

BG/Q Architecture

Carlo Cavazzoni Graziella Ferini HPC department, CINECA

What is BG

□ The Blue Gene family of supercomputers: evolution and challenges

Overview of Blue Gene/Q architecture

FERMI configuration
 Basic concepts: packaging hierarchy, partitions and compute blocks
 The "shape": meaning and consequences

□ <u>A closer look</u>

□ Inside the processor and the chip

□ The QUAD FPU

Consortio Interunive

□ BG is a massively parallel supercomputer

- □ It holds different types of nodes (and networks)
- □ It is designed to have high energy-efficiency (performance/power)

BLUE GENE EVOLUTION

	Total		Biggest Config	Per rack		
	Performance [PF]	Efficiency [MF/W]	Max # of racks	Performance [TF]	Efficiency	# of cores
BG/L	0.596	210	104	5.7	2.02	2048
BG/P	1	357	72	13.9	4.96	4096
BG/Q	20	2000	96	209	20.83	16384

Towards higher and higher:

- Performance
- Efficiency
- Density of cores per rack

Consorzio Interuniver

Blue Gene/Q

Features:

- Is among the most powerful architectures
- Is among the most "green"
- Incorporates innovations that enhance multi- core/multi-threaded computing
- Has an innovative design (system-on-a-chip)

... and objectives:

Laying groundwork for Exascale computing
Reduce total cost of ownership

PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

TOP10 November 2012

- 1 Titan Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x
- 2 Sequoia BlueGene/Q, Power BQC 16C 1.60 GHz, Custom
- 3 K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect
- 4 Mira BlueGene/Q, Power BQC 16C 1.60GHz, Custom
- 5 JUQUEEN BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect
- 6 SuperMUC iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR
- 7 Stampede PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi
- 8 Tianhe-1A NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050
- 9 Fermi BlueGene/Q, Power BQC 16C 1.60GHz, Custom
- 10 DARPA Trial Subset Power 775, POWER7 8C 3.836GHz, Custom Interconnect

http://www.top500.org

PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

The Green500 List

Listed below are the November 2012 The Green500's energy-efficient supercomputers ranked from 1 to 10.

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (KW)
1	2,499.44	National Institute for Computational Sciences/University of Tennessee	Beacon - Appro GreenBlade GB824M, Xeon E5-2670 8C 2.600GHz, Infiniband FDR, Intel Xeon Phi 5110P	44.89
2	2,351.10	King Abdulaziz City for Science and Technology	SANAM - Adtech ESC4000/FDR G2, Xeon E5-2650 8C 2.000GHz, Infiniband FDR, AMD FirePro S10000	179.15
3	2,142.77	DOE/SC/Oak Ridge National Laboratory	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x	8,209.00
4	2,121.71	Swiss Scientific Computing Center (CSCS)	Todi - Cray XK7 , Opteron 6272 16C 2.100GHz, Cray Gemini interconnect, NVIDIA Tesla K20 Kepler	129.00
5	2,102.12	Forschungszentrum Juelich (FZJ)	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect	1,970.00
6	2,101.39	Southern Ontario Smart Computing Innovation Consortium/University of Toronto	BGQdev - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect	41.09
7	2,101.39	DOE/NNSA/LLNL	rzuseq - BlueGene/Q, Power BQC 16C 1.60GHz, Custom	41.09
8	2,101.39	IBM Thomas J. Watson Research Center	BlueGene/Q, Power BQC 16C 1.60GHz, Custom	41.09
9	2,101.12	IBM Thomas J. Watson Research Center	BlueGene/Q, Power BQC 16C 1.60 GHz, Custom	82.19
10	2,101.12	Ecole Polytechnique Federale de Lausanne	CADMOS BG/Q - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect	82.19

PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

FERMI @ CINECA PRACE Tier-0 System

Architecture: 10 BGQ Frame Model: IBM-BG/Q Processor Type: IBM PowerA2, 1.6 GHz Computing Cores: 163840 Computing Nodes: 10240 RAM: 1 GByte / core Internal Network: 5D Torus Disk Space: 2 PByte of scratch space Peak Performance: 2 PFlop/s Power Consumption: 1 MWatt

4. Node Card:32 Compute Cards,Optical Modules, Link Chips, Torus

Point-to-point fiber cables, attaching the 8 I/O nodes (on top of rack) to compute nodes (on 8 node cards)

4D torus fiber cables, connecting the midplane to other midplanes (in same and other racks)

External, independent and dynamic I/O system

- I/O nodes in separate drawers/rack with private interconnections and full Linux support
- PCI-Express Gen 2 on every node with full sized PCI slot
- Two I/O configurations (one traditional, one conceptual)

BlueGene Classic I/O with GPFS clients on the logical I/O nodes

Similar to BG/L and BG/P

Uses InfiniBand switch

Uses DDN RAID controllers and File Servers

BG/Q I/O Nodes are not shared between compute partitions

 IO Nodes are bridge data from functionshipped I/O calls to parallel file system client

Components balanced to allow a specified minimum compute partition size to saturate entire storage array I/O bandwidth

I/O nodes – node cards ratio

Blue Gene/Q has a Flexible I/O nodes – node cards ratio

8 I/O nodes per I/O drawer4 I/O drawers per rack (maximum)

up to 32 I/O nodes per rack = 1 I/O node per 512 compute cores

FERMI configuration: 2 racks with 16 I/O nodes (1024 cores per I/O node) 8 racks with 8 I/O nodes (2048 cores per I/O node)

Ok, but... why should I care?

