
Parallel programming with MPI Part I

-Introduction and Point-to-Point

CommunicationsCommunications

A. Emerson, Supercomputing Applications and

Innovation (SCAI), CINECA

19 November

2013
1MPI course 2013

Contents

� Introduction to message passing and MPI

� Basic MPI programs

� MPI Communicators� MPI Communicators

� Send and Receive function calls for point-to-point

communications

� Blocking and non-blocking

� How to avoid deadlocks

219 November 2013 MPI course 2013

Message passing and shared

memory parallelism

memory

message passing shared memory

message

Task 0

Task 1

19 November 2013 MPI course 2013 3

Multiple tasks exchange
data via explicit messages

Program splits into threads
which share data via
variables in shared memory

Task 1

Task 2

Message Passing
�Unlike the shared memory model, resources are local;

�Each process operates in its own environment (logical address

space) and communication occurs via the exchange of messages;

�Messages can be instructions, data or synchronisation signals;

�The message passing scheme can also be implemented on shared

memory architectures;

�Delays are much longer than those due to shared variables in the

same memory space;

419 November 2013 MPI course 2013

Advantages and Drawbacks

• Advantages
– Communications hardware and software are important
components of HPC system and often very highly
optimised;

– Portable and scalable;

– Long history (many applications already ready written for – Long history (many applications already ready written for
it);

• Drawbacks
– Explicit nature of message-passing is error-prone and
discourages frequent communications;

– Most serial programs need to be completely re-written;

– High memory overheads.

519 November 2013 MPI course 2013

The most important concept in

message passing is...

..to minimize message passing as much as ..to minimize message passing as much as

possible

19 November 2013 MPI course 2013 6

Message Passing – Data transfer and

Synchronisation.

The sender process cooperates with the destination process

7

The communication system must allow the following three operations:

send(message)

receive(message)

synchronisation

19 November 2013 MPI course 2013

MPI Programming Model

process process

Node A Node B

Processor Memory

8

message

Y Y’

send (Y) receive (Y’)

19 November 2013 MPI course 2013

The Message Passing Interface -

MPI

-MPI is a standard defined in a set of documents compiled by a

consortium of organizations: http://www.mpi-forum.org/

-In particular the MPI documents define the APIs (application

interfaces) for C, C++, FORTRAN77 and FORTRAN90.interfaces) for C, C++, FORTRAN77 and FORTRAN90.

-The actual implementation of the standard is left to the software

developers of the different systems

-In all systems MPI has been implemented as a library of subroutines

over the network with drivers and primitives

919 November 2013 MPI course 2013

Goals of the MPI standard

MPI’s prime goals are:
• To allow efficient implementation

• To provide source-code portability

MPI also offers:

• A great deal of functionality• A great deal of functionality

• Support for heterogeneous parallel architectures

MPI2 further extends the library power (parallel I/O, Remote Memory
Access, Multi Threads, Object Oriented programming)

MPI3 aims to support exascale by including non-blocking collectives,

improved RMA and fault tolerance.

1019 November 2013 MPI course 2013

Basic Features of MPI Programs

An MPI program consists of multiple instances of a serial program

that communicate by library calls.

Calls may be roughly divided into four classes:

1. Calls used to initialize, manage, and terminate

communications

2. Calls used to communicate between pairs of processors.

(point to point communication)

3. Calls used to communicate among groups of processors.

(collective communication)

4. Calls to create data types.

1119 November 2013 MPI course 2013

Single Program Multiple Data

(SPMD) programming model

Multiple instances of

the same program.

1219 November 2013 MPI course 2013

A note about MPI Implementations

� The MPI standard defines the functionalities and the API, i.e. what

the C or FORTRAN calls should look like.

� The MPI standard does not define how the calls should be

performed at the system level (algorithms, buffers, etc) or how the

environment is set up (env variables, mpirun or mpiexec, libraries, environment is set up (env variables, mpirun or mpiexec, libraries,

etc). This is left to the implementation.

� There are various implementations (IntelMPI, OpenMPI, MPICH,

HPMPI, etc) which have different performances, features and

standards compliance.

� On some clusters (e.g. PLX, Eurora) you may choose which MPI to

use, on other systems you have only the vendor-supplied version

(IBM MPI for FERMI).

