

Profiling and Debugging on a
Blue Gene/Q system

Giusy Muscianisi – g.muscianisi@cineca.it

SuperComputing Applications and Innovation Department
Feb 05, 2013

mailto:g.muscianisi@cineca.it

Outline

● Profiling
– Scalasca
– IBM® High Performance Computing (HPC) Toolkit
– GNU Profiler – Gprof

● Debugging
– GDB
– addr2line
– Totalview

PROFILING

Outline

● Profiling
– Scalasca
– IBM® High Performance Computing (HPC) Toolkit
– GNU Profiler – Gprof

● Debugging
– GDB
– addr2line
– Totalview

Scalasca

● SCalable performance Analysis of LArge SCale Applications

● Developed by Juelich Supercomputer Centre

● Toolset for performance analysis of parallel applications on
a large scale

● Manage programs MPI, OpenMP, MPI+OpenMP

● Latest releast 1.4.2, available on FERMI

● www.scalasca.org

● http://www2.fz-juelich.de/jsc/datapool/scalasca/UserGuide.p
df

Scalasca

http://www.scalasca.org/
http://www2.fz-juelich.de/jsc/datapool/scalasca/UserGuide.pdf
http://www2.fz-juelich.de/jsc/datapool/scalasca/UserGuide.pdf

Event tracing

During the measurement
there is a buffer for each
thread/process

Final collect of the
results

Scalasca

Scalasca -- How to use

● prepare application objects and executable for measurement

(automatic instrumentation)
scalasca -instrument <compile-or-link-command>

● run application under control of measurement system
scalasca -analyze <application-launch-command>

● post-process & explore measurement analysis report
scalasca -examine <experiment-archive|report>

Instrumentation (default)

Original command SCALASCA instrumentation command

mpixlc -c foo.c scalasca -instrument mpixlc -c foo.c

mpixlf90 -openmp -o bar
bar.f90

skin mpixlf90 -openmp -o bar bar.f90

Analysis -- Pure MPI

#!/bin/bash
#
@ job_name = myjob.$(jobid)
@ output = $(job_name).out
@ error = $(job_name).err
@ environment = COPY_ALL
@ job_type = bluegene
@ wall_clock_limit = 1:00:00
@ bg_size = 128
@ account_no = <Account number>
@ notification = always
@ notify_user = <valid email address>
@ queue

module load bgq-xl/1.0
module load scalasca/1.4.2
scalasca -analyze runjob --np 256 --ranks-per-node 2 --exe
<my_exe>

Analysis -- MPI+OpenMP

#!/bin/bash
#
@ job_name = myjob.$(jobid)
@ output = $(job_name).out
@ error = $(job_name).err
@ environment = COPY_ALL
@ job_type = bluegene
@ wall_clock_limit = 1:00:00
@ bg_size = 128
@ account_no = <Account number>
@ notification = always
@ notify_user = <valid email address>
@ queue

module load bgq-xl/1.0
module load scalasca/1.4.2
scalasca -analyze runjob --np 256 --ranks-per-node 4 -envs
OMP_NUM_THREADS=4 --exe <my_exe>

Archive with log files 1/2

● Pure MPI:
scalasca -analyze runjob --np 256 --ranks-per-node
2 --exe <my_exe>

==> epik_<myexe>_2p256_sum

● MPI + OpenMP:
scalasca -analyze runjob --np 256 --ranks-per-node
4 -envs OMP_NUM_THREADS=4 --exe <my_exe>

==> epik_<myexe>_4p256x4_sum

Archive with log files 2/2

In each epik archive there are the following files:

epik.conf Measurement configuration when the experiment was collected

epik.log Output of the instrumented program and measurement system

epik.path Callpath-tree recorded by the measurement system

epitome.cube Intermediate analysis report of the runtime summarization system

summary.cube[.gz] Post-processed analysis report of runtime summarization

Log informations in the STDERR

At the beginning of the run:
S=C=A=N: Scalasca 1.4.2 runtime summarization
S=C=A=N: ./epik_pluto_1p16_sum experiment archive
S=C=A=N: Mon Nov 26 20:33:07 2012: Collect start
/bgsys/drivers/ppcfloor/bin/runjob --np 16 --ranks-per-node 1 --envs
EPK_TITLE=pluto_1p16_sum --envs EPK_LDIR=. --envs EPK_SUMMARY=1
--envs EPK_TRACE=0 : ./pluto -show-dec

At the end of the run:
S=C=A=N: Mon Nov 26 20:36:23 2012: Collect done (status=0) 196s
S=C=A=N: ./epik_pluto_1p16_sum complete.

