
Profiling 



Introduction 

A serial or parallel program is normally composed by a large number of 
procedures. 

To optimize and parallelize a complex code is fundamental to find out the parts 
where most of time is spent. 

Moreover is very important to understand the graph of computation and the 
dependencies and correlations between the different sections of the code. 

For a good scalability in parallel programs, it’s necessary to have a good load and 
communication balancing between processes. 

To discover the hotspots and the bottlenecks of a code and find out the best 
optimization and parallelization strategy the programmer can follow two 
common methods: 

 Manual instumentation inserting timing and collecting functions (difficult) 

 Automatic profiling using profilers (easier and very powerful)  

 



Introduction 



Measuring execution time  

• Both C/C++ and Fortran programmers are used to instrument the code with  timing and 
printing functions to measure and collect or visualize the time spent in critical or 
computationally intensive code’ sections. 

 Fortran77 

 etime(),dtime() 

 Fortran90 

 cputime(), system_clock(), date_and_time() 

  C/C++ 

  clock() 

• In this kind of operations it must be taken into account of: 

 Intrusivity 

 Granularity 

 Relaiability 

 Overhead 

• Very difficult task for third party complex codes  

 



Measuring execution time 

C example: 

 

#include <time.h> 

clock_t time1, time2; 

double dub_time; 

… 

time1 = clock(); 

for (i = 0; i < nn; i++) 

for (k = 0; k < nn; k++) 

for (j = 0; j < nn; j ++) 

c[i][j] = c[i][j] + a[i][k]*b[k][j]; 

time2 = clock(); 

dub_time = (time2 - time1)/(double) CLOCKS_PER_SEC; 

printf("Time -----------------> %lf \n", dub_time); 



Measuring execution time 

Fortran example: 
real(my_kind), intent(out) :: t  

integer :: time_array(8) 

… 

call date_and_time(values=time_array) 

t1 = 
3600.*time_array(5)+60.*time_array(6)+time_array(7)+time_array(8)/1000. 

do j = 1,n 

do k = 1,n 

do i = 1,n 

c(i,j) = c(i,j) + a(i,k)*b(k,j) 

enddo 

enddo 

enddo 

call date_and_time(values=time_array) 

t2 = 
3600.*time_array(5)+60.*time_array(6)+time_array(7)+time_array(8)/1000. 

write(6,*) t2-t1 



Profilers 

• There are many versions of commercial profilers, developed by manufacturers 
of compilers and specialized software house. In addition there are free 

profilers, as those resulting from the GNU, TAU or Scalasca project. 

Tau Performance System 

- University of Oregon 

Scalasca 

-Research Centre Juelich 
PGPROF 

Intel® VTune™ Amplifier 

OPT 
GNU gprof 

PerfSuite 

– National Center for Supercomputing Applications 



Profilers 

• Profilers allow the programmer to obtain very useful information on the 
various parts of a code with basically two levels of profiling: 

• Subroutine/Function level  

– Timing at routine/funcion level, graph of computation flow 

– less intrusive 

– Near realistic execution time   

• Construct/instruction/statement level 

– capability to profile each instrumented statement 

– more intrusive 

– very accurate timing information  

– longer profiling execution time 



GNU Profiler 

• The GNU profiler “gprof” is an open-source tool that allows profiling of 
serial and parallel codes. 

• GNU profiler how to: 

– Recompile source code using compiler profiling flag: 
 gcc –pg source code 

 g++ -pg source code 

 gfortran –pg source code 

– Run the executable to allow the generation of the files containing 
profiling information: 

o At the end of the execution in the working directory will be 
generated a specific file generally named “gmon.out” containing 
all the analytic information for the profiler 

– Results analysis 
   gprof executable gmon.out 

  



GNU Profiler 
 

Code is automatically instrumented by the compiler when using the –pg flag, during the 
execution: 

– the number of calls and the execution time of each subroutine is collected 

– a call graph containing dependences between subroutines is implemented 

– a binary file containing above information is generated (gmon.out) 

 

The profiler, using data contained in the file gmon.out, is able to give precise information 
about: 

 

1. the number of calls of each routine 

2. the  execution time of a routine 

3. the execution time of a routine and all the child routines called by that routine 

4. a call graph profile containing timing information and relations between 
subroutines 

 



Gnu Profiler 

double add3(double x){ 

        return x+3; 

} 

 

double mysum(double *a, int n){ 

 double sum=0.0; 

 for(int i=0;i<n;i++) 

        sum+=a[i]+add3(a[i]); 

 return sum; 

} 

double init(double *a,int n){ 

 double res;  

 for (int i=0;i<n;i++) a[i]=double(i); 

 res=mysum(a,n); 

 return res; 

} 

 



Example 

int main(){ 

 double res,mysum; 

 int n=1000;  

 double a[n]; 

  

 for (int i=0;i<n;i++){ 

        res=init(a,n); 

 } 

 printf("Result %f\n",res); 

 return 0; 

} 

 



Profiler output 

• The profiler gprof produces two kinds of statistical output: “flat profile” and 
“call graph profile”. 

 

• According to previous example flat profile gives the following information: 

 

Flat profile: 

 

Each sample counts as 0.01 seconds. 

  %   cumulative   self              self     total            

 time   seconds   seconds    calls  us/call  us/call  name     

 48.60      0.41     0.41    10000    41.31    81.61  init(double*, int) 

 27.26      0.64     0.23    10000    23.17    40.30  mysum(double*, int) 

 20.15      0.82     0.17 100000000     0.00     0.00  add3(double) 

  3.56      0.85     0.03                             frame_dummy 



Flat profile 

The meaning of the columns displayed in the flat profile is: 

• % time: percentage of the total execution time your program spent in this 
function 

•  cumulative seconds: cumulative total number of seconds the computer spent 
executing this functions, plus the time spent in all the functions above this one 
in this table 

•  self seconds: number of seconds accounted for by this function alone. 

•  calls: total number of times the function was called 

•  self us/calls: represents the average number of microseconds spent in this 
function per call 

•  total us/call: represents the average number of microseconds spent in this 
function and its descendants per call if this function is profiled, else blank 

•  name: name of the function 



Call Graph 

• Call Graph Profile: gives more detailed timing and calling sequence information through 
a dependency call graph. 