19 November 2013 MPI course 2013 13

Compiling and Running MPI

programs

• Implementation and system dependent but it is usual to
use the “wrapped” version of the compiler to include the
MPI headers and link in the MPI libraries. Wrapped
compilers tend to be called mpif90, mpicc, mpic++, etc.compilers tend to be called mpif90, mpicc, mpic++, etc.

• On HPC systems MPI programs are run via the batch
system with appropriate settings. For debugging
sometimes it is possible to open interactive sessions (e.g.
PBS on PLX).

• a program such as mpirun or mpiexec is then used to
launch multiple instances of the program on the assigned
nodes.

1419 November 2013

MPI course 2013

Compiling and running MPI on

FERMI and PLX/EURORA

FERMI

Compile + link

module load bgq-xl
mpxlf90 –o mpi_prog

PLX/EURORA

Compile+link

module load autoload openmpi
mpicc –o mpi_prog mpi_prog.cmpxlf90 –o mpi_prog

mpi_prog.f90

Job script

....
#@ wall_clock_limit = 01:00:00
#@ bg_size=64
#@ queue
runjob --ranks-per-node 16 –np
1024 : $PWD/mpi_myprog

mpicc –o mpi_prog mpi_prog.c

Job script

#PBS –l
select=1:ncpus=12:mpiprocs=12,w
alltime=1:00:00
cd $PBS_O_WORKDIR
module load autoload openmpi
mpirun –np 12 ./mpi_prog

19 November 2013 MPI course 2013 15

A First Program: Hello World!

Fortran

PROGRAM hello

INCLUDE ‘mpif.h‘

C

#include <stdio.h>

#include <mpi.h>

void main (int argc, char * argv[])INCLUDE ‘mpif.h‘

INTEGER err

CALL MPI_INIT(err)

PRINT *, “hello world!”

CALL MPI_FINALIZE(err)

END

void main (int argc, char * argv[])

{

int err;

err = MPI_Init(&argc, &argv);

printf(“Hello world!\n”);

err = MPI_Finalize();

}

1619 November 2013 MPI course 2013

Header files

All Subprogram that contains calls to MPI

subroutine must include the MPI header file

C:

#include<mpi.h>

FORTRAN note:

The FORTRAN include and module

forms are not equivalent: the module

Fortran:

include ‘mpif.h’

Fortran 90:

USE MPI

The header file contains definitions of MPI constants, MPI

types and functions

17

forms are not equivalent: the module

can also do type checking BUT since

the MPI standard is not consistent with

FORTRAN some F90 compilers give

errors. Many FORTRAN codes prefer to

use the include file.

19 November 2013 MPI course 2013

MPI function format

C:

int error = MPI_Xxxxx(parameter,...);

MPI_Xxxxx(parameter,...);

FORTRAN:

CALL MPI_XXXXX(parameter, IERROR)

INTEGER IERROR

1819 November 2013 MPI course 2013

Initializing MPI

C:
int MPI_Init(int*argc, char***argv)

FORTRAN:
INTEGER IERROR

MPI_INIT(IERROR)

Must be first MPI call: initializes the message passing routines

1919 November 2013 MPI course 2013

MPI Communicator

- In MPI it is possible to divide the total number of processes
into groups, called communicators.

- The Communicator is a variable identifying a group of

- processes that are allowed to communicate with each other.

- The communicator that includes all processes is called
MPI_COMM_WORLDMPI_COMM_WORLD

- MPI_COMM_WORLD is the default communicator
(automatically defined):

20

All MPI communication subroutines
have a communicator argument.

The Programmer can define many
communicators at the same time

1

6

4

3

2

7

0

5

MPI_COMM_WORLD

19 November 2013 MPI course 2013

Communicator Size

How many processors are associated with a

communicator?

C:

MPI_Comm_size(MPI_Comm comm, int *size)MPI_Comm_size(MPI_Comm comm, int *size)

FORTRAN:

INTEGER COMM, SIZE, IERR

OUTPUT: SIZE

CALL MPI_COMM_SIZE(COMM, SIZE, IERR)

2119 November 2013 MPI course 2013

Process Rank
How can you identify different processes?