The number of I/O nodes per rack constraints:

-I/O bandwidth to/from compute racks (each I/O node has 2 links (4GB/s in 4GB/s out))

-The minimum partition allocatable on a BG/Q system ("small block" jobs) For FERMI: bg_size=64 (jobs running on R11 and R31) bg_size=128 (jobs running on the other racks)

MidPlane in FERMI RACK: R11, R31

Example: N08 - N09 = 64 Compute Cards (2x2x4x2x2)

www.cineca.it

Consorzio Interuniv

MidPlane in FERMI / {R11 R31}

Example: N08 - N09 - N10 - N11 = 128 Compute Cards (2x2x4x4x2)

Compute blocks on Fermi

Small blocks:

- made up of one or more node boards within a single midplane
- always multiple of 32 nodes
- Not a torus in all five domensions (see later)

Large blocks:

- made up of one or more complete midplanes
- always multiple of 512 nodes
- Can be a torus in all five dimensions

New Network architecture:

- 5 D torus architecture sharing several embedded Virtual Network/topologies
 - \checkmark 5D topology for point-to-point communication
 - ✤ 2 GB/s bidirectional bandwidth on all (10+1) links
 - Bisection bandwidth of 65TB/s (26PF/s) / 49 TB/s (20 PF/s)

BGL at LLNL is 0.7 TB/s

✓ Collective and barrier networks embedded in 5-D torus network.

- Floating point addition support in collective network
- 11th port for auto-routing to IO fabric

FERMI Configuration

10 racks

- 5 rows
- 2 columns

20 midplanes

2 midplanes for each rack

Racks	MP	Row	Col	Α	В	С	D
10	20	5	2	1	5	2	2

Midplanes CABLING

B dimension

- connection among 2 midplanes goes down a column of racks
- on Fermi the number of the cables on the B dim is 5

C dimension

- connection among 2 midplanes goes down a row of racks
- on Fermi the number of the cables on the C dim is 2

D dimension

- connection among 2 midplanes in the same rack
- on Fermi the number of the cables on the D dim is 2

A dimension

- the remaining direction, which can go down a row or column (or both). When two sets of cables go down a row or column, the longest cables define the A dimension
- on Fermi the number of the cables along the A dim is 1 and it is not rapresented

Racks	MP	Row	Col	Α	В	С	D
10	20	5	2	1	5	2	2

FERMI Size in MidPlanes

SHAPE of FERMI =

number of midplanes in A, B, C, D directions

$1 \times 5 \times 2 \times 2 = 20$ MidPlanes

For **large block jobs** (>= 1MP) two connectivity between midplanes are provided:

- Torus : periodic boundary conditions (e.g. "close line") in all the dimensions A, B, C and D.
- Mesh : almost one dimension is not like a "close line"

3D TORUS

 1 Midplane is the minimum TORUS available on a BlueGene/Q system

Consorzio Interuniveri

5-D torus wiring in a Midplane

The 5 dimensions are denoted by the letters A, B, C, D, and E. The latest dimension E is always 2, and is contained entirely within a midplane.

Consorzio Interunive

5-D torus in a Midplane

Consorzio Interunive

Node Board (32 Compute Nodes): 2x2x2x2x2

ECA

Consorzio Interuniver

Network topology | Mesh versus torus

# Node Boards	# Nodes	Dimensions	Torus (ABCDE)
1	32	2x2x2x2x2	00001
2 (adjacent pairs)	64	2x2x4x2x2	00101
4 (quadrants)	128	2x2x4x4x2	00111
8 (halves) 256		4x2x4x4x2	10111

MidPlane in FERMI RACK: R11 R31

Example: N08 - N09 = 64 Compute Cards (2x2x4x2x2)

www.cineca.it

Consorato Interuniv

MidPlane in FERMI / {R11 R31}

Example: N08 - N09 - N10 - N11 = 128 Compute Cards (2x2x4x4x2)

BGQ PowerA2 processor

Carlo Cavazzoni, HPC department, CINECA

Power A2

64bit

Power instruction set (Power1...Power7, PowerPC)

RISC processors

Superscalar

Multiple Floating Point units

SMT

Multicore

PowerA2 chip, basic info

- 16 cores + 1 + 1 (17th Processor core for system functions)
- 1.6GHz
- 32MByte cache
- system-on-a-chip design
- 16GByte of RAM at 1.33GHz
- Peak Perf 204.8 gigaflops
- power draw of 55 watts
- 45 nanometer copper/SOI process (same as Power7)
- Water Cooled

PowerA2 chip, more info

Contains a 800MHz crossbar switch

links the cores and L2 cache memory together peak bisection bandwidth of 563GB/sec connects the processors, the L2, the networking 5D torus interconnect is also embedded on the chips Two of these can be used for PCI-Express 2.0 x8 peripheral slots. supports point-to-point, collective, and barrier messages and also implements direct memory access between nodes. PowerA2 chip, layout

Consortio Interunive

System-on-a-Chip design: integrates processors, memory and networking logic into a single chip

PowerA2 core

4 FPU

4 way SMT
64-bit instruction set - in-order dispatch, execution, and completion
16KB of L1 data cache
16KB of L1 instructions cache

PowerA2 FPU

Each FPU on each core has four pipelines execute scalar floating point instructions Quad pumped four-wide SIMD instructions two-wide complex arithmetic SIMD inst. six-stage pipeline permute instructions maximum of eight concurrent floating point operations per clock plus a load and a store.

Thanks for your attention! Any question?