  

Call graph (explanation follows) 

index % time    self  children    called     name 

                                                 <spontaneous> 

[1]     96.4    0.00    0.82                 main [1] 

                0.41    0.40   10000/10000       init(double*, int) [2] 

----------------------------------------------- 

                0.41    0.40   10000/10000       main [1] 

[2]     96.4    0.41    0.40   10000         init(double*, int) [2] 

                0.23    0.17   10000/10000       mysum(double*, int) [3] 



Call Graph 

----------------------------------------------- 

                0.23    0.17   10000/10000       init(double*, int) 

[2] 

[3]     47.6    0.23    0.17   10000         mysum(double*, int) [3] 

                0.17    0.00 100000000/100000000     add3(double) [4] 

----------------------------------------------- 

                0.17    0.00 100000000/100000000     mysum(double*, 

int) [3] 

[4]     20.2    0.17    0.00 100000000         add3(double) [4] 

----------------------------------------------- 

                                                 <spontaneous> 

[5]      3.6    0.03    0.00                 frame_dummy [5] 

----------------------------------------------- 

 

 

 



Line level profiling 

If necessary it’s possible to profile single lines or blocks of code with the GNU profiler 
used together with the “gcov” tool to see: 

– lines that are most frequently accessed 

– computationally critical statements or regions 

Line level profiling with gcov requires the following steps 

– compile with  -fprofile-arcs -ftest-coverage 
At the end of compilation files *.gcno will be produced 

– Run the executable. The execution will produce *.gcda files 

– Run gcov:  gcov [options] sourcefiles  

– At the end of running in the working directory will be present a specific file 
with extension *.gcov  which contains all the analytic information for the 
profiler 

NOTES: 

- gcov is compatible only with code compiled with GNU compilers 

- use low level optimization flags. 

 

 

 

 



Example 

C example 

 
#include <stdlib.h> 

#include <stdio.h> 

 int prime (int num); 

 int main() 

 { 

        int i,cnt=0; 

      for (i=2; i <= 1000000; i++) 

                if (prime(i)) { 

   cnt++; 

                if (cnt%9 == 0) { 

                        printf("%5d\n",i); 

                        cnt = 0; 

                } 

                else 

                printf("%5d ", i); 

                } 

         

 



Example 

putchar('\n'); 

        if (i<2)  

  printf("OK\n"); 

        return 0; 

 } 

  

int prime (int num) { 

 int i; 

 for (i=2; i < num; i++) 

        if (num %i == 0) return 0; 

 return 1; 

 } 

 



Example 

Routine level profiling produces the following information: 

 

Each sample counts as 0.01 seconds. 

  %   cumulative   self              self     total            

 time   seconds   seconds    calls  us/call  us/call  name     

100.99    109.74   109.74   999999   109.74   109.74  prime(int) 

 

Granularity: each sample hit covers 2 byte(s) for 0.01% of 109.74 seconds 

index % time    self  children    called     name 

                                                 <spontaneous> 

[1]    100.0    0.00  109.74                 main [1] 

              109.74    0.00  999999/999999      prime(int) [2] 

----------------------------------------------- 

              109.74    0.00  999999/999999      main [1] 

[2]    100.0  109.74    0.00  999999         prime(int) [2] 

 



Example 

      -:    1:#include <stdlib.h> 

        -:    2:#include <stdio.h> 

        -:    3:  

        -:    4:int prime (int num); 

        -:    5: 

        1:    6:int main() 

        -:    7: { 

        -:    8:        int i; 

        1:    9:        int cnt = 0; 

  1000000:   10:        for (i=2; i <= 1000000; i++) 

   999999:   11:                if (prime(i)) { 

    78498:   12:                cnt++; 

    78498:   13:                if (cnt%9 == 0) { 

     8722:   14:                        printf("%5d\n",i); 

     8722:   15:                        cnt = 0; 

        -:   16:                } 

        -:   17:                else 

    69776:   18:                printf("%5d ", i); 

 



Example 

   -:   19:                } 

        1:   20:        putchar('\n'); 

        1:   21:        if (i<2)  

    #####:   22:                printf("OK\n"); 

        1:   23:        return 0; 

        -:   24: } 

        -:   25: 

   999999:   26:int prime (int num) { 

        -:   27: /* check to see if the number is a prime? */ 

        -:   28: int i; 

37567404990:   29: for (i=2; i < num; i++) 

37567326492:   30:      if (num %i == 0) return 0; 

    78498:   31: return 1; 

        -:   32: } 



Example 

Line level profiling shows that most of time is spent in the for loop and in the if 
construct  contained in the prime function.  

That portion of code can be written in a more efficient way. 
 

 int prime (int num) { 

 /* check to see if the number is a prime? */ 

  int i; 

  for (i=2; i <= faster(num); i++) 

  if (num %i == 0) 

   return 0; 

  return 1; 

 } 

 

 int faster (int num) 

 { 

  return (int) sqrt( (float) num); 

} 



Example 

       

  1:     7:int main(){ 

        -:    8: int i; 

        1:    9: int colcnt = 0; 

  1000000:   10: for (i=2; i <= 1000000; i++) 

   999999:   11: if (prime(i)) { 

    78498:   12: colcnt++; 

    78498:   13: if (colcnt%9 == 0) { 

     8722:   14: printf("%5d\n",i); 

     8722:   15: colcnt = 0; 

        -:   16: } 

        -:   17: else 

    69776:   18: printf("%5d ", i); 

        -:   19: } 

         



Example 

   1:   20: putchar('\n'); 

        1:   21: return 0; 

        -:   22: } 

        -:   23: 

   999999:   24: int prime (int num) { 

        -:   25: int i; 

 67818902:   26: for (i=2; i <= faster(num); i++) 

 67740404:   27: if (num %i == 0) 

   921501:   28:         return 0; 

    78498:   29: return 1; 

        -:   30: } 

        -:   31: 

 67818902:   32: int faster (int num) 

        -:   33: { 

 67818902:   34: return (int) sqrt( (float) num); 

        -:   35: } 

 

 