Log informations in the STDOUT

At the beginning of the run:
[00000]EPIK: Created new measurement archive ./epik_pluto_1p16_sum
[00000]EPIK: Activated ./epik_pluto_1p16_sum [NO TRACE] (0.048s)
[00000]EPIK: MPI-2.2 initialized 16 ranks

At the end of the run:
[00000]EPIK: Closing experiment ./epik_pluto_1p16_sum
[00000]EPIK: Largest definitions buffer 34547 bytes
[00000]EPIK: 218 unique paths (218 max paths, 7 max frames, 0 unknowns)
[00000]EPIK: cpath[25]: rid=14 ppid=12 order=188813.183310 OutOfOrder
[00000]EPIK: Unifying... done (0.125s)
[00000]EPIK: Collating... done (0.371s)
[00000]EPIK: Closed experiment ./epik_pluto_1p16_sum (0.507s)
maxHeap(*)=1.617/25.832MB

Examination

scalasca -examine epik_<myexe>_<resources>_sum

to examinate the report by GUI

scalasca -examine -s epik_<myexe>_<resources>_sum

to examinate the report by textual score output

– The file epik.score will be added in the epik_
directory

Examination by GUI

Examination by text - summary.cube
flt type max_tbc time % region

 ANY 4769825184 2340248.68 100.00 (summary) ALL

 MPI 4593960 613242.18 26.20 (summary) MPI

 COM 348528 212240.56 9.07 (summary) COM

 USR 4764882648 1514021.98 64.69 (summary) USR

 USR 2839795200 184264.39 7.87 PrimToChar

 USR 946598400 186935.74 7.99 PrimEigenvectors

 USR 188793792 34584.14 1.48 SoundSpeed2

 USR 148475712 41108.12 1.76 Flux

 USR 91241568 32795.35 1.40 PrimToCons

 USR 82213824 41377.87 1.77 ConsToPrim

 USR 74237856 36365.90 1.55 RightHandSide

 USR 74237856 22645.11 0.97 CT_StoreEMF

 USR 74237856 370444.42 15.83 Roe_Solver

 USR 40318080 21342.57 0.91 CTU_CT_Source

 USR 40318080 6966.30 0.30 CheckPrimStates

 USR 40318080 4172.12 0.18 PrimSource

 USR 40318080 203264.59 8.69 CharTracingStep

 USR 40318080 279464.91 11.94 States

 USR 40318080 16575.16 0.71 CheckNaN

 MPI 4343328 16560.02 0.71 MPI_Sendrecv

 USR 1765632 335.38 0.01 Init

 COM 241296 337.55 0.01 AL_Exchange_dim

 USR 196608 22.27 0.00 Length_1

 USR 196608 23.28 0.00 Length_3

 USR 196608 22.77 0.00 Length_2

 USR 194064 14.31 0.00 print1

 USR 175296 26.61 0.00 SetIndexes

 USR 131472 136.96 0.01 ResetState

…

ANY / ALL = provide aggregate
information for all measured routines

MPI = refers to function calls to the
MPI library

OMP = either to OpenMP regions or
calls to the OpenMP API

COM = User-program routines on paths
that directly or indirectly call MPI or
OpenMP provide valuable context for
understanding the communication and
synchronization behaviour of the
parallel execution

USR = User-programroutines that are
involved with purely local computation

Display of results

Results are displayed using three coupled
tree browser showing:
– Metrics (i.e. Performance properties/problems)
– Call-tree or flat region profile
– System location

Metrics 1/2

Time Total CPU allocation time

Visits Number of times a routine/region was executed

Synchronizations Total number of MPI synchronization operations that were
executed

Communications The total number of MPI communication operations,
excluding calls transferring no data (which are considered
Synchronizations)

Bytes transferred The total number of bytes that were sent and received in MPI
communication operations. It depends on the MPI internal
implementation.

http://www2.fz-juelich.de/jsc/datapool/scalasca/scalasca_patterns-1.4.html

Metrics 2/2

MPI file operations Number of MPI file operations of any type.

MPI file bytes transferred Number of bytes read or written in MPI file operations of any
type.

Computational imbalance This simple heuristic allows to identify computational load
imbalances and is calculated for each (call-path,
process/thread) pair.

http://www2.fz-juelich.de/jsc/datapool/scalasca/scalasca_patterns-1.4.html

Metrics – Time, pure MPI code 1/2

Metrics – Time, pure MPI code 2/2

Pure MPI code – Communications

Pure MPI code – Synchronizations

Pure MPI code – Bytes transferred

Metrics – Time, MPI-OpenMP code

Time, OpenMP part of the code

Hardware counters measurement

● Hardware counter measurement is disabled by default

● Can be enabled using

– the environment variable EPK_METRICS in the jobscript
(scalasca -analyze)

– scalasca ­analyze ­m <metric_name> runjob ….

