

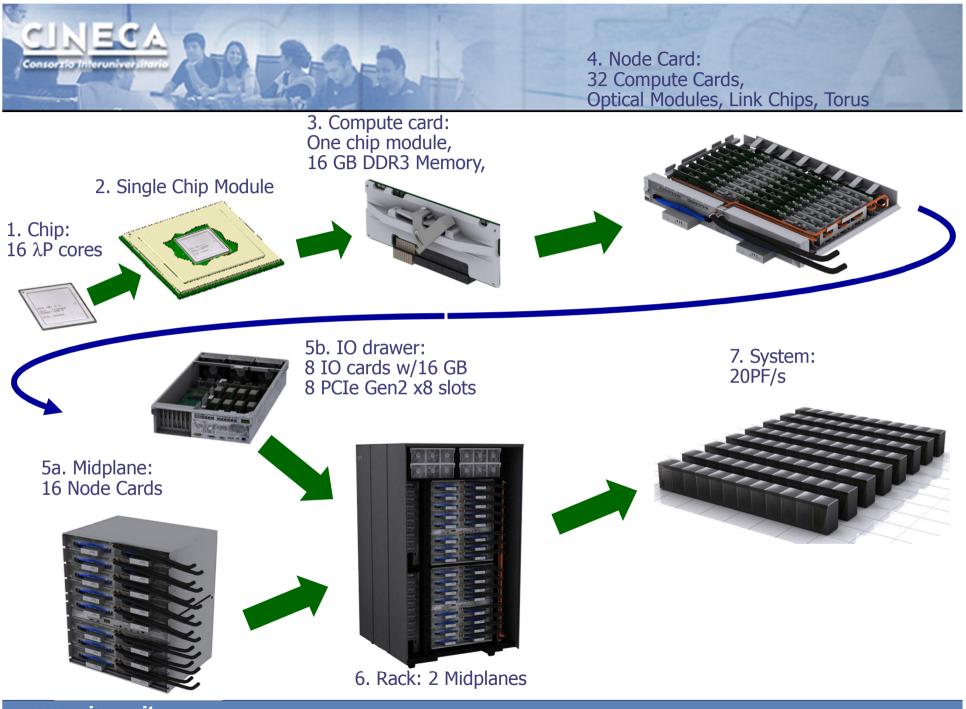
BG/Q Architecture

Carlo Cavazzoni, Maurizio Cremonesi, HPC department, CINECA

PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

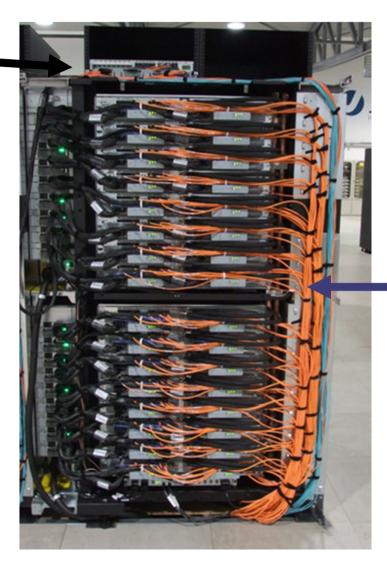
FERMI @ CINECA PRACE Tier-0 System

Architecture: 10 BGQ Frame Model: IBM-BG/Q Processor Type: IBM PowerA2, 1.6 GHz Computing Cores: 163840 Computing Nodes: 10240 RAM: 1 GByte / core Internal Network: 5D Torus Disk Space: 2 PByte of scratch space Peak Performance: 2 PFlop/s Power Consumption: 1 MWatt

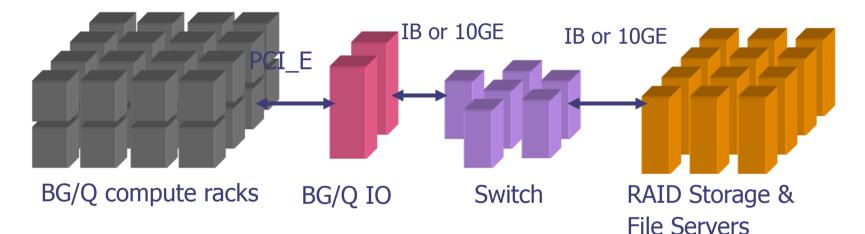


PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

TOP10 November 2012


1	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x		
2	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom		
3	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect		
4	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom		
5	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect		
6	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR		
7	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi		
8	Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050		
9	Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom		
10	DARPA Trial Subset - Power 775, POWER7 8C 3.836GHz, Custom Interconnect		

http://www.top500.org


Point-to-point fiber cables, attaching the 8 I/O nodes (on top of rack) to compute nodes (on 8 node cards)