Results 

0.96 sec Vs 109.67 sec 

10^7 operations VS 

10^10 operations 



gprof execution time impact 

•  Routine level and above all line level profiling can cause a certain overhead in execution 
time: 

• Travelling Salesman Problem (TSP): 

       g++ -pg –o tsp_prof tsp.cc 

  g++ -o tsp_no_prof tsp.cc 

 

• Execution time 
time ./TSP.noprof 

10.260u 0.000s 0:10.26 100.0% 

 

time ./TSP.prof 

15.480u 0.020s 0:15.87 97.6% 

Be careful when you have to choose input dataset and configuration for profiling  

 

 
 

 



Real case Air Pollution Model 
• Model structure and call  graph 

• Fluid dynamics equations are solved over a 3D grid 
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Real case air pollution model 

•  Profiling with GNU profiler (call graph) 

 

 

 

•  1 day of simulation. Only the computationally intensive routines of the model are 
shown 

 

 

 

•  5 days of simulation. Only the computationally intensive routines of the  

model are shown 

 

 

 



Real case air pollution model parallelization 
strategy 

Dependency call graph of 
“opspltae” routine 

 
 

 

  



Real case air pollution model 
parallelization strategy 

•  Opspltae: 

– The most computationally intensive part 
of this routine is Loop 500 which 
contains calls to ztrans, phfact, 
chemnew,aero_iso routines which 
work on a single X,Y point of the 3D grid 
with no communication, so  can be 
called in parallel by each MPI process. 

– The operations in Loop 500 are 
indipendent along X,Y direction  
domain can be decomposed along X or Y. 

–  At the end of the loop 500 

communication is required because 
some matrices must be gathered by 
master process and broadcasted to other 
MPI processes. 
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Real case air pollution model 
parallelization strategy 

•  Horizae: 
– This routine is responsible for the transport 

along X,Y directions. It’s called  in opspltae 
before and after Loop 500. It receives in 
input the entire 3D grid and integrates 
respectively in the X and Y dimension. 

– During integration in the X dimension domain 
is decomposed in the Y direction and vice 
versa. 

– Between the two integration phases 
communication of some matrices is required  
and at the end of the routine the master must 
receive all the partial contributes by others 
MPI processes.  

 

 

 Results 

 Real speedup : 7.6   

 
 

Why? 
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Parallel codes profiling with gprof 

GNU profiler can be used to profile parallel codes but result analysis  is not 
straightforward .  

To profile parallel codes the user must follow these steps: 

• Set the environment variable GMON_OUT_PREFIX 

 export GMON_OUT_PREFIX=“profile_data_file” 

• Compile with “–p” flag:  

 mpic++/mpicc/mpif70/mpif90 –p filenames 

• Run the executable:  

 mpirun –np number executable 

At the end of simulation  in the working directory will be present as many 
profile_data_file.pid  files as  MPI or OpenMP processes were used. 

Each profiling file must be analyzed and than results have to be matched together: 

 gprof ./executable profile_data_file.pid 



TAU Tuning and Analysis Utilities 
 

• TAU Performance System® is a portable profiling and tracing toolkit for 
performance analysis of serial and parallel programs written in Fortran, C, 
C++, Java, and Python. 

www.cs.uoregon.edu/research/tau 

 

• 12+ years of project in which are currently involved: 

– University of Oregon Performance Research Lab 

– LANL Advanced Computing Laboratory 

– Research Centre Julich at ZAM, Germany 

• TAU (Tuning and Analysis Utilities) is capable of gathering performance 
information through instrumentation of functions, methods, basic blocks 
and statements of serial and shared or distributed memory parallel codes 

• It’s portable on all architectures 

• Provides powerful and user friendly graphic tools for result analysis 

 

http://www.cs.uoregon.edu/research/tau
http://www.cs.uoregon.edu/research/tau


TAU: architecture 



TAU Installation and configuration 

During  the installation phase TAU requires different configurations flags depending on 
the kind of code to be analyzed.    

•  After configuration TAU can be easily installed with: 
•   make 
•   make install  



TAU: introduction 

• TAU provides three different methods to track the performance of your application. 

• The simplest way is to use TAU with dynamic instrumentation based on pre-charged 
libraries 

Dynamic instrumentation 

• Doesn’t requires to recompile the executable 

• Instrumentation is achieved at run-time through library pre-loading  

• Dynamic instrumentation include tracking MPI, io, memory, cuda, opencl library calls. 
MPI instrumentation is included by default, the others are enabled by command-line 
options to tau_exec. 

– Serial code 

  %> tau_exec -io ./a.out  

– Parallel MPI code 

  %> mpirun -np 4 tau_exec -io ./a.out 

– Parallel MPI + OpenMP code 

  %> mpirun –x OMP_NUM_THREADS=2 -np 4 tau_exec -io 

./a.out  

 

 

 

 



TAU: Compiler based 
instrumentation 

• For more detailed profiles, TAU provides two means to compile your application 
with TAU: through your compiler or through source transformation using PDT. 

• It’s necessary to recompile the application, static instrumentation at compile time 

• TAU provides these scripts to instrument and compile Fortran, C,and C++ programs 
respectively: 

– tau_f90.sh 

– tau_cc.sh 

– tau_cxx.sh 

• Compiler based instrumentation needs the following steps: 

– Environment configuration 

– Code recompiling 

– Execution 

– Result analysis 



TAU: Compiler based 
instrumentation 

1. Environment configuration: 

%>export TAU_MAKEFILE=[path to tau]/[arch]/lib/[makefile]  

%>export TAU_OPTIONS=‘-optCompInst –optRevert’ 

Optional: 

%>export PROFILEDIR = [path to directory with result] 

 

2. Code recompiling: 

%>tau_cc.sh source_code.c  

 

3. To enable callpath creation: 

%>export TAU_CALLPATH=1 

%>export TAU_CALLPATH_DEPTH=30 

 

4. To enable MPI message statistics 

%>export TAU_TRACK_MESSAGE=1 



TAU environment variables 

Environment Variable Default Description 

TAU_PROFILE 0 Set to 1 to have TAU profile your code 

TAU_CALLPATH 0 When set to 1 TAU will generate call-path data. Use with 
TAU_CALLPATH_DEPTH.  