● Set EPK_METRICS to a colon-separated list of counter names, or
a predefined platform-specific group

● Metric names can be chosen from the list contained in file
$SCALASCA_HOME/doc/METRICS.SPEC

Manual source-code instrumentation

● Region or phase annotations manually inserted in source file
can augmented or substiture automatic instrumentation, and
can improve the structure of analysis reports to make them
more readly comprehensible

● These annotations can be used to mark any sequence or block
of statements, such as functions, phases, loop nests, etc., and
can be nested, provided that every enter has matching exit

● If automatic compiler instrumentation is not used, it is typically
desiderable to manually instrument at least the main
function/program and perhaps its major phases (e.g.
Initialization, core/body, finalization).

User instrumentation API -- C/C++
#include “epik_user.h”
…
void foo(){

… … // local declarations

… … // more declarations
EPIK_FUNC_START();
… … // executable statements
if(...){

EPIK_FUNC_END();
return;

} else {
EPIK_USER_REG (r_name, “region”);
EPIK_USER_START (r_name);
… …
… …
EPIK_USER_END (r_name);

}
… … // executable statements;
EPIK_FUNC_END();
return;

}

User instrumentation API -- Fortran

#include “epik_user.inc”
…
subroutine bar()

EPIK_FUNC_REG(“bar”)
EPIK_USER_REG (r_name, “region”)
… … ! local declarations
EPIK_FUNC_START();
… … ! executable statements
if(...) then

EPIK_FUNC_END()
return

else
EPIK_USER_START (r_name)
… …
… …
EPIK_USER_END (r_name)

endif
… … ! executable statements
EPIK_FUNC_END()
return

end subroutine bar

Outline

● Profiling
– Scalasca
– IBM® High Performance Computing (HPC) Toolkit
– GNU Profiler – Gprof

● Debugging
– GDB
– addr2line
– Totalview

IBM® HPC Toolkit

Collection of tools to analyze performance of parallel applications
written in C or Fortran on BG/Q systems.

● Hardware Performance Monitor (HPM): measurement for cache
misses, number of floating point instructions executed, branch prediction
counts, and so on.

● MPI profiling: tracing of MPI calls, to observe the communication
patterns, to measure both the time spent in each MPI function and the size
of the MPI messages.

● OpenMP profiling: informations on the time spent in OpenMP constructs,
overhead in OpenMP constructs, how workload is balanced across OpenMP
threads.

● I/O profiling: informations about I/O calls made in the application, to
understand application I/O performance and to identify possible I/O
performance problems in the application. (available in December 2012).

IBM® HPC Toolkit – peekperf GUI

peekperf GUI:

Provides a GUI interface to view application performance
data.

● allow to visualize and analyze the collected performance
data.

● can display the data in the visualization (.viz) files from the
various instrumentation libraries.

● if more than one visualization file is specified, peekperf
combines the data from them for display.

● provides filtering and sorting capabilities to help you analyze
the data.

Reference

Reference guide of IBM ®HPC Toolkit

https://www.ibm.com/developerworks/wikis/downloa
d/attachments/91226643/hpct_guide_bgq_V1.1.1.0.
pdf

HPM Libraries

Hardware Performance Monitor (HPM)

Access hardware performance counters to analyze the
performance of the application.

It is possible to choose from a list of sets of hardware
counter events to focus on a specific performance area.

Available libraries (both for C and Fortran):
– libhpc for linking with non-threaded applications.
– libhpc_r for linking with threaded (OpenMP) applications.

HPM library API
(C and Fortran version)

● hpmInit() for initializing the instrumentation library. The first HPM
function called by the application.

● hpmTerminate() for generating the reports and performance data
files and shutting down the HPM environment. The last HPM
function called by the application.

● hpmStart() for identifying the start of a section of code in which
hardware performance counter events will be counted.

● hpmStop() for identifying the end of the instrumented section.

The hpmStart and hpmStop functions can be inserted as
desidered, they must be executed in pairs.
The section identifier label is passed as the parameter to the
hpmStart and matching hpmStop function.

HPM library API -- C example

#include <hpm.h>
int main(int argc, char *argv[]){
float x;
hpmInit();
x=10.0;
 hpmStart("Instrumented section 1");
 for(int i=0; i<100000; i++){
 x=x/1.001;
 }
 hpmStop("Instrumented section 1");
...
 hpmStart("Instrumented section 2");
 /* other computation */
 ...
 hpmStop("Instrumented section 2");
hpmTerminate();
}

HPM library API -- Fortran example

#include "f_hpm.h"
integer i
real*4 x
call f_hpminit();
x=10.0
 call f_hpmstart('Instrumented section 1', 22)
 do i=1,00000
 x=x/1.001
 enddo
 call f_hpmstop('Instrumented section 1', 22)
...
 call f_hpmstart('Instrumented section 2', 22)
! other computation
 ...
 call f_hpmstop('Instrumented section 1', 22)

call f_hpmterminate()
end program

Compiling, Linking, Running
● Set environment variables: run the setup script

> cd /bgsys/ibmhpc/ppedev.hpct

> . ./env_sh ! for sh, bash,ksh shell

> source snv_csh ! for csh shell

● Compile with -g.
● Statically link HPM libraries.

