
Production environment on FERMI

Introduction to the FERMI Blue Gene/Q, 
for users and developers

18 March 2013

a.marani@cineca.it
silvia.giuliani@cineca.it



PRODUCTION TIME!!

So let’s say you have compiled your executable and you
want to launch it…

The question is…HOW TO DO THAT????

Before you do that, let’s take a look at your operational
space…

This can be done by writing a small batch script that will be
Submitted to a scheduler called LoadLeveler



WORK ENVIRONMENT

Once you’re logged on FERMI or PLX, you are on your home space.

It is best suited for programming environment (compilation, small 
debugging sessions…)

Space available: 50 GB (FERMI) – 4 GB (PLX)

Environment variable: $HOME

Another space you can access to is your scratch space.

It is best suited for production environment (launch your jobs from there)

Space available: UNLIMITED (FERMI) – 32 TB (PLX)

Environment variable: $CINECA_SCRATCH

WARNING: On PLX is active a cleaning procedure, that deletes your files older than 
30 days!

Use the command “cindata” for a quick briefing about your space occupancy



MODULE PROFILES

Available modules (“module av profile”):

> module load <profile_name>

- profile/base (default): it contains the application modules 
compiled for back-end nodes and ready to be used

- profile/front-end: it contains the applications 
modules compiled for front-end nodes and ready to be 
used

- profile/advanced. Testing profile. It contains the 
applicantions modules that have to be tested yet. Usable but 
not guaranteed



APPLICATION MODULES
>module available (or just “> module av”)
Shows the full list of the modules available in the profile you’re into, divided 
by: environment, libraries, compilers, tools, applications

Below is the list of the application modules available on profile/base, 
updated to 17th march, 2013

------------ /cineca/prod/modulefiles/base/applications --------

abinit/6.12.3              crystal09/1.01                pluto/4.0         

amber/12(default)        crystal09/2.0.1 (default) qe/5.0bgq

bigdft/1.6.0                   dl_poly/4.03(default)    siesta/3.1

cp2k/2.3(default)          gromacs/4.5.5 (default) siesta/3.1-TS

cpmd/3.15.3_hfx(default) lammps/20120816   vasp/5.2.12

cpmd/v3.15.3                namd/2.9                     vasp/5.3.2



MODULE COMMANDS

> module load <module_name>

Loads a specific module

> module show <module_name> 
Shows the environment variables set by a specific 
module

> module help <module_name>
Gets all informations about how to use a specific module



EXECUTION MODALITIES

- Via command line

>./myexe

On Front-end nodes only

- Via batch 
>llsubmit job.cmd

On Front-end and Back-end nodes



EXECUTION: FRONT-END NODES

 Pre and Post processing

 Data transfer

 Serial execution (1 core)

 Executables compiled with serial FE compilers 

>front-end-gnu/4.4.6

>front-end-xl/1.0

 Command line execution (10 min)

 Batch execution (up to 6 h)



BATCH EXECUTABLE: FRONT-END 
NODES

USER EXECUTABLE

>edit job.cmd 
Shell interpreter path

#!/bin/bash

Load Leveler Scheduler Keywords (we’ll 
check them later ;-) )

# @ 
# @  
# @ 
………….

Variables initialization
Execution line  

./myexe <options>



BATCH EXECUTABLE: FRONT-END 
NODES

MODULE EXECUTABLE

Shell interpreter path
#!/bin/bash

Load Leveler Scheduler Keywords (we’ll 
check them later ;-) )

# @ 
# @  
# @ 
………….

Variables initialization
module load profile/front-end
module load <module_name>
Execution line  

myexe <options>



BATCH EXECUTABLE: FRONT-END 
NODES

LL KEYWORDS

# @ job_name = serial.$(jobid) 

# @ output = $(job_name).out 

# @ error = $(job_name).err 

# @ wall_clock_limit = 0:10:00 # h:m:s 
execution time up to 6 hours

# @ class = serial 

# @ queue

 



EXECUTION: BACK-END NODES

Serial (WARNING: 64 compute nodes are still 
required) and Parallel execution 
Executable compiled with serial and parallel BE 

compilers 
>bgq-gnu/4.4.6
>bgq-xl/1.0 

NO command line execution 
Batch execution (from 64 compute nodes up to 

2048 compute nodes, wall clock time up to 24 h)
Runjob command 

      >runjob <options>
>man runjob



BATCH EXECUTABLE: BACK-END 
NODES

USER EXECUTABLE
Shell interpreter path

#!/bin/bash
Load Leveler Scheduler Keywords 

# @ 
# @  
# @ 
………….

Variables inizialization
Execution line  

>runjob <runjob_options> : ./myexe <myexe_options>



BATCH EXECUTABLE: BACK-END 
NODES

MODULE EXECUTABLE
Shell interpreter path

#!/bin/bash

Load Leveler Scheduler Keywords 
# @ 
# @  
# @ 
………….

