
INTRODUCTION TO MPI –
VIRTUAL TOPOLOGIES

Introduction to Parallel Computing with MPI
and OpenMP

18-19-20 november 2013

a.marani@cineca.it

g.muscianisi@cineca.it

l.ferraro@cineca.it

Topology:
 extra, optional attribute that can be given to an intra-communicator;

topologies cannot be added to inter-communicators.
 can provide a convenient naming mechanism for the processes of a

group (within a communicator), and additionally, may assist the
runtime system in mapping the processes onto hardware.

VIRTUAL TOPOLOGY

A process group in MPI is a collection of n processes:

- each process in the group is assigned a rank between 0 and n-1.

- in many parallel applications a linear ranking of processes does not

 adequately reflect the logical communication pattern of the processes

 (which is usually determined by the underlying problem geometry and
the

 numerical algorithm used).

Virtual topology:
 logical process arrangement in topological patterns such as 2D

or 3D grid; more generally, the logical process arrangement is
described by a graph.

VIRTUAL TOPOLOGY

Virtual process topology .vs. topology of the underlying, physical
hardware:
virtual topology can be exploited by the system in the
assignment of processes to physical processors, if this helps to
improve the communication performance on a given machine.
the description of the virtual topology depends only on the
application, and is machine-independent.

4
5

26

17
0

3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

RING 2D-GRID

EXAMPLES

A grid of processes is easily described with a cartesian topology:
 each process can be identified by cartesian coordinates
 periodicity can be selected for each direction
 communications are performed along grid dimensions only

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

5

CARTESIAN TOPOLOGY

P0
(0,0)

P1
(0,1)

P2
(0,2)

P3
(0,3)

P4
(1,0)

P5
(1,1)

P6
(1,2)

P7
(1,3)

P8
(2,0)

P9
(2,1)

P10
(2,2)

P11
(2,3)

DATA

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

EXAMPLE: 2D DOMAIN
DECOMPOSITION

• Returns a handle to a new communicator to which the Cartesian topology
information is attached.

• Reorder:
• false: the rank of each process in the new group is identical to its rank in the

old group.
• True: the processes may be reordered, possibly so as to choose a good

embedding of the virtual topology onto physical machine.
• If cart has less processes than starting communicator, left over processes have

MPI_COMM_NULL as return

MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder,
comm_cart)

IN comm_old: input communicator (handle)

IN ndims: number of dimensions of Cartesian grid (integer)

IN dims: integer array of size ndims specifying the number of

processes in each dimension

IN periods: logical array of size ndims specifying whether the grid is

periodic (true) or not (false) in each dimension

IN reorder: ranking may be reordered (true) or not (false)

OUT comm_cart: communicator with new Cartesian topology (handle)

CARTESIAN CONSTRUCTOR

#include <mpi.h>

int main(int argc, char *argv[])
{

 MPI_Comm cart_comm;
 int dim[] = {4, 3};
 int period[] = {1, 0};
 int reorder = 0;

 MPI_Init(&argc, &argv);

 MPI_Cart_create(MPI_COMM_WORLD, 2, dim, period, reorder, &cart_comm);
 ...
}

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

EXAMPLE (C)

 MPI_Dims_Create:
 compute optimal balanced distribution of processes per coordinate

direction with respect to:
 a given dimensionality
 the number of processes in a group
 optional constraints

 MPI_Cart_coords:
 given a rank, returns process's coordinates

 MPI_Cart_rank:
 given process's coordinates, returns the rank

 MPI_Cart_shift:
 get source and destination rank ids in SendRecv operations

CARTESIAN TOPOLOGY
UTILITIES

• Help user to select a balanced distribution of processes per
coordinate direction, depending on the number of processes in the
group to be balanced and optional constraints that can be specified
by the user

• if dims[i] is set to a positive number, the routine will not modify
the number of nodes in that i dimension

• negative value of dims[i] are erroneous

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes: number of nodes in a grid (integer)

IN ndims: number of Cartesian dimensions (integer)

IN/OUT dims: integer array of size ndims specifying the number of

nodes in each dimension

MPI DIMS CREATE

dims
before call

Function call dims on
return

(0, 0)
(0, 0)
(0, 3, 0)
(0, 3, 0)

MPI_DIMS_CREATE(6, 2, dims)
MPI_DIMS_CREATE(7, 2, dims)
MPI_DIMS_CREATE(6, 3, dims)
MPI_DIMS_CREATE(7, 2, dims)

(3, 2)
(7, 1)
(2, 3, 1)
erroneous
call

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes: number of nodes in a grid (integer)

IN ndims: number of Cartesian dimensions (integer)

IN/OUT dims: integer array of size ndims specifying the number of

nodes in each dimension

11

IN/OUT OF “DIMS”

integer :: dim(3),period(3),reorder, cube_comm, ierr

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs,ierr)

dim(1) = 0 ! let MPI arrange
dim(2) = 0 ! let MPI arrange
dim(3) = 3 ! I want exactly 3 planes