TAU_TRACK_MEMORY_LE
AKS 

0 Set to 1 for tracking of memory leaks (to be used with 
tau_exec –memory) 

TAU_TRACK_HEAP or 
TAU_TRACK_HEADROOM 

0 Setting to 1 turns on tracking heap memory/headroom at 
routine entry & exit using context events (e.g., Heap at 
Entry: main=>foo=>bar) 

TAU_CALLPATH_DEPTH 2 Callapath depth. 0 No callapath. 1 flat profile 

TAU_SYNCHRONIZE_CLO
CKS 

1 When set TAU will correct for any time discrepancies between 
nodes because of their CPU clock lag. 

TAU_COMM_MATRIX 0 If set to 1 generate MPI communication matrix data. 

TAU_THROTTLE 1 If set to 1 enables the runtime throttling of events that are 
lightweight 

TAU_THROTTLE_NUMCAL
LS 

100000 Set the maximum number of calls that will be profiled for any 
function when TAU_THROTTLE is enabled 

TAU_THROTTLE_PERCAL
L 

10 Set the minimum inclusive time (in milliseconds) a function has 
to have to be instrumented when TAU_THROTTLE is enabled. 



TAU_OPTIONS 

• Optional parameters for TAU_OPTIONS: [tau_compiler.sh –help] 

 

 -optVerbose  Vebose debugging 
 

 -optCompInst  Compiler based instrumentation 
 

 -optNoCompInst  No Compiler based instrumentation 
 

 -optDetectMemoryLeaks  Debug memory allocations/de-allocations 
 

 -optPreProcess          Fortran preprocessing before code    
  instrumentation 

 

 -optTauSelectFile=""  Selective file for the tau_instrumentor 

 



Result analysis 
• At the end of a run, a code instrumented with TAU produces  a series of files 

“profile.x.x.x” containing the profiling information. 

• TAU provides two tools for profiling analysis :  

– pprof command line,  useful for a quick view summary of TAU performance 

– Paraprof with a sophisticated GUI allows very detailed and powerful analysis  

• Usage: pprof [-c|-b|-m|-t|-e|-i|-v] [-r] [-s] [-n num] [-f filename] [-p] [-l] [-d] 
[node numbers] 

 -a : Show all location information available 

 -c : Sort according to number of Calls  

 -b : Sort according to number of suBroutines called by a function  

 -m : Sort according to Milliseconds (exclusive time total) 

 -t : Sort according to Total milliseconds (inclusive time total)  (default) 

 -e : Sort according to Exclusive time per call (msec/call) 

 -i : Sort according to Inclusive time per call (total msec/call) 

 -v : Sort according to Standard Deviation (excl usec) 

 -r : Reverse sorting order 

 -s : print only Summary profile information  

 -n <num> : print only first <num> number of functions  

 -f filename : specify full path and Filename without node ids 

 -p : suPpress conversion to hh:mm:ss:mmm format 

 -l : List all functions and exit 

 -d : Dump output format (for tau_reduce) [node numbers] : prints only info about all contexts/threads of given 
node numbers 

 

 

 

 



Result analysis: paraprof 
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Paraprof 



Example 
#include<stdio.h> 

double add3(double x){ 

        return x+3;} 

double mysum(double *a, int n){ 

     double sum=0.0; 

     for(int i=0;i<n;i++) 

           sum+=a[i]+add3(a[i]); 

     return sum; 

} 

double init(double *a,int n){ 

        double res;  

        for (int i=0;i<n;i++) a[i]=double(i); 

         res=mysum(a,n); 

         return res; 

} 

int main(){ 

 double res,mysum; 

 int n=30000; 

 double a[n]; 

 for (int i=0;i<n;i++){ 

         res=init(a,n); 

} 

 printf("Result %f\n",res); 

 return 0;} 

 



Pprof 
pprof output:  

%> pprof 

 
Reading Profile files in profile.* 

  

NODE 0;CONTEXT 0;THREAD 0: 

------------------------------------------------------------------------------- 

%Time    Exclusive    Inclusive       #Call      #Subrs  Inclusive Name 

              msec   total msec                          usec/call  

------------------------------------------------------------------------------- 

100.0            3     3:20.342           1           1  200342511 .TAU application 

100.0            4     3:20.338           1       30000  200338851 main  

100.0        2,344     3:20.334       30000       30000       6678 init  

 98.8     1:40.824     3:17.989       30000       9E+08       6600 mysum  

 48.5     1:37.164     1:37.164       9E+08           0          0 add3 

 

 



46 

Paraprof Manager Window 
paraprof output: 

 

 

This window is used to manage profile data. The user can upload/download profile data, 

edit meta-data,launch visual displays, export data, derive new metrics, etc. 



Thread bar chart 

This display graphs each function on a particular thread for comparison. The metric, 
units, and sort order can be changed from the Options menu. 



Call Graph  

 

 

•  This display shows callpath data in a graph 
using two metrics, one determines the 
width, the other the color.  

 
•  The full name of the function as well as 

the two values (color and width) are 
displayed in a tooltip when hovering over a 
box.  

 
•  By clicking on a box, the actual ancestors 

and descendants for that function and 
their paths (arrows) will be highlighted 
with blue. 

  
•  This allows you to see which functions are 

called by which other functions since the 
interplay of multiple paths may obscure it. 



Thread Call Path Relations Window  

For example “mysum” is called from “init” 30000 times for a total of 64.5 seconds and calls “add3” 
function. 
TAU automatically throttles short running functions in an effort to reduce the amount of overhead 
associated with profiles of such functions, default throttle limit is: 
numcalls> 100000 && usecs/call < 10 

To change default settings TAU gives the following environment variables: 
TAU_THROTTLE_NUMCALLS, TAU_THROTTLE_PERCALL 

To disable TAU throttle : export TAU_THROTTLE=0 



Thread Statistics Table 

This display shows the callpath data in a table. Each callpath can be traced from root to 
leaf by opening each node in the tree view.  
A colorscale immediately draws attention to "hot spots" areas that contain highest values. 



Tau profiler: parallel codes 

TAU provides a lot of tools to analyze OpenMP, MPI or OpenMP + MPI 
parallel codes. 

