DATA {

 1, 2, 3, 4, 5, 6,

 7, 8, 9, 10, 11, 12,

 13, 14, 15, 16, 17, 18,

 19, 20, 21, 22, 23, 24

 }

 }

}

}

71

R/W to a Subset of a Dataset

• HDF5 allows you to read from or write to a portion or subset of a

dataset.

• This is done by selecting a subset of the dataspace of the dataset,

and then using that selection to read from or write to the dataset.

• There are two types of selections in HDF5, hyperslab selections and

element selections,

– The H5Sselect_hyperslab call selects a logically contiguous

collection of points in a dataspace, or a regular pattern of points or

blocks in a dataspace.

– The H5Sselect_elements call selects elements in an array.

72

Binding of H5Sselect_hyperslab

herr_t H5Sselect_hyperslab(hid_t space_id, H5S_selop

er_t op, const hsize_t *start, const hsize_t

*stride, const hsize_t *count, const hsize_t

*block)

 space_id IN: Identifier of dataspace selection

 to modify

 op IN: Operation to perform on current

 selection.

 start IN: Offset of start of hyperslab

 count IN: Number of blocks included in

 hyperslab.

 stride IN: Hyperslab stride.

 block IN: Size of block in hyperslab.

73

Binding of H5Sselect_elements

herr_t H5Sselect_elements(hid_t space_id, H5S_selop

er_t op, size_t num_elements, const hsize_t

*coord)

 space_id IN: Identifier of the dataspace.

 op IN: Operator specifying how the new selection is to

 be combined with the existing selection for

 the dataspace.

 num_elements IN: Number of elements to be selected.

 coord IN: A pointer to a buffer containing a serialized

 copy of a 2-dimensional array of zero-based

 values specifying the coordinates of the

 elements in the point selection.

74

Example:
 R/W to a Subset of a Dataset

1. In an HDF5 file, creates an 8 x 10 integer dataset, with a simple

dataspace.

2. Initialize and write data in such dataset; print the data written and

then close all.

3. Re-open the file and the dataset.

4. Re-write a portion of such dataset, with dimension 3x4.

5. Print the new dataset and then close all

75

Example R/W to a Subset of a
Dataset

Hints for point 4. :

– Specify size and shape of subset to write.

– Create memory space with size of subset. Get file dataspace and select

subset from file dataspace.

– Write the subset of data to the dataset

– Then read the entire dataset back from the file

76

Example R/W to a Subset of a
Dataset

77

http://www.hdfgroup.org/ftp/HDF5/examples/introductory/C/h5_subset.c

http://www.hdfgroup.org/ftp/HDF5/examples/introductory/C/h5_subset.c
http://www.hdfgroup.org/ftp/HDF5/examples/introductory/C/h5_subset.c
http://www.hdfgroup.org/ftp/HDF5/examples/introductory/C/h5_subset.c
http://www.hdfgroup.org/ftp/HDF5/examples/introductory/C/h5_subset.c
http://www.hdfgroup.org/ftp/HDF5/examples/introductory/C/h5_subset.c

Creating Datasets in Groups

• We have shown how to create groups, datasets, and attributes.

• In this section, we show how to create datasets in groups.

• Recall that

– H5Dcreate/h5dcreate_f creates a dataset at the location specified by a

location identifier and a name.

– similar toH5Gcreate/h5gcreate_f, the location identifier can be a file

identifier or a group identifier and the name can be relative or absolute.

• The location identifier and the name together determine the location

where the dataset is to be created. If the location identifier and name

refer to a group, then the dataset is created in that group.

78

Creating Datasets in Groups: Example 6
#include "hdf5.h"

#define FILE "groups.h5"

int main() {

 hid_t file_id, group_id, dataset_id, dataspace_id; /* identifiers */

hsize_t dims[2];

 herr_t status;

 int i, j, dset1_data[3][3], dset2_data[2][10];

 /* Initialize the first dataset. */

 for (i = 0; i < 3; i++)

 for (j = 0; j < 3; j++)

 dset1_data[i][j] = j + 1;

 /* Initialize the second dataset. */

 for (i = 0; i < 2; i++)

 for (j = 0; j < 10; j++)

 dset2_data[i][j] = j + 1;

79

Creating Datasets in Groups: Example 6
 /* Open an existing file. */

 file_id = H5Fopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

 /* Create the data space for the first dataset. */

 dims[0] = 3; dims[1] = 3;

 dataspace_id = H5Screate_simple(2, dims, NULL);

 /* Create a dataset in group "MyGroup". */

 dataset_id = H5Dcreate(file_id, "/MyGroup/dset1", H5T_STD_I32BE,

 dataspace_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

 /* Write the first dataset. */

 status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

 H5P_DEFAULT, dset1_data);

 /* Close the data space for the first dataset. */

 status = H5Sclose(dataspace_id);

 /* Close the first dataset. */

 status = H5Dclose(dataset_id);

80

Creating Datasets in Groups: Example 6
 /* Open an existing group of the specified file. */

 group_id = H5Gopen(file_id, "/MyGroup/Group_A", H5P_DEFAULT);