Variables inizialization
    module load <module_name>
Execution line  

    >runjob <runjob_options> : $MODULE_HOME/bin/exe 
<exe_options> 



LL KEYWORDS
# @ job_name = check
# @ output = $(job_name).$(jobid).out
# @ error = $(job_name).$(jobid).err
# @ environment = COPY_ALL  #export all variables from your submission shell
# @ job_type = bluegene
# @ wall_clock_limit = 10:00:00       #execution time h:m:s, up to 24h
# @ bg_size =  64       # compute nodes number 
# @ notification = always|never|start|complete|error
# @ notify_user = <email_address>
# @ account_no = <budget_name>       #saldo –b 
# @ queue

Highlighted are the mandatory keywords, the others are highly suggested



 
#@ bg_shape =  MD(A)xMD(B)xMD(C)xMD(D) 

#midplanes number in the A,B,C,D dimensions 
# @ bg_rotate = true|false
# @ bg_connectivity = torus|mesh|either|
Xa Xb Xc Xd #type of connectivity

LL KEYWORDS - TOPOLOGY



#  @ bg_connectivity = Mesh   #default

# @ bg_size = number of compute nodes

- for requests <= 1midplane (512 compute nodes) 
bg_size = 64| 128| 256| 512

- for requests > 1midplane
bg_size = (512)X2 | (512)X3 | (512)X4 | 
(512)X5 | (512)X6| (512)X8 | (512)X10 | (512)X12 | 
(512)X16 

LL KEYWORDS - BG_SIZE



EXECUTION LINE

Your executable is launched on the compute nodes via the 
command “runjob”, that you can set in two ways:

1) Use “:” and provide executable infos how you’re used to
     runjob : ./exe_name  arg_1  arg_2

2) Use specific runjob flags

       --exe Path name for the executable to run 

runjob --exe ./exe_name 

--args Arguments for the executable specified by --exe

 runjob --exe ./exe_name --args arg_1 --args arg_2 
       



EXECUTION LINE: MPI TASKS 
SETTING

    --ranks-per-node  (-p) Number of ranks (MPI task) per compute node. Valid 

    values are 1, 2, 4, 8, 16, 32 and 64 (default=depending on the tasks requested)

bg_size = 64

runjob --ranks-per-node 1 : ./exe <options>  #64 nodes used, 1 task per node

runjob --ranks-per-node 4 : ./exe <options>  #64 nodes used, 4 tasks per node

--np (-n) Number of ranks (MPI task) in the entire job (default=max)

bg_size = 64

runjob --np 64 -- ranks-per-node 1: ./exe <options>  #64 tasks, 1 per node

runjob --np 256 -- ranks-per-node 4: ./exe <options> #256 tasks, 4 per node

runjob --np 200 -- ranks-per-node 4: ./exe <options> #200 tasks, 4 per node 

until all tasks are allocated

runjob --np 1 --ranks-per-node 1: ./exe <options> # serial job

Formula: np <= bg_size*ranks-per-node



EXECUTION LINE: ENVIRONMENT 
VARIABLES

--envs  Sets the environment variables for exporting them on the compute    

            nodes 

#MPI/OpenMP job (16 threads for each MPI task)

runjob -n 64 --ranks-per-node 1 --envs OMP_NUM_THREADS = 16 : ./exe

--exp-env Exports an environment variable from the current environment to the 
          job

     export OMP_NUM_THREADS = 16 

     runjob -n 64 --ranks-per-node 1  --exp-env OMP_NUM_THREADS : ./exe



LOADLEVELER COMMANDS

Your job script is ready! How to launch it?
llsubmit
   llsubmit <job_script>
Your job will be submitted to the LL scheduler and executed
when there will be nodes availble (according to your priority)

llq 

   llq -u $USER

Shows the list of all your scheduled jobs, along with their status (idle,

running, closing,…)