CALL MPI_DIMS_CREATE(nprocs, 3, dim, ierr)

if (dim(1)*dim(2)*dim(3) .LE. nprocs) then
 print *,"WARNING: some processes are not in use!"
endif

period = (1, 1, 0)
reorder = 0

CALL MPI_CART_CREATE(MPI_COMM_WORLD, 3, dim, period, reorder, &
cube_comm,ierr)

USING MPI_DIMS_CREATE
(FORTRAN)

• translation of the logical process coordinates to process ranks as
they are used by the point-to-point routines
• if dimension i is periodic, when i-th coordinate is out of range,
it is shifted back to the interval 0<coords(i)<dims(i)
automatically
• out-of-range coordinates are erroneous for non-periodic dimensions

MPI_CART_RANK(comm, coords, rank)

IN comm: communicator with Cartesian structure

IN coords: integer array (of size ndims) specifying the Cartesian

coordinates of a process

OUT rank: rank of specified process

FROM COORDINATE
TO RANK

 For each MPI process in Cartesian communicator, the
coordinate whitin the cartesian topology are returned

MPI_CART_COORDS(comm, rank, maxdim, coords)

IN comm: communicator with Cartesian structure

IN rank: rank of a process within group of comm

IN maxdims: length of vector coords in the calling program

OUT coords: integer array (of size ndims) containing the Cartesain

coordinates of specified process

FROM RANK TO
COORDINATE

int cart_rank;
MPI_Comm_rank(cart_comm, &cart_rank);

int coords[2];
MPI_Cart_coords(cart_comm, cart_rank, 2, coords);

// set linear boundary values on bottom/left-hand domain
if (coords[0] == 0 || coords[1] == 0) {
 SetBoundary(linear(min, max), domain);
}

// set sinusoidal boundary values along upper domain
if (coords[0] == dim[0]) {
 SetBoundary(sinusoid(), domain);
}

// set polynomial boundary values along right-hand of domain
if (coords[1] == dim[1]) {
 SetBoundary(polynomial(order, params), domain);
} 15

MAPPING OF
COORDINATES (C)

Circular shift is another tipical MPI communication
pattern:

 each process communicate only with its neighbors
along one direction

 periodic boundary conditions can be set for letting
first and last processes partecipate in the
communication

4
5

26

17
0

3

CARTESIAN SHIFT:
A 1D CARTESIAN TOPOLOGY

0 1 7

such a pattern is nothing more than a 1D cartesian grid
topology with optional periodicity

 Depending on the periodicity of the Cartesian group in the specied
coordinate direction, MPI_CART_SHIFT provides the identifiers for a
circular or an end-o shift.

 In the case of an end-o shift, the value MPI_PROC_NULL may be returned
in rank_source or rank_dest, indicating that the source or the destination
for the shift is out of range.

 provides the calling process the ranks of source and destination processes
for an MPI_SENDRECV with respect to a specified coordinate direction and
step size of the shift

MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)

IN comm: communicator with Cartesian structure

IN direction: coordinate dimension of shift

IN disp: displacement (>0: upwards shift; <0: downwards shift

OUT rank_source: rank of source process

OUT rank_dest: rank of destination process

MPI CART SHIFT

...

integer :: dim = nprocs
integer :: period = 1
integer :: source, dest, ring_comm, status(MPI_STATUS_SIZE),ierr

CALL MPI_CART_CREATE(MPI_COMM_WORLD, 1, dim, period, 0,ring_comm,ierr)

CALL MPI_CART_SHIFT(ring_comm, 0, 1, source, dest, ierr)

CALL MPI_SENDRECV(right_bounday, n, MPI_INT, dest, rtag, left_boundary,
n, MPI_INT, source, ltag, ring_comm, status, ierr)

...

EXAMPLE (FORTRAN)

 It is often useful to partition a cartesian communicator into
subgroups that form lower dimensional cartesian subgrids

 new communicators are derived

 lower dimensional communicators cannot communicate
among them (unless inter-communicators are used)

PARTITIONING OF
CARTESIAN STRUCTURES

int dim[] = {2, 3, 4};

int remain_dims[] = {1, 0, 1}; // 3 comm with 2x4 processes 2D
grid
...
int remain_dims[] = {0, 0, 1}; // 6 comm with 4 processes 1D
topology

MPI_CART_SUB(comm, remain_dims, newcomm)

IN comm: communicator with Cartesian structure

IN remain_dims: the i-th entry of remain_dims specifies whether the

i-th dimension is kept in the subgrid (true) or is dropped (false)

(logical vector)

OUT newcomm: communicator containing the subgrid that includes the

calling process

20

MPI CART SUB

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20