4D torus fiber cables, connecting the midplane to other midplanes (in same and other racks)

BG/Q I/O architecture

External, independent and dynamic I/O system

- I/O nodes in separate drawers/rack with private interconnections and full Linux support
- PCI-Express Gen 2 on every node with full sized PCI slot
- Two I/O configurations (one traditional, one conceptual)

BlueGene Classic I/O with GPFS clients on the logical I/O nodes

Similar to BG/L and BG/P

Uses InfiniBand switch

Uses DDN RAID controllers and File Servers

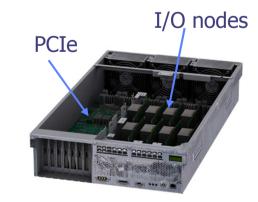
BG/Q I/O Nodes are not shared between compute partitions

 IO Nodes are bridge data from functionshipped I/O calls to parallel file system client

Components balanced to allow a specified minimum compute partition size to saturate entire storage array I/O bandwidth

I/O Network to/from Compute rack

- 2 links (4GB/s in 4GB/s out) feed an I/O PCI-e port
- Every node card has up to 4 ports (8 links)
- Typical configurations
 - ✓ 8 ports (32GB/s/rack)
 - ✓ 16 ports (64 GB/s/rack)
 - ✓ 32 ports (128 GB/s/rack)
- Extreme configuration 128 ports (512 GB/s/rack)


I/O Drawers

- 8 I/O nodes/drawer with 8 ports (16 links) to compute rack
- 8 PCI-e gen2 x8 slots (32 GB/s aggregate)
- 4 I/O drawers per compute rack
- Optional installation of I/O drawers in external racks for extreme bandwidth configurations

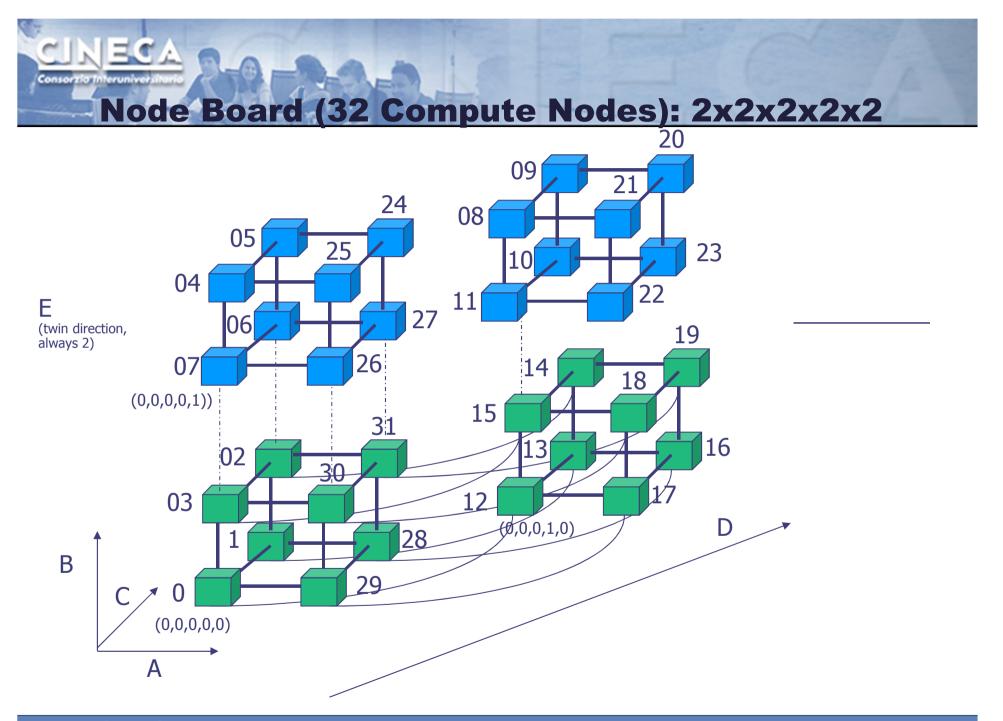
Locations of IO enclosures can be:

- Qxx-Iy (in an IO rack, y is 0 B)
- Rxx-Iy (in a compute rack, y is C F)

New Network architecture:

• 5 D torus architecture sharing several embedded Virtual

Network/topologies

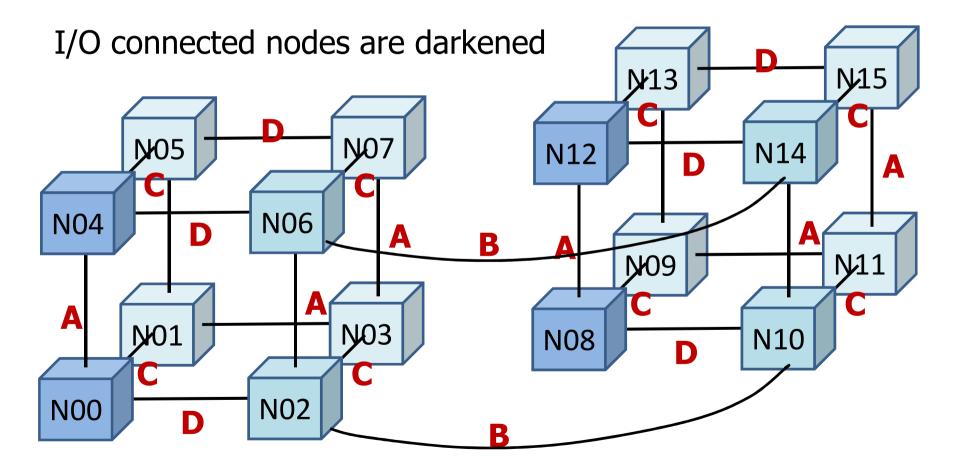

✓ 5D topology for point-to-point communication

- ✤ 2 GB/s bidirectional bandwidth on all (10+1) links
- Bisection bandwidth of 65TB/s (26PF/s) / 49 TB/s (20 PF/s)

BGL at LLNL is 0.7 TB/s

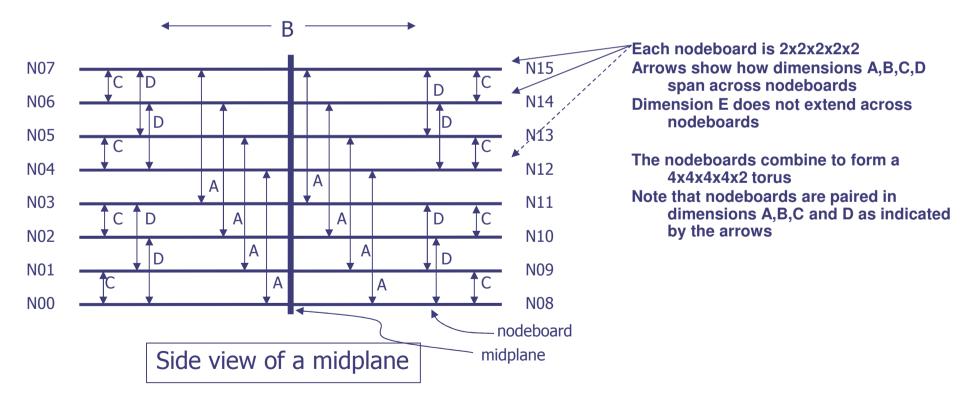
✓ Collective and barrier networks embedded in 5-D torus network.