 /* Create the data space for the second dataset. */

 dims[0] = 2; dims[1] = 10;

 dataspace_id = H5Screate_simple(2, dims, NULL);

 /* Create the second dataset in group "Group_A". */

 dataset_id = H5Dcreate(group_id, "dset2", H5T_STD_I32BE, dataspace_id,

 H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

 /* Write the second dataset. */

 status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

 H5P_DEFAULT, dset2_data);

 /* Close the data space for the second dataset. */

 status = H5Sclose(dataspace_id);

 /* Close the second dataset */

 status = H5Dclose(dataset_id);

 /* Close the group. */

 status = H5Gclose(group_id);

 /* Close the file. */

 status = H5Fclose(file_id); }

81

Example 6: h5dump Output

HDF5 "groups.h5" {

GROUP "/" {

GROUP "MyGroup" {

GROUP "Group_A" {

 DATASET "dset2" {

 DATATYPE { H5T_STD_I32BE }

 DATASPACE { SIMPLE (2, 10) / (2, 10) }

 DATA {

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

 }

 }

}

GROUP "Group_B" {

}

DATASET "dset1" {

 DATATYPE { H5T_STD_I32BE }

 DATASPACE { SIMPLE (3, 3) / (3, 3) }

 DATA {

 1, 2, 3,

 1, 2, 3,

 1, 2, 3

 }

 }

 }

 }

}

82

“/”

MyGroup

Group_B dset1 Group_A

dset2

Attributes

Attributes are small datasets that can be used to describe the nature

and/or the intended usage of the object they are attached to.

Creating an attribute is similar to creating a dataset. To create an

attribute, the application must specify the object which the attribute

is attached to, the datatype and dataspace of the attribute data, and

the attribute creation property list.

Attributes may only be read or written as an entire object; no partial I/O

is supported. Therefore, to perform I/O operations on an attribute,

the application needs only to specify the attribute and the attribute's

memory datatype.

83

Steps to create an attribute

The steps to create an attribute are as follows:

 1. Obtain the object identifier that the attribute is to be attached to.

 2. Define the characteristics of the attribute and specify the attribute

creation property list.

 - Define the datatype.

 - Define the dataspace.

 - Specify the attribute creation property list.

 3. Create the attribute.

 4. Close the attribute and datatype, dataspace, and attribute

creation property list, if necessary.

84

Example 7. 1/2

#include “hdf5.h”

#define FILE “dset.h5”

main(){

 hid_t file_id, dataset_id, attribute_id, dataspace_id; /*

identifier */

 hsize_t dims;

 int attr_data[2];

 herr_t status;

 /* Initialize the attribute data */

 attr_data[0] = 100; attr_data[1] = 200;

 /* Open an existing file */

 file_id = H5FOpen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

 /* Open an existing dataset */

 dataset_id = H5DOpen(file_id, “/dset”);
85

Example 7. 2/2

 /* Create the data space for the attribute */

 dims = 2;

 dataspace_id = H5Screate_simple(1, &dims, NULL);

 /* Create a dataset attribute */

 attribute_id = H5Acreate(dataset_id, “attr”, H5T_STD_I32BE,

dataspace_id, H5P_DEFAULT);

 /* Write the attribute data */

 status = H5Awrite(attribute_id, H5T_NATIVE_INT,attr_data);

 /* Close the attribute, dataspace

 dataset and file */

 status = H5Aclose(attribute_id);

 status = H5Sclose(dataspace_id);

 status = H5Dclose(dataset_id);

 status = H5Fclose(file_id);

}
86

Example 7: h5dump Output

HDF5 "dset.h5" {

GROUP "/" {

DATASET "dset" {

DATATYPE { H5T_STD_I32BE }

DATASPACE { SIMPLE (4, 6) / (4, 6) }

DATA {

 1, 2, 3, 4, 5, 6,

 7, 8, 9, 10, 11, 12,

 13, 14, 15, 16, 17, 18,

 19, 20, 21, 22, 23, 24

}

ATTRIBUTE "attr" {

 DATATYPE { H5T_STD_I32BE }

 DATASPACE { SIMPLE (2) / (2) }

 DATA {

 100, 200

 }

}

}

}

} 87

1.8 vs 1.6, main differences

• 1.8 is backward compatible, provided at compile time you add:

 -D H5_USE_16_API

• Support to

– External Links, Links in a group that link to objects in a different HDF5

file

– User-defined Links

– Dedicated Link Interface Link API (H5L) for directly managing links

– Enhanced Attribute Handling Faster access and more compact storage

– Object Copying: Copying an HDF5 object to a new location within a file

or in a different file

– Dedicated Object Interface

– C++ and Fortran Wrapper Improvements

– ……..

88

Usefull links

The HDF Group Page: http://hdfgroup.org/

HDF5 Home Page: http://hdfgroup.org/HDF5/

HDF Helpdesk: help@hdfgroup.org

HDF Mailing Lists: http://hdfgroup.org/services/support.html

1.8 vs 1.6:

http://www.hdfgroup.org/HDF5/doc/ADGuide/WhatsNew180.html

89

QUESTIONS ???