– non-threated application:
mpixlc myprog.c -o myprog -I/bgsys/ibmhpc/ppedev.hpct/include/ \

-L/bgsys/drivers/ppcflor/bgpm/lib/ \

-L/bgsys/ibmhpc/ppedev.hpct/lib64 -lhpc -lbgpm

– threated application:
 mpixlc_r myprog.c -o myprog_r
-I/bgsys/ibmhpc/ppedev.hpct/include/ \

-L/bgsys/drivers/ppcflor/bgpm/lib/ \

-L/bgsys/ibmhpc/ppedev.hpct/lib64 -lhpc_r -lbgpm -qsmp=omp

● Run the application as usual.

Performance Data Files Naming

The name of the performance data files generated by
HPM during hpmTerminate() are:

Name Type
hpmCounts_<rank>.txt ASCII

hpmCounts_<rank>.viz XML for viewing with peekperf

Default:

It will be generated a number of files equal to the number of
the MPI tasks involved in the application.

Controlling Performance Data Files

HPM_IO_BATCH = set it to yes to reduce the number of output
simultaneously opened by HPM in order to reduce file system impact

HPM_OUTPUT_PROCESS = set it to all if you want that all the MPI task
write performance data files; set it to root if you want that only root
processor writes performance data file.

HPM_SCOPE (non-threaded version) = set it to node to aggregate at
node level the sum of the data file produced; set it to process if you
want the each task produces a performance data file (default).

Default:

HPM_ASC_OUTPUT = no
HPM_VIZ_OUTPUT = yes
HPM_IO_BATCH = no
HPM_OUTPUT_PROCESS = all
HPM_SCOPE = process

Hardware Counter Event Sets

HPM_EVENT_SET : Environment variable to choose the hardware
count events that you want to monitor

Event Set Description
Number
-1 default setting, corresponds to a basic set of non
 multiplexed counter
0 multiplexed set that provides information about
 total cycles, instructions and LSU events
1 multiplexed set to explore branch prediction
2 multiplexed set that presents data about the
 floating point instruction mix
3 multiplexed set with a mix of different counters
4 multiplexed set for stream pre-fetching events.
5 multiplexed set to investigate pipelining
 characteristics

Note about HPM library

● HPM libraries collect information and compute
summaries during run time.

● Because of this, there could be overhead if
instrumentation sections are inserted inside
inner loops which are executed many times.

Viewing Hardware Performance
Counter Data

MPI Profiling Library

libmpitrace library:

● linked to a MPI application, profiles the MPI function calls, or
creates a trace of those MPI calls;

● when an application is linked with such library, the library
intercepts the MPI calls in the application, using the Profiled
MPI (PMPI) interface defined by the MPI standard, and obtains
the profiling and trace information it needs;

● provides a set of functions that
– can be used to control how profiling and trace data is collected
– can be used to customize the trace data

Compiling, Linking, Running
● Set environment variables: run the setup script

> cd /bgsys/ibmhpc/ppedev.hpct

> . ./env_sh ! for sh, bash,ksh shell

> source snv_csh ! for csh shell

● Compile with -g.

● Statically link libmpitrace library.

mpixlc myprog.c -o myprog
-I/bgsys/ibmhpc/ppedev.hpct/include/ \

-L/bgsys/ibmhpc/ppedev.hpct/lib64 -lmpitrace
● Run the application as usual.

Performance Data File Naming

● mpi_profile_world_id_world_rank :
– world_id is the MPI world id;
– world_rank is the MPI task rank of the task that generated the file;
– If the application doesn't use dynamic tasking, world_id will be 0 .

● mpi_profile_world_id_world_rank.viz :
– visualization data that can be viewed using peekperf.

● single_trace_world_id :
– trace file containing trace data;
– can be viewed using peekperf.

Controlling Profiling and Tracing

Default settings:

– number of trace event collected per task = 30000 .
(MAX_TRACE_EVENTS).

– it will be gerated only 4 output files: for task 0, and
for task having maximum, minimum and median
total MPI communication time.
(OUTPUT_ALL_RANKS).

