
Is I/O still Manageable?

Carlo Cavazzoni, HPC Department CINECA

16 May 2013

What is I/O

• DATA

• fwritef, fscanf, fopen, fclose, WRITE, READ, OPEN, CLOSE

• Call to an external library: MPI I/O, HDF5, NetCDF, ecc…

• Scalar/parallel/network Filesystems

• I/O nodes and Filesystem cache

• I/O network (IB, SCSI, Fibre, ecc..)

• I/O RAID controllers and Appliance (Lustre, GPFS)

• Disk cache

• FLASH/Disk (one or more Tier)

• Tapes

Parallel I/O and management of large scientific data, May 16-17, 2013, CINECA

A Strategy

• Understand architectural trends (at all level)

• Evaluate impact on application I/O design

• Plan application refactoring, new I/O algorithms

• Field test on current available machine (anticipating

some arch trends), proof of concept.

• Bring stuff into the main trunk for production.

Parallel I/O and management of large scientific data, May 16-17, 2013, CINECA

Architectural trends

Peak Performance

Moore law

FPU Performance Dennard law

Number of FPUs

Moore + Dennard

App. Parallelism

Amdahl's law

Parallel I/O and management of large scientific data, May 16-17, 2013, CINECA

Architectural trends

Number of cores

10^9

Memory x core

Memory BW/core

500GByte/sec

Memory hierachy Reg, L1, L2, L3, …

100Mbyte or less

2020 estimates

Parallel I/O and management of large scientific data, May 16-17, 2013, CINECA

Architectural trends

Network links/node

100

Disk perf

Number of disks 100K

100Mbyte/sec

2020 estimates

Wire BW/core 1GByte/sec

Anti revolution –
disks will only be a bit faster than today

Parallel I/O and management of large scientific data, May 16-17, 2013, CINECA

Challenges

10K clients

100K core per clients
1Exabyte

100K Disks

100TByte/sec

1Gbyte blocks

Parallel Filesystem

Multi Tier architecture

Parallel I/O and management of large scientific data, May 16-17, 2013, CINECA

100 clients

1000 core per client
3PByte

3K Disks

100 Gbyte/sec

8MByte blocks

Parallel Filesystem

One Tier architecture

Today (BGQ) Tomorrow

Today

Parallel I/O and management of large scientific data, May 16-17, 2013, CINECA

I/O client

I/O client

…..

I/O server

RAID

Controller

Switch Switch
I/O server

I/O server

…..

I/O client

cores

cores

cores

disks

RAID

Controller
disks

RAID

Controller
disks

160K cores, 96 I/O clients, 24 I/O servers, 3 RAID controllers

IMPORTANT: I/O subsystem has its own parallelism!

Today-Tomorrow

Parallel I/O and management of large scientific data, May 16-17, 2013, CINECA

I/O client

I/O client

…..

I/O server
RAID

Controller

Switch Switch
I/O server

I/O server

…..

I/O client

cores

cores

cores

disks

RAID

Controller
disks

RAID

Controller
disks

1M cores, 1000 I/O clients, 100 I/O servers, 10 RAID FLASH/DISK controllers

FLASH RAID

Controller Tier-1

Tier-2

Tomorrow

Parallel I/O and management of large scientific data, May 16-17, 2013, CINECA

I/O client

I/O client

…..

I/O server

RAID

Controller

Switch

Switch I/O server

I/O server

…..

I/O client
cores

cores

cores

disks

RAID

Controller
disks

RAID

Controller
disks

1G cores, 10K NVRAM nodes, 1000 I/O clients, 100 I/O servers, 10 RAID controllers

NVRAM

NVRAM

NVRAM

Tier-1 (byte addressable?) Tier-2/Tier-3 (Block device)

FLASH RAID

Controller
Tier-2

Tier-3

Transition

DATA:

 Billion of (application) files

 Large (check-point/restart) file

Posix Filesystem:

 low level

 lock/syncronization

 low IOPs (I/O operation per second)

Physical supports:

 disk too slow -> archive

 FLASH aging problem

 NVRAM (Non-Volatile RAM), PCM (Phase Change Memory), not ready

Middlewere:

 Library HDF5, NetCDF

 MPI-I/O

 Each layer has its own semantics

Strategy

I/O is the bottleneck -> avoid I/O when possible

I/O subsystem work with locks -> simplify application I/O

I/O C/Fortran APIs are synchronous -> use dedicated I/O tasks

I/O has its own parallelism -> use MPI-I/O

Raw data are not portable -> use library

I/O is slow -> compress reduce output data

Application DATA are too large -> analyze it “on the fly”, re-compute vs write