   

Profiling the application the user can obtain a lot of useful information 
which can help to identify the causes of an unexpected low parallel 
efficiency. 

 

Principal factors which can affect parallel efficiency are: 

– load balancing 

– communication overhead 

– process synchronization 

– Latency and bandwidth 
 

 



Tau profiler: parallel codes 

• Configure: 

%>export TAU_MAKEFILE=[path to 

tau]/[arch]/lib/[makefile]  

%>export TAU_OPTIONS=-optCompInst 

• Compile: 

Tau_cc.sh –o executable source.c (C) 

Tau_cxx.sh –o executable source.cpp (C++) 

Tau_f90.sh –o executable source.f90 (Fortran) 

• Run the application: 

mpirun -np #procs ./executable 

At the end of simulation, in the working directory or in the path specified with 
the PROFILEDIR variable, the data for the profiler  will be saved in files 
profile.x.x.x 

 



Unbalanced load 
# include <cstdlib> 

# include <iostream> 

# include <iomanip> 

# include <cmath> 

using namespace std; 

# include "mpi.h" 

void compute(float * data, int start, int stop){ 

        for (int i=0;i<1000000;i++){ 

                for(int j=start;j<stop;j++){ 

                        data[j]=pow((double)j/(j+4),3.5);}} 

} 

int main ( int argc, char *argv[] ) 

 { 

  int count; 

  float data[24000]; 

  int dest,i,num_procs,rank,tag; 

  MPI::Status status; 

  float value[12000]; 

 MPI::Init ( argc, argv ); 

 rank = MPI::COMM_WORLD.Get_rank ( ); 

 if ( rank == 0 ) 

   



Unbalanced load 
{ 

    num_procs = MPI::COMM_WORLD.Get_size ( ); 

  

    cout << "  The number of processes available is " << num_procs << 
"\n"; 

  }  

if ( rank == 0 )  

  { 

    tag = 55; 

    MPI::COMM_WORLD.Recv ( value,12000, MPI::FLOAT, MPI::ANY_SOURCE, 
tag,  

      status ); 

  

    cout << "P:" << rank << " Got data from process " << 

      status.Get_source() << "\n"; 

    count = status.Get_count ( MPI::FLOAT ); 

    cout << "P:" << rank << " Got " << count << " elements.\n"; 

    compute(value,0,12000); 

  } 

 

 

   

 



Unbalanced load 
else if ( rank == 1 ) 

  { 

    cout << "\n"; 

    cout << "P:" << rank << " - setting up data to send to process 0.\n"; 

    for ( i = 0; i <24000; i++ )  

    { 

      data[i] = i; 

    } 

    dest = 0; 

    tag = 55; 

    MPI::COMM_WORLD.Send ( data, 12000, MPI::FLOAT, dest, tag ); 

    compute(data,12000,24000); 

  }else{ 

    cout << "\n"; 

    cout << "P:" << rank << " - MPI has no work for me!\n"; 

  } 

  MPI::Finalize ( ); 

  if ( rank == 0 ) 

  { 

    cout << "  Normal end of execution.\n"; 

  }  

  return 0; 

} 

 

 



Unbalanced load 
 

Output: 

 
The number of processes available is 4 

P:0 Got data from process 1 

P:0 Got 12000 elements. 

  

P:1 - setting up data to send to process 0. 

  

P:3 - MPI has no work for me! 

  

P:2 - MPI has no work for me! 

Normal end of execution. 

 

 

 



Unstacked bars 

 Very useful to compare individual functions across threads in a global display 



Comparison window 

 Very useful to compare the behavior of process and threads in all the functions 
or regions of the code to find load unbalances.   



3D Visualizer 

 

 This visualization method shows two metrics for all functions, all threads. The height represents one 
chosen metric, and the color, another. These are selected from the drop-down boxes on the right. 

 To pinpoint a specific value in the plot, move the Function and Thread sliders to cycle  

through the available functions/threads. 

MPI_Finalize() 

MPI_Init() 

compute() 



Balanced load 
Balancing the load: 
int main ( int argc, char *argv[] ) 

{ 

MPI::Init ( argc, argv ); 

rank = MPI::COMM_WORLD.Get_rank ( ); 

float data[24000]; 

  if ( rank == 0 ) 

  { 

    num_procs = MPI::COMM_WORLD.Get_size ( ); 

    cout << "  The number of processes available is " << num_procs << "\n"; 

  } 

  int subd = 24000/num_procs   

  if ( rank!= 0)  

  { 

    tag = 55; 

    MPI::COMM_WORLD.Recv ( data,subd, MPI::FLOAT, MPI::ANY_SOURCE, tag, status ); 

    cout << "P:" << rank << " Got data from process " << 

      status.Get_source() << "\n"; 

    count = status.Get_count ( MPI::FLOAT ); 

    cout << "P:" << rank << " Got " << count << " elements.\n"; 

    compute(data,rank*subd,rank*subd+subd); 

    printf("Done\n"); 

  } 

   



Balanced load 
else if ( rank == 0 ) 

  { 

    cout << "\n"; 

    cout << "P:" << rank << " - setting up data to send to processes.\n"; 

    for ( i = 0; i <24000; i++ )  

    { 

      data[i] = i; 

    } 

    tag = 55; 

    printf("Done\n"); 

    for(int el=1;el<num_procs;el++){ 

        MPI::COMM_WORLD.Send ( &data[subd*el], subd, MPI::FLOAT, el, tag ); 

        } 

    compute(data,0,subd); 

  } 

  MPI::Finalize ( ); 

  if ( rank == 0 ) 

  { 

    cout << "  Normal end of execution.\n"; 

  }  

  return 0; 

} 

 

 



Balanced load 
• Output: 
 The number of processes available is 6 

P:0 - setting up data to send to processes. 

Done 

P:5 Got data from process 0 

P:5 Got 4000 elements. 

P:1 Got data from process 0 

P:1 Got 4000 elements. 

P:2 Got data from process 0 

P:2 Got 4000 elements. 

P:3 Got data from process 0 

P:3 Got 4000 elements. 

P:4 Got data from process 0 

P:4 Got 4000 elements. 