What is the ID of a processor in a group?

C:

MPI_Comm_rank(MPI_Comm comm, int *rank)

Fortran:

22

Fortran:

CALL MPI_COMM_RANK(COMM, RANK, IERR)

INTEGER COMM, RANK, IERR

OUTPUT: RANK

rank is an integer that identifies the Process inside the
communicator comm

MPI_COMM_RANK is used to find the rank (the name or identifier)
of the Process running the code

19 November 2013 MPI course 2013

Communicator Size and Process Rank / 1

P0 P1 P2 P3 P4 P5 P6 P7

SIZE = 8

How many processes are contained within a communicator?

23

RANK = 2

Size is the number of processors associated to the communicator

rank is the index of the process within a group associated to a
communicator (rank = 0,1,...,N-1). The rank is used to identify
the source and destination process in a communication

19 November 2013 MPI course 2013

Exiting MPI

Finalizing MPI environment

C:

int MPI_Finalize()

Fortran:

INTEGER IERR

CALL MPI_FINALIZE(IERR)

24

CALL MPI_FINALIZE(IERR)

This two subprograms should be called by all process, and no

other MPI calls are allowed before mpi_init and after

mpi_finalize. However the program can go on as a serial

program

19 November 2013 MPI course 2013

MPI_ABORT

• Usage

– int MPI_Abort(MPI_Comm comm,

int errorcode);int errorcode);

• Description

– Terminates all MPI processes associated with the

communicator comm; in most systems (all to date),

terminates all processes.

2519 November 2013 MPI course 2013

A Template for Fortran MPI Programs

PROGRAM template

INCLUDE ‘mpif.h‘

INTEGER ierr, myid, nproc

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

!!! INSERT YOUR PARALLEL CODE HERE !!!

CALL MPI_FINALIZE(ierr)

END

2619 November 2013 MPI course 2013

A Template for C MPI programs

#include <stdio.h>

#include <mpi.h>

void main (int argc, char * argv[])

{

int err, nproc, myid;int err, nproc, myid;

err = MPI_Init(&argc, &argv);

err = MPI_Comm_size(MPI_COMM_WORLD, &nproc);

err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);

/*** INSERT YOUR PARALLEL CODE HERE ***/

err = MPI_Finalize();

}

2719 November 2013 MPI course 2013

Example
PROGRAM hello

IMPLICIT NONE

INCLUDE ‘mpif.h’

INTEGER:: myPE, totPEs, i, ierr

CALL MPI_INIT(ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myPE, ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, totPEs, ierr)CALL MPI_COMM_SIZE(MPI_COMM_WORLD, totPEs, ierr)

PRINT *, “myPE is “, myPE, “of total ”, totPEs, “ PEs”

CALL MPI_FINALIZE(ierr)

END PROGRAM hello

28

MyPE is 1 of total 4 PEs

MyPE is 0 of total 4 PEs

MyPE is 3 of total 4 PEs

MyPE is 2 of total 4 PEs

Output (4 Procs)

19 November 2013 MPI course 2013

Point-to-Point Communication

�It is the basic communication method provided by MPI library.

Communication between 2 processes

�It is conceptually simple: source process A sends a message to

destination process B, B receive the message from A.

�Communication take places within a communicator

�Source and Destination are identified by their rank in the�Source and Destination are identified by their rank in the

communicator

29

Communicator

1

6

4

3

2

7

0

5

Source

Dest

19 November 2013 MPI course 2013

Point-to-Point communication

–quick example

…….
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THEN

CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, CALL MPI_SEND(a, 2, MPI_REAL, 1, 10,
MPI_COMM_WORLD, ierr)

ELSE IF(myid .EQ. 1) THEN

CALL MPI_RECV(b, 2, MPI_REAL, 0, 10,
MPI_COMM_WORLD, status, ierr)

END IF

...

3019 November 2013 MPI course 2013

Point-to-Point communication

–quick example

The construction

if rank equals i

send information

else if rank equals jelse if rank equals j

receive information

is very common in MPI programs. Often one rank (usually
rank 0) is selected for particular tasks which can be or should
be done by one task only such as reading or writing files,
giving messages to the user or for managing the overall logic
of the program (e.g. master-slave).