– all the MPI calls after MPI_Init() are traced.
(TRACE_ALL_EVENTS).

– max 256 MPI tasks are traced (MAX_TRACE_RANK,
TRACE_ALL_TASKS).

Controlling Profiling and Tracing

MAX_TRACE_EVENTS = max num of trace event collected per task.

MAX_TRACE_RANK = MPI task rank of the highest rank process that has
MPI trace events collected. Default is 256.

MT_BASIC_TRACE = specifies whether the MAX_TRACE_RANK environment
variable is checked. If MT_BASIC_TRACE is set to yes, then MAX_TRACE_RANK
is ignored and the trace is generated with less overhead. If MT_BASIC_TRACE is
not set, then the setting of MAX_TRACE_RANK is honored.

OUTPUT_ALL_RANKS = Set to yes to generate trace file for all MPI tasks
(not only the default 4 trace files).

TRACE_ALL_EVENTS = Set to no if you want that the collection of MPI trace
events is controlled by MT_trace_start() and MT_trace_stop().

TRACE_ALL_TASKS = Set to yes to generate MPI trace files for all MPI tasks
in the application.

TRACEBACK_LEVEL = Specifies the number of levels to walk back in the
function call stack when recording the address of an MPI call. Defaul is 0

Additional Trace Controls

Trace selected sections of an MPI code by bracketing
areas of interest with calls

MT_trace_start()

MT_trace_stop()

MT_trace_event(int id)

MT_output_trace(int task)

MT_output_text(void)

MPI profiling library -- C example

#include <mpt.h>
#include <mpi.h>
int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);

 MT_trace_start();
 /* MPI communication region of interest */
 MT_trace_stop();

 /* MPI communication region of no interest */

 MPI_Finalize();
}

MPI profiling library -- Fortran example

program main
include 'mpif.h'

call mpi_init()

call mt_trace_start()
! MPI communication region of interest
call mt_trace_stop()
! MPI communication region of no interest

call mpi_finalize()

end program

MPI Profiling Utility Functions 1/2

Functions used to obtain informations about the
execution of the application

Function Purpose

MT_get_mpi_counts How many times an MPI function is called

MT_get_mpi_bytes Total number of bytes that are transferred by all calls to
a specific MPI function

MT_get_mpi_time Cumulative amount of time spent in all calls to a specific
MPI function

MT_get_mpi_name Obtains the name of an MPI function, given the internal
ID that is used by the IBM HPC Toolkit to refer to this MPI
function

MT_get_time Elapsed time since MPI_Init was called

MT_get_elapsed_time Elapsed time between calls to MPI_Init and MPI_Finalize

MPI Profiling Utility Functions 2/2

Function Purpose

MT_get_environments Obtains information about the MPI execution environment

MT_get_allresults Obtains statistical information about a specific MPI function
call

MT_get_tracebufferinfo Size and current usage of the internal MPI trace buffer that
is used by the IBM HPC Toolkit

MT_get_calleraddress Address of the caller of a currently-active MPI function

MT_get_callerinfo Source file and line number information for an MPI function
call, using the address that is obtained by calling
MT_get_calleraddress

Functions used to obtain informations about the
execution of the application

Viewing MPI Profiling Data

OpenMP Profiling Library

OpenMP Profiling library can be used:
– to analyze performance problems in an OpenMP

application
– to help in determining if the OpenMP application

investigated properly structures its processing for best
performance

– to obtain information about
● time spent in OpenMP constructs in the application
● overhead in OpenMP constructs
● information about how workload is balanced across OpenMP

threads in the application

Compiling, Linking, Running
● Set environment variables: run the setup script

> cd /bgsys/ibmhpc/ppedev.hpct

> . ./env_sh ! for sh, bash,ksh shell

> source snv_csh ! for csh shell

● Compile with -g.

● Statically link with libxlsmp_pomp and libpompprof_probe
libraries.

mpixlc myprog.c -o myprog -qsmp=omp \
-L/bgsys/ibm_compilers/prod/opt/ibmcmp/xlsmp/bg/3
.1/bglib64/ -lxlsmp_pomp \
-L/bgsys/ibmhpc/ppedev.hpct/lib64 \
-lpompprof_probe -lm -g

● Run the application as usual.

OpenMP Profiling Performance Data

When running your application after linking with OpenMP
profiling, performance measurements such as time in
OpenMP thread, time in master thread, computation time
and load imbalance percentage are collected for the
threads running in individual regions and loops.

Sections of your application where measurements were
gathered are labeled with type of OpenMP construct and
the starting line number of the construct.