Done 

Done 

Done 

Done 

Done 

Normal end of execution. 

 



Balanced load 

MPI_Finalize() 

MPI_Init() 

compute() 



Real Case Air Pollution Model 

Inclusive Exclusive Calls/Tot.Calls 

Metric: TIME 
Sorted By: Exclusive 
Units: seconds 

Minor computing 

routines 

Opspltae 

Output 

Units 

Horizae 

Horizae 

Units 

Ztrans 

Phfact 

Chemnew 

Aero_iso 

Loop 500 

Loop over  time steps 



Real Case Air Pollution Model 

Amdahl law 
 
Theoretical speedup 

P=0.93  S(N)=14  

Real speedup = 7.6  

Let’s check communication and load balncing !! 



Real Case Air Pollution Model 

Master process Slave processes 

Load balancing issues Communication issues 

The imbalance of computational load causes an overhead in the MPI directives due to long 
synchronization times dramatically reducing the scalability 



TAU  Instrumentation API 

• Using the specific API with TAU it’s possible to obtain a very detailed profiling of 
your code. 

• Code instrumentation based on the API can be done authomatically or 
manually. With manual code instrumentation the programmer can establish 
exactly which sections are to be profiled and how.  

• TAU API is available for C++, C and Fortran77/90/95 codes and is portable 
among different platforms and compilers. 

• To use the API at the beginning of each source to be profiled must be present  
the line: #include<TAU.h> 

• Most important API capabilities: 

– Routines profiling 

– Blocks or lines profiling 

– Heap-memory tracing 
 

 

 

 

 

 

 



TAU  Instrumentation API 
• Configuration and Initialization: 

– At the beginning of each instrumented source file, include the header “TAU.h” 

  TAU_PROFILE_INIT(argc, argv); 

  TAU_PROFILE_SET_NODE(myNode); 

 

• Class funcitions and methods (C++ only): 

  TAU_PROFILE(name, type, group); 

 

• User-defined timing 

  TAU_PROFILE_TIMER(timer, name, type, group); 

  TAU_PROFILE_START(timer); 

  TAU_PROFILE_STOP(timer); 

 

• Heap-memory tracing: 

    TAU_TRACK_MEMORY(); 

   TAU_SET_INTERRUPT_INTERVAL(seconds); 

    



C++ example 
#include <TAU.h> 

int foo(); 

int main(int argc, char **argv) 

{ 

 TAU_PROFILE("int main(int, char **)","", TAU_DEFAULT); 

 TAU_PROFILE_INIT(argc, argv); 

 TAU_PROFILE_SET_NODE(0); /* just for serial programs */ 

 int cond=foo(); 

 return 0; 

} 

int foo() 

{ 

 int N=100000; 

 double a[N]; 

 int cond=0; 

 TAU_PROFILE("int foo(void)","", TAU_DEFAULT); // routine level profiling foo() 

 TAU_PROFILE_TIMER(t,"foo(): for loop", "[22:29 file.cpp]", TAU_USER); 

 TAU_PROFILE_START(t); 

for(int i = 0; i < N ; i++){ 

 a[i]=i/2; 

 if (i%2 ==0) cond=0; 

  else cond=1; 

} 

 TAU_PROFILE_STOP(t); 

 if (cond==1) return 25; 

 else return 15;} 

 



Example 

With manual instrumentation using the API we can see detailed statistic  

information on a specific block of code 



Fortran example 
PROGRAM SUM_OF_CUBES 

integer profiler(2) 

save profiler 

INTEGER :: H, T, U 

call TAU_PROFILE_INIT() 

call TAU_PROFILE_TIMER(profiler, 'PROGRAM SUM_OF_CUBES') 

call TAU_PROFILE_START(profiler) 

call TAU_PROFILE_SET_NODE(0) 

! This program prints all 3-digit numbers that 

! equal the sum of the cubes of their digits. 

DO H = 1, 9 

DO T = 0, 9 

DO U = 0, 9 

IF (100*H + 10*T + U == H**3 + T**3 + U**3) THEN 

PRINT "(3I1)", H, T, U 

ENDIF 

END DO 

END DO 

END DO 

call TAU_PROFILE_STOP(profiler) 

END PROGRAM SUM_OF_CUBES 



TAU source instrumentation with PDT 

• Sometimes, for complex routines manual source 
instrumentation can become a long and error prone task. 

• With TAU instrumentation can be inserted in the source code 
using an automatic instrumentor tool based on the Program 
Database Toolkit (PDT). 



TAU source instrumentation with PDT 

TAU and PDT howto: 

 

• Parse the source code to produce the .pdb file: 

– cxxparse file.cpp C++ 

– cparse   file.c C 

– f95parse file.f90 Fortran 

 

• Instrument the program: 

– tau_instrumentor file.pdb file.cpp –o 

file.inst.cpp –f select.tau 

 

• Complile: 

– tau_compiler.sh file.inst.cpp –o file.exe 



TAU source instrumentation with PDT 

• The ”-f” flag associated to the command “tau_instrumentator” allows 
you to customize the instrumentation of a program by using a selective 
instrumentation file. This instrumentation file is used to manually control which 
parts of the application are profiled and how they are profiled. 

• Selective instrumentation file can contain the following sections:  

 

1.  Routines exclusion/inclusion list: 

 BEGIN_EXCLUDE_LIST / END_EXCLUDE_LIST  

BEGIN_INCLUDE_LIST / END_INCLUDE_LIST  

2. Files exclusion/inclusion list: 

 BEGIN_FILE_EXCLUDE_LIST / END_FILE_EXCLUDE_LIST  

BEGIN_FILE_INCLUDE_LIST / END_FILE_INCLUDE_LIST  

3. More detailed instrumentation specifics: 

 BEGIN_INSTRUMENT_SECTION / END_INSTRUMENT_SECTION 

 



TAU source instrumentation with PDT 

In a BEGIN_INSTRUMENT_SECTION/END_INSTRUMENT_SECTION 
block it’s possible to specify the profiling of: 

 

• Cycles 

loops file=“filename.cpp" routine=“routinename"  

• Memory 

memory file=“filename.f90" routine=“routinename"  