3119 November 2013 MPI course 2013

The Message
• Data is exchanged in the buffer, an array of count

elements of some particular MPI data type

• One argument that usually must be given to MPI routines

is the type of the data being passed.

• This allows MPI programs to run automatically in

heterogeneous environments

• C types are different from Fortran types.

32

envelope body
source destination communicator tag buffer datatypecount

Message Structure

• C types are different from Fortran types.

Messages are identified by their envelopes. A message could
be exchanged only if the sender and receiver specify the
correct envelope

19 November 2013 MPI course 2013

Data Types

• MPI Data types

– Basic types (portability)

– Derived types (MPI_Type_xxx functions)

• Derived type can be built up from basic types

• User-defined data types allows MPI to automatically

33

• User-defined data types allows MPI to automatically

scatter and gather data to and from non-contiguous

buffers

MPI defines ‘handles’ to allow programmers to refer to

data types and structures

– C/C++ handles are macro to structs (#define MPI_INT …)

– Fortran handles are INTEGER

19 November 2013 MPI course 2013

Fortran - MPI Intrinsic Datatypes

MPI Data type Fortran Data type

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_DOUBLE_COMPLEX DOUBLE COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_PACKED

MPI_BYTE

C - MPI Intrinsic Datatypes

MPI Data type C Data type

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG Signed log int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

For a communication to succeed ..

1. Sender must specify a valid destination rank.

2. Receiver must specify a valid source rank.

3. The communicator must be the same.3. The communicator must be the same.

4. Tags must match.

5. Buffers must be large enough.

3619 November 2013 MPI course 2013

Completion
• In a perfect world, every send operation would be perfectly

synchronized with its matching receive. This is rarely the case.

The MPI implementation is able to deal with storing data when

the two tasks are out of sync.

• Completion of the communication means that memory• Completion of the communication means that memory

locations used in the message transfer can be safely accessed

– Send: variable sent can be reused after completion

– Receive: variable received can be used after completion

3719 November 2013 MPI course 2013

Blocking

communications• Most of the MPI point-to-point routines can be used in either blocking or

non-blocking mode.

• Blocking:

– A blocking send returns after it is safe to modify the

application buffer (your send data) for reuse. Safe doesapplication buffer (your send data) for reuse. Safe does

not imply that the data was actually received - it may very

well be sitting in a system buffer.

– A blocking send can be synchronous

– A blocking send can be asynchronous if a system buffer is

used to hold the data for eventual delivery to the receive.

– A blocking receive only "returns" after the data has arrived

and is ready for use by the program.

3819 November 2013 MPI course 2013

Blocking Communications

Application SEND Application RECV

data data

Processor 1 Processor 2

39

data

system buffer system buffer

19 November 2013 MPI course 2013

Standard Send and Receive

C:
int MPI_Send(void *buf, int count, MPI_Datatype

type, int dest, int tag, MPI_Comm comm);

int MPI_Recv (void *buf, int count, MPI_Datatype
type, int source, int tag, MPI_Comm comm,
MPI_Status *status);

4019 November 2013 MPI course 2013

Standard Send and Receive
Basic blocking point-to-point communication routine in MPI.

Fortran:
MPI_SEND(buf, count, type, dest, tag, comm, ierr)

MPI_RECV(buf, count, type, source, tag, comm, status, ierr)

buf array of type type see table.

Message body Message envelope

count (INTEGER) number of element of buf to be sent

type (INTEGER) MPI type of buf

dest (INTEGER) rank of the destination process

tag (INTEGER) number identifying the message

comm (INTEGER) communicator of the sender and receiver

status (INTEGER) array of size MPI_STATUS_SIZE containing

communication status information (Orig Rank, Tag, Number of
elements received)

ierr (INTEGER) error code (if ierr=0 no error occurs)

4119 November 2013 MPI course 2013

Send and Receive - FORTRAN

PROGRAM send_recv

INCLUDE ‘mpif.h‘

INTEGER ierr, myid, nproc

INTEGER status(MPI_STATUS_SIZE)

REAL A(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THEN

A(1) = 3.0

A(2) = 5.0

CALL MPI_SEND(A, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF(myid .EQ. 1) THEN