Also, shows you the job id required for other llq options

    llq -s <job_id>

Provides information on why a selected list of jobs remain in 
the

NotQueued, Idle, or Deferred state.



llq -l <job_id>
Provides a long list of informations for the job requested.
In particular you'll be notified about the bgsize you requested and the 

real bgsize allocated:
     ………………………………

         ………………………………
     

BG Size Requested: 1024
BG Size Allocated: 1024
BG Shape Requested: 
BG Shape Allocated: 1x1x1x2
BG Connectivity Requested: Mesh
BG Connectivity Allocated: Torus Torus Torus Torus
………………………………
………………………………

LOADLEVELER COMMANDS

llcancel

  llcancel <job_id>

  Removes the job from the scheduler, killing it



JOB CLASSES
The class you’re going into depends on the resources you asked:

debug: bg_size=64, wall_clock_time <= 00:30:00

longdebug: bg_size=64, wall_clock_time > 00:30:00 (up to 24h)

parallel: bg_size>64  (valid values: 128,256,512,1024,2048)

There are some classes that you can specify:

special: bg_size>64 (up to 512), @ class = special

this class allows you to run in 16 I/O nodes racks with bigger jobs

keyproject: for bigger jobs (> 2048 nodes). You have to be an authorized user 
(write to superc@cineca.it)



MODULE «SUPERC»
>module load superc

jobtyp (provides useful information about job in the LL queues - user, 
tasks, times, ...)
For using

> jobtyp <job_id>

sstat/sstat2 (provides useful information about the system status - jobs in 
the LL queues, allocated nodes, Midplane status,...
For using

> sstat
> sstat2

bgtop (draws a full-terminal display of nodeboards and jobs)
>bgtop

loadHPC (calculates aggregate statistics of LL jobs)
>loadHPC



As an user, you have access to a limited number of CPU hours to 
spend. They are not assigned to users, but to projects and are shared 

between the users who are working on the same project (i.e. your 
research partners). Such projects are called accounts and are a 

different concept from your username.

ACCOUNTING

You can check the state of your account with the command “saldo –b”, 
which tells you how many CPU hours you have already consumed for 

each account you’re assigned at 

(a more detailed report is provided by “saldo –r”). 



SMT
It is possible to improve the efficiency of  every single CPU by

activating Simultaneous Multi Threading (SMT)

Each CPU is divided into threads that act as separated tasks,
sharing the CPU resources to work simultaneously (with some
loss because of latency)

On FERMI, you can activate 2 or 4 simultaneous threads per
CPU, meaning for example that you can launch a job with 2048 
or 4096 tasks asking only for 1024 cores!

This is achieved by asking for ranks-per-node = 32 (2*16) or     
     ranks-per-node = 64 (4*16)



SUB-BLOCKING
Remember that you are consuming the
ALLOCATED resources and not necessarily
the REQUESTED resources!!
(allocated compute nodes)*(16cores)*(exec. time)

There is, however, a technique that allows to launch multiple 
executables on a single 64 nodes allocation, partitioning it in 

sub-groups of nodes called sub-blocks

With sub-blocking, you can get advantage of the full number of 
resources you have to allocate, even with smaller or not very 

scalable applications. Nothing is wasted!



HOW TO USE SUB-BLOCKING
Some environment variables have to be set for sub-blocking

usage:

> module load subblock

You can find a complete jobscript in our LL
User Guide (link at final slide)

Jobscript USER SECTION:
export N_SUBBLOCK=4                 ### No. of sub-block you’re asking 
(2,4,8,16,32,64)
export RANK_PER_NODE=16           ### No. of MPI tasks in each node. 
### module load <your applications>
export WDR=$PWD
export EXE_1=$WDR/executable_1.exe
export EXE_2=$WDR/executable_2.exe
…
export EXECUTABLES="$EXE_1 $EXE_2 $EXE_3 $EXE_4" 



USEFUL DOCUMENTATION

FERMI USER GUIDE:

http://www.hpc.cineca.it/content/ibm-fermi-user-guide

http://www.hpc.cineca.it/content/batch-scheduler-loadleveler-0

Job command file keyword descriptions IBM

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?
topic=/com.ibm.cluster.loadl.v5r1.load100.doc/am2ug_sbmbgjbs.htm


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