Performance Data Files Naming

Name Type

pompprof_<rank> ASCII

pompprof_<rank>.viz XML for viewing with peekperf

The name of the performance data files generated
by OpenMP Profiling library are:

Viewing OpenMP Profiling Data

Outline

● Profiling
– Scalasca
– IBM® High Performance Computing (HPC) Toolkit
– GNU Profiler – Gprof

● Debugging
– GDB
– addr2line
– Totalview

GNU Profiler – Gprof

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gprof

GNU Profiler – Gprof : The GNU profiler gprof can be used to determine
which parts of a program are taking most of the execution time.

gprof can produce several different output styles:
– Flat Profile: The flat profile shows how much time was spent executing directly in

each function.
– Call Graph: The call graph shows which functions called which others, and how much

time each function used when its subroutine calls are included.

Gprof – Flat profile

The flat profile shows the total amount of time your program spent
executing each function.

Note that if a function was not compiled for profiling, and didn't run
long enough to show up on the program counter histogram, it will be
indistinguishable from a function that was never called.

Gprof – Call Graph

The call graph shows how much time was spent in each function
and its children. From this information, you can find functions that,
while they themselves may not have used much time, called other
functions that did use unusual amounts of time.

Compiling, Running, Output files

● Compile and link the program with options: -g -pg -qfullpath

● Profiling files in execution directory
– gmon.out.<MPI Rank> = binary files, not readable
– The number of files depends on environment variable

● 1 Profiling File / Process: The default setting is to generate gmon.out files only for profiling
data collected on ranks 0 - 31.

● BG_GMON_RANK_SUBSET = N -- Only generate the gmon.out file for rank N.
● BG_GMON_RANK_SUBSET = N:M -- Generate gmon.out files for all ranks from N to M.
● BG_GMON_RANK_SUBSET = N:M:S -- Generate gmon.out files for all ranks from N to M.

Skip S; 0:16:8 generates gmon.out.0, gmon.out.8, gmon.out.16

● Output files interpretation
– gprof <executable> gmon.out.<MPI Rank> > gprof.out.<MPI Rank>

Using GNU profiling – Threads

● The base GNU toolchain does not provide support for
profiling on threads

● Profiling threads
– BG_GMON_START_THREAD_TIMERS

● Set this environment variable to “all” to enable the SIGPROF timer on
all threads created with the pthread_create() function.

● "nocomm" to enable the SIGPROF timer on all threads except the
extra threads that are created to support MPI.

– Add a call to the gmon_start_all_thread_timers() function
to the program, from the main thread

– Add a call to the gmon_thread_timer(int start) function
from the thread to be profiled: 1 to start, 0 to stop

DEBUGGING

Debugging on FERMI…

● Debugging on FERMI is no easy task!

http://www.hpc.cineca.it/sites/default/files/Debug
%20guide.pdf

● Error messages are often vague, and core files may be
rather incomprehensible…

● However, there are some useful tools that can help on
the task!

● Before that, let’s see some general advice for the
setting of a debug session

Compiling for a debug session

Three flags are required for compiling a program that can
be analyzed by debugging tools:

-g : integrates debugging symbols on your code, making
them “human readable” when analyzed from debuggers

-O0 : avoids any optimization on your code, making it
execute the instructions in the exact order they’re
implemented

-qfullpath : Causes the full name of all source files to be
added to the debug informations

Other useful flags

-qcheck Helps detecting some array-bound violations,
aborting with SIGTRAP at runtime

-qflttrap Helps detecting some floating-point
exceptions, aborting with SIGTRAP at runtime

-qhalt=<sev> Stops compilation if encountering an
error of the specified lever of severity

-qformat Warns of possible problems with I/O format
specification (C/C++) (printf, scanf…)

-qkeepparm ensures that function parameters are stored
on the stack even if the application is optimized.

FERMI compiling tools

GDB

addr2line

Totalview

GDB
● On FERMI, GDB is available both for front-end and back-end applications

– Front-end: gdb ./<exe>
– Back-end:

/bgsys/drivers/ppcfloor/gnu­linux/bin/powerpc64­bgq­linux­gdb <exe>

● It is possible to make a post-mortem analysis of the binary core files
generated by the job

/bgsys/drivers/ppcfloor/gnu­linux/bin/powerpc64­bgq­linux­gdb <exe>
<corefile>

● To generate binary core filed, add the following envs to runjob:

­­envs BG_COREDUMPONEXIT=1

­­envs BG_COREDUMPBINARY=*

‘*’ means “all the processes”. It is possible to indicate which ranks
generate its core by specifying its number

GDB – remote access

The Blue Gene/Q system includes support for using GDB
real-time with applications running on compute nodes.

IBM provides a simple debug server called gdbserver.
Each running instance of GDB is associated with one
process or rank (also called GDB client).