CALL MPI_RECV(A, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)

WRITE(6,*) myid,’: a(1)=’,a(1),’ a(2)=’,a(2)

END IF

CALL MPI_FINALIZE(ierr)

END

4219 November 2013 MPI course 2013

#include <stdio.h>

#include <mpi.h>

void main (int argc, char * argv[])

{

int err, nproc, myid;

MPI_Status status;

float a[2];

err = MPI_Init(&argc, &argv);

Send and Receive - C

err = MPI_Init(&argc, &argv);

err = MPI_Comm_size(MPI_COMM_WORLD, &nproc);

err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);

if(myid == 0) {

a[0] = 3.0, a[1] = 5.0;

MPI_Send(a, 2, MPI_FLOAT, 1, 10, MPI_COMM_WORLD);

} else if(myid == 1) {

MPI_Recv(a, 2, MPI_FLOAT, 0, 10, MPI_COMM_WORLD, &status);

printf(”%d: a[0]=%f a[1]=%f\n”, myid, a[0], a[1]);
}

err = MPI_Finalize();
}

4319 November 2013 MPI course 2013

Non Blocking communications

– Non-blocking send and receive routines will return

almost immediately. They do not wait for any

communication events to complete

– Non-blocking operations simply "request" the MPI

library to perform the operation when it is able. The

user can not predict when that will happen.

– It is unsafe to modify the application buffer until you

know for a fact the requested non-blocking operation

was actually performed by the library. There are "wait"

routines used to do this.

– Non-blocking communications are primarily used to

overlap computation with communication.

4419 November 2013 MPI course 2013

Non-Blocking Send and Receive

C:

int MPI_Isend(void *buf, int count,
MPI_Datatype type, int dest, int tag,
MPI_Comm comm, MPI_Request *req);MPI_Comm comm, MPI_Request *req);

int MPI_Irecv (void *buf, int count,
MPI_Datatype type, int source, int tag,
MPI_Comm comm, MPI_Request *req);

4519 November 2013 MPI course 2013

Non-Blocking Send and Receive

FORTRAN:

MPI_ISEND(buf, count, type, dest, tag, comm, req,
ierr)

MPI_IRECV(buf, count, type, source, tag, comm, req,
ierr)

buf array of type type see table.buf array of type type see table.

count (INTEGER) number of element of buf to be sent

type (INTEGER) MPI type of buf
dest (INTEGER) rank of the destination process

tag (INTEGER) number identifying the message

comm (INTEGER) communicator of the sender and receiver

req (INTEGER) output, identifier of the communications handle

ierr (INTEGER) output, error code (if ierr=0 no error occurs)

4619 November 2013 MPI course 2013

Waiting for Completion

FORTRAN:
MPI_WAIT(req, status, ierr)

MPI_WAITALL (count,array_of_requests,array_of_statuses, ierr)

A call to this subroutine cause the code to wait until the communication pointed by req is

complete.

req(INTEGER):input/output, identifier associated to a communications event (initiated

by MPI_ISEND or MPI_IRECV).

Status(INTEGER) array of size MPI_STATUS_SIZE, if req was associated to a call

to MPI_IRECV, status contains informations on the received message, otherwise

status could contain an error code.

ierr(INTEGER) output, error code (if ierr=0 no error occours).

C:
int MPI_Wait(MPI_Request *req, MPI_Status *status)

Int MPI_Waitall (count,&array_of_requests,&array_of_statuses)

4719 November 2013 MPI course 2013

Testing Completion
FORTRAN:

MPI_TEST(req, flag, status, ierr)

MPI_TESTALL (count,array_of_requests,flag,array_of_statuses,ierr)

A call to this subroutine sets flag to .true. if the communication pointed by req is complete,

sets flag to .false. otherwise.

Req(INTEGER) input/output, identifier associated to a communications event (initiated by

or).MPI_ISEND or MPI_IRECV).

Flag(LOGICAL) output, .true. if communication req has completed .false.

otherwise

Status(INTEGER)array of size MPI_STATUS_SIZE, if req was associated to a call to
MPI_IRECV, status contains informations on the received message, otherwise status

could contain an error code.