• I/O with dimension of read/write data 

io file="foo.f90" routine=“routinename"  

• Static and dynamic timers 

static/dynamic timer name=“name" file=“filename.c" 

line=17 to line=23 



TAU with PDT Real Case Air Pollution Model 

Custom profiling  

Instrumentation file : instrument_rules.txt 

------------------------------------- 

BEGIN_FILE_INCLUDE_LIST  

opspltae.f  

chemnew.f  

horizae.f  

ztrans.f  

END_FILE_INCLUDE_LIST  

  

  

BEGIN_INSTRUMENT_SECTION 

  

loops file="opspltae.f" routine="OPSPLTAE" 

loops file="chemnew.f" routine="CHEMNEW" 

loops file="horizae.f" routine="HORIZAE" 

loops file="ztrans.f" routine="ZTRANS" 

io file="wrout1.f" routine="WROUT1"  

dynamic timer name="dyn_timer" file="opspltae.f" line=183 to line=189  

END_INSTRUMENT_SECTION 

-------------------------------------- 

Minor computing 

routines 

Opspltae 

Output 

Units 

Horizae 

Horizae 

Units 

Ztrans 

Phfact 

Chemnew 

Aero_iso 

Loop 500 

Loop over  time steps 



TAU with PDT Real Case Air Pollution Model 

Routine opspltae: Loop 500, TAU automatic instrumentation 

call TAU_PROFILE_TIMER(profiler, 'OPSPLTAE [{opspltae.f} {2,18}]') 

call TAU_PROFILE_START(profiler) 

call TAU_PROFILE_TIMER(t_131, ' Loop: OPSPLTAE [{opspltae.f} {131,7}-{143,12}]') 

call TAU_PROFILE_TIMER(t_195, ' Loop: OPSPLTAE [{opspltae.f} {195,10}-{203,17}]') 

call TAU_PROFILE_TIMER(t_247, ' Loop: OPSPLTAE [{opspltae.f} {247,7}-{592,14}]') 

call TAU_PROFILE_TIMER(t_597, ' Loop: OPSPLTAE [{opspltae.f} {597,10}-{605,17}]') 

call TAU_PROFILE_TIMER(t_639, ' Loop: OPSPLTAE [{opspltae.f} {639,10}-{647,17}]') 

iugrid= iaddrs('UGRID   ',1,1,1,1,1) 

  ………… 

 call TAU_PROFILE_START(t_247) 

    do 500 i=2,nxm1 

        do 500 j=2,nym1 

        .………………. 

        ……………….. 

     500   continue 

call TAU_PROFILE_STOP(t_247) 

TAU TIMER 
Initialization 

TAU Loop 500 instrumentation 

TAU Loop 500 end instrumentation 



TAU with PDT Real Case Air Pollution Model 

Profiling time with default routine level compiler based instrumentation :  4192 sec 
Profiling time with PDT and selective instrumentation :    1913 sec 
Execution time without profiling overhead:     1875 sec 
 



TAU: Memory Profiling C/C++ 
TAU can evaluate the following memory events: 

– how much heap memory is currently used 

– how much a program can grow (or how much headroom it has) before it runs 
out of free memory on the heap 

– Memory leaks (C/C++) 
TAU gives two main functions to evaluate memory: 

– TAU_TRACK_MEMORY() 

– TAU_TRACK_MEMORY_HERE() 
Esempio: 

#include<TAU.h> 

int main(int argc, char **argv) {  

 

 TAU_TRACK_MEMORY();  

 sleep(12);   

 double *x = new double[1024];  

 sleep(12);  

return 0; }  

 



TAU: Memory Profiling C/C++ 
NODE 0;CONTEXT 0;THREAD 0: 

--------------------------------------------------------------------------------------- 

%Time    Exclusive    Inclusive       #Call      #Subrs  Inclusive Name 

              msec   total msec                          usec/call  

--------------------------------------------------------------------------------------- 

100.0       20,002       20,002           1           0   20002086 int main(int, char **)  

--------------------------------------------------------------------------------------- 

  

USER EVENTS Profile :NODE 0, CONTEXT 0, THREAD 0 

--------------------------------------------------------------------------------------- 

NumSamples   MaxValue   MinValue  MeanValue  Std. Dev.  Event Name 

--------------------------------------------------------------------------------------- 

         2      31.92       23.8      27.86      4.062  Memory Utilization (heap, in KB) 

--------------------------------------------------------------------------------------- 

 

In the same way for the functions: 

TAU_TRACK_MEMORY_HEADROOM()  

TAU_TRACK_MEMORY_HEADROOM_HERE()  

 

 



TAU: Memory Profiling Fortran 
To profile memory usage in Fortran 90 use TAU's ability to selectively instrument a program. 
The option -optTauSelectFile=<file> for tau_compilier.sh let you specify a 
selective instrumentation file which defines regions of the source code to instrument. 
 

To begin memory profiling, state which file/routines to profile by typing: 

 
BEGIN_INSTRUMENT_SECTION 

memory file=“source.f90” routine=“routine_name” 

END_INSTRUMENT_SECTION 

 

Memory Profile in Fortran gives you these three metrics: 

 

– Total size of memory for each malloc and free in the source code 

– The callpath for each occurrence of malloc or free 

– A list of all variable that were not deallocated in the source code. 



Memory Hierarchy 

DISK 

RAM 

L2 CACHE  

L1 CACHE   

REGISTER Speed Distance from  

processors 

Memory Size 

Research 

flow 



Hit and Miss 

• Hit: the processor immediately reads or writes the data in the 
cache line 

• Miss: the cache allocates a new entry, and copies in data from 
main memory. 

 

Hit rate: percentage of memory accesses which are satisfied by 
cache 

Miss rate: 1 - hit rate 

Hit time: Time to access cache 

Miss Time: Time to replace a block in cache and deliver data 



Performance Optimization 

• Optimization of cache access can be helpful to improve code performance 

 

• Optimization can be done at different stage: 

 - During compililation in order to reduce the instruction missing and the 
data missing 

 - Writing code in order to reduce spatial and time locality  

 

Cache access can be analized through hardware counters and through  
profiling tools. 