Each instance of a GDB client can connect to and debug
one process. To debug multiple processes at the same
time, run multiple GDB tools at the same time. A
maximum of 4 GDB tools can be run on one job.

…so, how to do that?

Using GDB on running applications

1) Submit your job as usual

llsubmit <jobscript>

2) Get your job ID

llq ­u $USER

3) Use it for getting the BG Job ID

llq ­l <jobID> | grep “Job Id”

4) Start the gdb-server tool

start_tool ­­tool
/bgsys/drivers/ppcfloor/ramdisk/distrofs/cios/sbin/gdbtool
­­args “­­rank=<rank #> ­­listen_port=10000” ­­id <BG Job ID>

5) Get the IP address for your process

dump_proctable ­­id <BG Job ID> ­­rank <rank #> ­­host sn01­io

Using GDB on running applications

6) Launch GDB! (back-end version);

/bgsys/drivers/ppcfloor/gnu­linux/bin/

powerpc64­bgq­linux­gdb ./myexe

7) Connect remotely to your job process;

(gdb) target remote <IP address>:10000

8) Start debugging!!!

where ­­­> up to #

Although you aren’t completely free…for example, command ‘run’
does not work

addr2line
If nothing is specified, an unsuccesful job generates a text core
file for the processes that caused the crash…
…however, those core files are all but easily readable!

addr2line is an utility that allows to get from this file informations about
where the job crashed

+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.0
+++LCB 1.0
Program : deadlock.exe
Job ID : 96550
Personality:
 ABCDET coordinates : 0,0,0,0,0,3
 Rank : 3
 Ranks per node : 4
 DDR Size (MB) : 16384
+++ID Rank: 3, TGID: 337, Core: 12, HWTID:0 TID: 337 State: RUN
***FAULT Encountered unhandled signal 0x00000009 (9) (???)
While executing instruction at..........0x00000000011f009c
Dereferencing memory at.................0x0000000000000000
Tools attached (list of tool ids).......None
Currently running on hardware thread....Y
General Purpose Registers:
 r00=00000000010dbef8 r01=0000001fffff9860 r02=00000000015b2cc0 r03=0000000000000000 r04=0000000000000001 r05=0000001fffff98d0
r06=0000000000000000 r07=0000001fffff95a0
 r08=0000000001649160 r09=0000000300900020 r10=0000000000000000 r11=0000001f00a00020 r12=0000000024000222 r13=0000001f00707700
r14=0000000000000000 r15=0000000000000000
 r16=0000000000000000 r17=0000000000000000 r18=0000000000000000 r19=0000000000000000 r20=0000000000000001 r21=0000000000000000
r22=0000001f00728848 r23=0000000000000001
 r24=0004000000000000 r25=0000000000000000 r26=00000000015f8ff8 r27=0000000000000001 r28=0000000000000000 r29=0000000000000000
r30=0000000000000000 r31=0000001f007326e0
Special Purpose Registers:
 lr=00000000011f0130 cr=0000000044004222 xer=0000000000000000 ctr=000000000102a7a4
 msr=000000008002f000 dear=0000000000000000 esr=0000000000000000 fpscr=0000000000004000
 sprg0=0000000000000000 sprg1=0000000000000000 sprg2=0000000000000000 sprg3=0000000000000000 sprg4=0000000000000000
 sprg5=0000000000000000 sprg6=000000000056e200 sprg7=0000000000000000 sprg8=0000000000000000
 srr0=00000000011f009c srr1=000000008002f000 csrr0=0000000000000000 csrr1=0000000000000000 mcsrr0=0000000000000000 mcsrr1=0000000000000000
 dbcr0=0000000000000000 dbcr1=0000000000000000 dbcr2=0000000000000000 dbcr3=0000000000000000 dbsr=0000000000000000
Floating Point Registers:
 f00=5500002000000000 1000008800200019 0000000000000000 0000000000000000 f01=0000000000000000 0000000000000000 0000000000000000 0000000000000000
 f02=0000000000000000 0000000000000000 0000000000000000 0000000000000000 f03=0000000000000000 0000000000000000 0000000000000000 0000000100000000

Core files

Blue Gene core files are lightweight text files

Hexadecimal addresses in section STACK describe
function call chain until program exception. It’s the
section delimited by tags: +++STACK / —STACK

In particular, “Saved Link Reg” column is the one we
need!

using addr2line 1/2

From the core file output, save only the addresses in the
Saved Link Reg column:

Replace the first eight 0s with 0x:

using addr2line 2/2

To replace the first eight 0s with 0x:

there is a easy way:
module load superc
a2l­tanslate core.<num>

The file with all the addresses core.<num>.t0 will be created

Lauch addr2line:
addr2line –e ./myexe 0x018b2678
addr2line –e ./myexe < core.<num>.t0

Totalview

● TotalView is a GUI-based source code defect analysis
tool that gives you control over processes and thread
execution and visibility into program state and
variables.