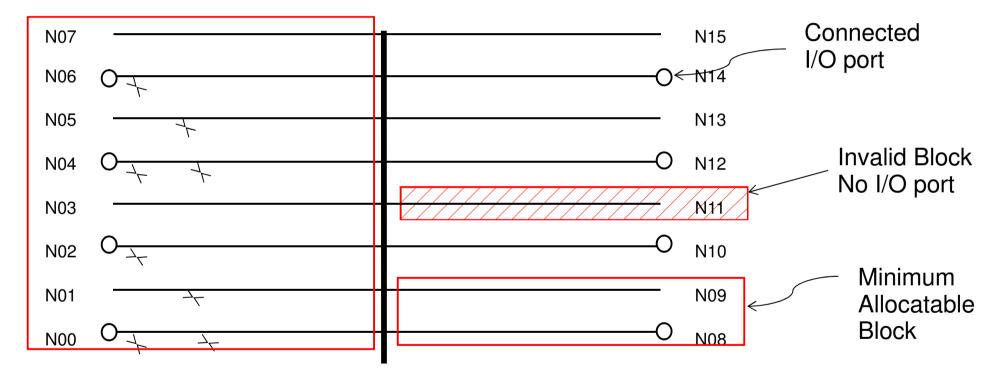
- Floating point addition support in collective network
- 11th port for auto-routing to IO fabric



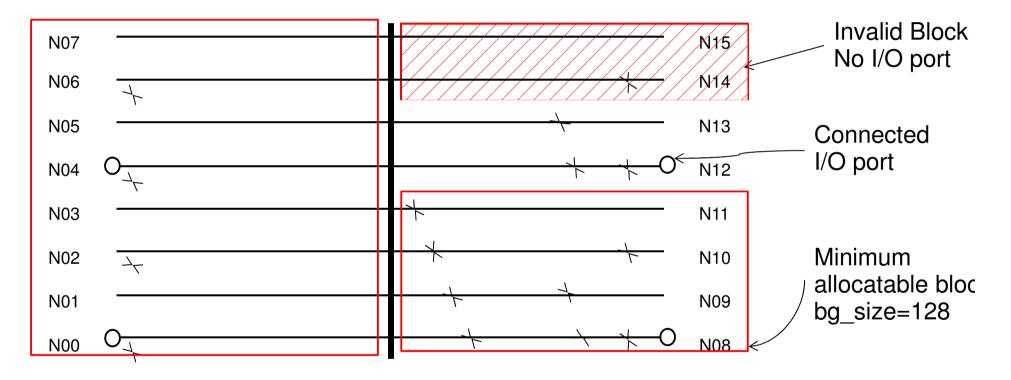
Network topology | Mesh versus torus

# Node Boards	# Nodes	Dimensions	Torus (ABCDE)
1	32	2x2x2x2x2	00001
2 (adjacent pairs)	64	2x2x4x2x2	00101
4 (quadrants)	128	2x2x4x4x2	00111
8 (halves)	256	4x2x4x4x2	10111


5-D torus in a Midplane


5-D torus wiring in a Midplane

The 5 dimensions are denoted by the letters A, B, C, D, and E. The latest dimension E is always 2, and is contained entirely within a midplane.


MidPlane in FERMI RACK: R11 R31

Example: N08 - N09 = 64 Compute Cards (2x2x4x2x2)

MidPlane in FERMI / {R11 R31}

Example: N08 - N09 - N10 - N11 = 128 Compute Cards (2x2x4x4x2)

BGQ PowerA2 processor

Carlo Cavazzoni, HPC department, CINECA

Power A2

64bit

Power instruction set (Power1...Power7, PowerPC)

RISC processors

Superscalar

Multiple Floating Point units

SMT

Multicore

PowerA2 chip, basic info

- 16 cores + 1 + 1 (17th Processor core for system functions)
- 1.6GHz
- 32MByte cache
- system-on-a-chip design
- 16GByte of RAM at 1.33GHz
- Peak Perf 204.8 gigaflops
- power draw of 55 watts
- 45 nanometer copper/SOI process (same as Power7)
- Water Cooled

4-way SMT

SIMD floating point unit (8 flop/clock) with alignment support: QPX
Speculative multithreading and transactional memory support with
32 MB of speculative state
Hardware mechanisms to help with multithreading