Ierr(INTEGER) output, error code (if ierr=0 no error occurs).

C:
int MPI_Test (&request,&flag,&status)

Int MPI_Testall (count,&array_of_requests,&flag,&array_of_statuses)

4819 November 2013 MPI course 2013

Wildcards
� Both in FORTRAN and C MPI_RECV accepts wildcard:

� To receive from any source: MPI_ANY_SOURCE

� To receive with any tag: MPI_ANY_TAG

� Actual source and tag are returned in the receiver’s status� Actual source and tag are returned in the receiver’s status

parameter.

4919 November 2013 MPI course 2013

DEADLOCK

Deadlock or a Race condition occurs when 2 (or more) processes

are blocked and each is waiting for the other to make progress.

0 1init init

compute compute

50

terminate

Action A

Proceed

if 1 has taken
action B

Action B

terminate

Proceed

if 0 has taken
action A

19 November 2013 MPI course 2013

Simple DEADLOCK
PROGRAM deadlock

INCLUDE ‘mpif.h‘

INTEGER ierr, myid, nproc

INTEGER status(MPI_STATUS_SIZE)

REAL A(2), B(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THENIF(myid .EQ. 0) THEN

a(1) = 2.0

a(2) = 4.0

CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)

CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF(myid .EQ. 1) THEN

a(1) = 3.0

a(2) = 5.0

CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)

CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)

END IF

WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2)

CALL MPI_FINALIZE(ierr)

END
5119 November 2013 MPI course 2013

Avoiding DEADLOCK
PROGRAM avoid_lock

INCLUDE ‘mpif.h‘

INTEGER ierr, myid, nproc

INTEGER status(MPI_STATUS_SIZE)

REAL A(2), B(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THENIF(myid .EQ. 0) THEN

a(1) = 2.0

a(2) = 4.0

CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)

CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF(myid .EQ. 1) THEN

a(1) = 3.0

a(2) = 5.0

CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)

CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)

END IF

WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2)

CALL MPI_FINALIZE(ierr)

END
5219 November 2013 MPI course 2013

SendRecv

• Send a message and post a receive before blocking. Will block until the

sending application buffer is free for reuse and until the receiving

application buffer contains the received message.

• The easiest way to send and receive data without worrying about

deadlocks

Sender side

FORTRAN:

CALL MPI_SENDRECV(sndbuf,snd_size, snd_type,destid,tag,

rcvbuf, rcv_size, rcv_type, sourceid, tag,

comm, status, ierr)

53

Sender side

Receiver side

19 November 2013 MPI course 2013

SendRecv example
#include <mpi.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

int myid, numprocs, left, right,i;

int buffer[1], buffer2[1];

MPI_Request request;

MPI_Status status;

0 1 2 3

Useful for cyclic
communication patterns

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

right = (myid + 1) % numprocs;

left = myid - 1;

if (left < 0)

left = numprocs - 1;

buffer[0]=myid;

MPI_Sendrecv(buffer, 10, MPI_INT, left, 123, buffer2, 10, MPI_INT, right,
123, MPI_COMM_WORLD, &status);

}

5419 November 2013 MPI course 2013

SEND and RECV variants
Mode Completion Condition Blocking

subroutine
Non-blocking
subroutine

Standard send Message sent (receive state

unknown)
MPI_SEND MPI_ISEND

receive Completes when a matching

message has arrived
MPI_RECV MPI_IRECV

Synchronous send Only completes after a matching

recv() is posted and the receive

operation is started.

MPI_SSEND MPI_ISSEND

Buffered send Always completes, irrespective of

receiver

Guarantees the message being

buffered

MPI_BSEND MPI_IBSEND

Ready send Always completes, irrespective of

whether the receive has

completed

MPI_RSEND MPI_IRSEND

Final Comments

�MPI is a standard for message-passing and has
numerous implementations (OpenMPI, IntelMPI,
MPICH, etc)

�MPI uses send and receive calls to manage
communications between two processes (point-to-
point)

�The calls can be blocking or non-blocking.

�Non-blocking calls can be used to overlap
communication with computation but wait routines
are needed for synchronisation.

�Deadlock is a common error and is due to incorrect
order of send/receive