● It allows you to debug one or many processes and/or
threads with complete control over program execution.

● Latest releast 8.11.0, available on FERMI

● Running a Totalview execution in back-end can be a bit
tricky, as it requires connection from FERMI to your local
machine via ssh tunneling to VNC server.

Using Totalview: preliminaries

In order to use Totalview, first you need to have
downloaded and installed VNCviewer on your local
machine.
(http://www.realvnc.com/download/viewer/)

Windows users will also find useful Cygwin, a
Linux-like environment for Windows. During
installation, be sure to select “openSSH” from the
list of available packages.
(http://cygwin.com/setup.exe)

Once all the required softwares are installed, we are
ready to start preparing our Totalview session!

http://www.realvnc.com/download/viewer/
http://cygwin.com/setup.exe

Using Totalview: preparation

1) On FERMI, load tightvnc module;

module load tightvnc

2) Execute the script vncserver_wrapper;

vncserver_wrapper

3) Instructions will appear. Copy/paste to your local machine (Cygwin
shell if Windows) this line from those instructions:

ssh ­L 59xx:localhost:59xx ­L 58xx:localhost:58xx –N
<username>@login<no>.fermi.cineca.it

where xx is your VNC display number, and <no> is the number of the
front-end node you’re logged into (01, 02, 07 or 08)

4) Open VNCViewer. On Linux, use another local shell and type:

vncviewer localhost:xx

On Windows, double click on VNCviewer icon and write localhost:xx
when asked for the server. Type your VNC password (or choose it, if it’s
your first visit)

Using Totalview: job script setting

5) Inside your job script, you have to load the proper
module and export the DISPLAY environment variable:

 module load totalview

export DISPLAY=fen<no>:xx

 where xx and <no> are as the above slide (you’ll find the
correct DISPLAY name to export in vncserver_wrapper
instructions)

6) Totalview execution line (inside your LoadLeveler script)
will be as follows:

 totalview runjob ­a <runjob arguments…>

7) Launch the job. When it will start running, you will find a

 Totalview window opened on your VNCviewer display!

 Closing Totalview will also kill the job.

Using Totalview: start debugging

Select “BlueGene” as a parallel
system, and a number of tasks
and nodes according to the
arguments you gave to runjob
during submission phase.

Click “Go” (the green arrow) on
the next screen and your
application will start running.

User Guide for Totalview:

module load totalview
module show totalview

$MANPATH :
/cineca/prod/tools/totalview/8.11.0­0/binary/toolworks/totalview.8.11.
0­0/doc/pdf

Using Totalview: licenses

WARNING: due to license issues, you are NOT allowed
to run Totalview sessions with more than 1024 tasks
simultaneously!!!

You can visualize the usage status of the licenses
by typing the command:

module load totalview

lmstat ­c $LM_LICENSE_FILE ­a

Out from Totalview

When you’ve finished using Totalview, please follow
this procedure in order to close the session safely:

1) Close VNCviewer on your local machine;

2) Kill the VNCserver on FERMI:

vncserver kill :x

x is the usual VNC display number, without the initial
0 (if present);

3) On your first local shell, close the ssh tunneling
connection with CTRL+C.

Totalview Remote Display Client

An easier (and maybe safer)
way to use Totalview is
Totalview RDC (Remote
Display Client), a simple tool
that helps with submitting a
job already setted with the
proper characteristics (and
with no VNC involved)

RDC procedure isn’t fully operative yet, since we encountered
some firewall issues that lead to different behaviours
depending on the single workstation settings.

Our System Administrators are looking into it.
Connecting with RDC will be soon a possibility!!

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42
	Pagina 43
	Pagina 44
	Pagina 45
	Pagina 46
	Pagina 47
	Pagina 48
	Pagina 49
	Pagina 50
	Pagina 51
	Pagina 52
	Pagina 53
	Pagina 54
	Pagina 55
	Pagina 56
	Pagina 57
	Pagina 58
	Pagina 59
	Pagina 60
	Pagina 61
	Pagina 62
	Pagina 63
	Pagina 64
	Pagina 65
	Pagina 66
	Pagina 67
	Pagina 68
	Pagina 69
	Pagina 70
	Pagina 71
	Pagina 72
	Pagina 73
	Pagina 74
	Pagina 75
	Pagina 76
	Pagina 77
	Pagina 78
	Pagina 79
	Pagina 80
	Pagina 81
	Pagina 82
	Pagina 83
	Pagina 84
	Pagina 85
	Pagina 86
	Pagina 87
	Pagina 88
	Pagina 89