Dual SDRAM-DDR3 memory controllers with up to 16 GB/node

PowerA2 chip, more info

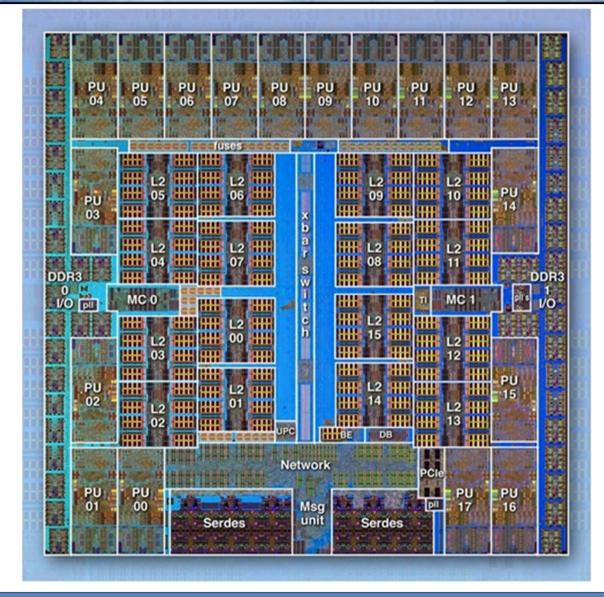
Contains a 800MHz crossbar switch

links the cores and L2 cache memory together

peak bisection bandwidth of 563GB/sec

connects the processors, the L2, the networking

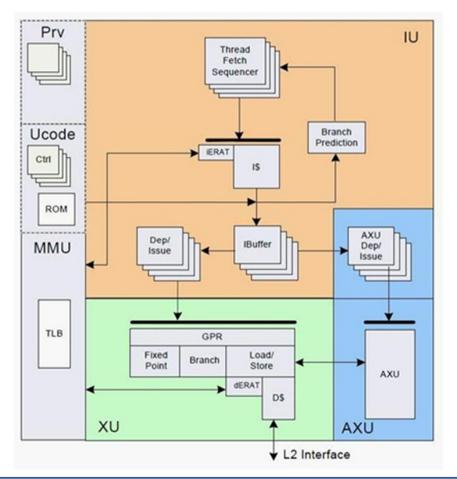
5D torus interconnect is also embedded on the chips


Two of these can be used for PCI-Express 2.0 x8 peripheral slots.

supports point-to-point, collective, and barrier messages and also

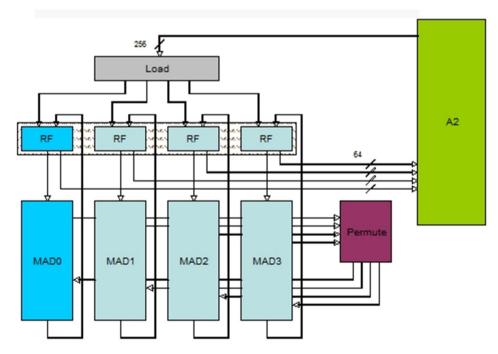
implements direct memory access between nodes.

PowerA2 chip, layout



PowerA2 core

4 FPU


4 way SMT
64-bit instruction set - in-order dispatch, execution, and completion
16KB of L1 data cache
16KB of L1 instructions cache

PowerA2 FPU

Each FPU on each core has four pipelines execute scalar floating point instructions Quad pumped four-wide SIMD instructions two-wide complex arithmetic SIMD inst. six-stage pipeline permute instructions maximum of eight concurrent floating point operations per clock plus a load and a store.

Standards-based programming environment

- Linux[™] development environment
- Familiar GNU toolchain with GLIBC, pthreads, gdb
- XL Compilers providing C, C++, Fortran with OpenMP
- Totalview debugger

Message Passing

- Optimized MPICH2 providing MPI 2.2
- Intermediate and low-level message libraries available, documented, and open source
- GA/ARMCI, Berkeley UPC, etc, ported to this optimized layer
 Compute Node Kernel (CNK) eliminates OS noise
- File I/O offloaded to I/O nodes running full Linux
- GLIBC environment with few restrictions for scaling
 Flexible and fast Job Control
- MPMD (4Q 2012) and sub-block jobs supported

Toolchain and Tools

BGQ GNU toolchain

- gcc is currently at 4.4.4. Will update again before we ship.
- glibc is 2.12.2 (optimized QPX memset/memcopy)
- binutils is at 2.21.1
- gdb is 7.1 with QPX registers
- gmon/gprof thread support
 - $\checkmark\,$ Can turn profiling on/off on a per thread basis

Python

- Running both Python 2.6 and 3.1.1.
- NUMPY, pynamic, UMT all working
- Python is now an RPM

IBM Confidential

Toronto compiler test harness is running on BGQ LNs