  



PAPI 
• Performance Api Programming Interface 

 

• http://icl.cs.utk.edu/papi/ 

 

• PAPI is a set of API that can be used to  access to the hardware counter 
information 

 

• PAPI can be used with serial and parallel code 

 

• PAPI can be used in two different way: 

1. Low Level Interface 

2. High Level Interface 

http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/


PAPI:High Level 

• Simple to use 

• High level API 

• 8 functions for C/C++  and Fortran. 

 
PAPI_start_counters PAPI_stop_counters 

PAPI_read_counters PAPI_accum_counters 

PAPI_num_counters  PAPI_ipc  

PAPI_flips  PAPI_flops 

 

Example: 
 #include "papi.h” 
 #define NUM_EVENTS 2 
 long_long values[NUM_EVENTS]; 

 unsigned int Events[NUM_EVENTS]={PAPI_TOT_INS,PAPI_TOT_CYC}; 

 PAPI_start_counters((int*)Events,NUM_EVENTS); 

 do_work(); 

  retval = PAPI_stop_counters(values,NUM_EVENTS); 

 

 



PAPI Low Level 

• Low level interface 

• Increase granularity of information 

• Hard to use 

 

PAPI can be used integrated in many high level instruments: 

• TAU (U Oregon) http://www.cs.uoregon.edu/research/tau/ 

•  HPCToolkit (Rice Univ) http://hipersoft.cs.rice.edu/hpctoolkit/ 

•  KOJAK (UTK, FZ Juelich) http://icl.cs.utk.edu/kojak/ 

•  PerfSuite (NCSA) http://perfsuite.ncsa.uiuc.edu/ 

 

 



TAU & PAPI 

• Before compiling configure TAU with the flag  

  -papi=directory_to_papi 

• Verify events supported by your OS: 
 papi_avail 

PAPI Version             : 4.1.2.1 

Vendor string and code   : GenuineIntel (1) 

Model string and code    : Intel(R) Xeon(R) CPU           E7520  @ 1.87GHz (46) 

CPU Revision             : 6.000000 

CPUID Info               : Family: 6  Model: 46  Stepping: 6 

CPU Megahertz            : 1064.000000 

CPU Clock Megahertz      : 1064 

Hdw Threads per core     : 2 

Cores per Socket         : 4 

NUMA Nodes               : 8 

CPU's per Node           : 8 

Total CPU's              : 64 

Number Hardware Counters : 7 

Max Multiplex Counters   : 512 

 

 

 

 

 



TAU & PAPI 
• Checks metrics compatibility: 

papi_event_chooser metrica1 metrica2 metricaN 

 ./papi_event_chooser PAPI_FP_OPS PAPI_L1_DCM 

Event Chooser: Available events which can be added with given events. 

-------------------------------------------------------------------------------- 

PAPI Version             : 4.1.2.1 

Vendor string and code   : GenuineIntel (1) 

Model string and code    : Intel(R) Xeon(R) CPU           E7520  @ 1.87GHz (46) 

CPU Revision             : 6.000000 

CPUID Info               : Family: 6  Model: 46  Stepping: 6 

CPU Megahertz            : 1064.000000 

CPU Clock Megahertz      : 1064 

Hdw Threads per core     : 2 

Cores per Socket         : 4 

NUMA Nodes               : 8 

CPU's per Node           : 8 

Total CPU's              : 64 

Number Hardware Counters : 7 

Max Multiplex Counters   : 512 

-------------------------------------------------------------------------------- 

  

Usage: papi_event_chooser NATIVE|PRESET evt1 evt2 ...  

 

 



TAU & PAPI 
./papi_event_chooser PAPI_FP_OPS GET_TIME_OF_DAY 

Event Chooser: Available events which can be added with given events. 

-------------------------------------------------------------------------------- 

PAPI Version             : 4.1.2.1 

Vendor string and code   : GenuineIntel (1) 

Model string and code    : Intel(R) Xeon(R) CPU           E7520  @ 1.87GHz (46) 

CPU Revision             : 6.000000 

CPUID Info               : Family: 6  Model: 46  Stepping: 6 

CPU Megahertz            : 1064.000000 

CPU Clock Megahertz      : 1064 

Hdw Threads per core     : 2 

Cores per Socket         : 4 

NUMA Nodes               : 8 

CPU's per Node           : 8 

Total CPU's              : 64 

Number Hardware Counters : 7 

Max Multiplex Counters   : 512 

-------------------------------------------------------------------------------- 

 Event GET_TIME_OF_DAY can't be counted with others 

 

NOTE: In order to use TAU with different harware counter it is necessary to configure it 
with the option -MULTIPLECOUNTERS  

  
 



TAU & PAPI 
- Set TAU_MAKEFILE environment variable: 

  export TAU_MAKEFILE $TAU/Makefile.tau-

multiplecounters-mpi-papi-pdt 

 

- Set TAU_OPTIONS: 

 export TAU_OPTIONS='-optCompInst -optRevert‘ 

 

- Compile with TAU wrapper 

 tau_cc.sh example.cc –o my_exe 

 

- Select hardware counter neededs: 
export TAU_METRICS=GET_TIME_OF_DAY:PAPI_FP_INS:PAPI_L1_DCM 



TAU & PAPI 
- Run the program as usual 

 ./my_exe 

 

• At the end of run a folder for each selected hardware counter will be created in 
the working directory  

 

- MULTI__GET_TIME_OF_DAY 

- MULTI__PAPI_FP_OPS 

- MULTI__PAPI_L1_DCM 

 

• To analize results you can simply use paraprof gui. 
 

 

 

 
 



PAPI EVENTS 
Counter/Event Name Meaning 

PAPI_L1_DCM Level 1 data cache misses  

PAPI_L1_ICM Level 1 instruction cache misses  

PAPI_L2_DCM Level 2 data cache misses  

PAPI_L2_ICM Level 2 instruction cache misses  

PAPI_L2_TCM Level 2 cache misses  

PAPI_L3_TCM Level 3 cache misses  

PAPI_FPU_IDL Cycles floating point units are idle  

PAPI_TLB_DM Data translation lookaside buffer misses  

PAPI_TLB_IM Instruction translation lookaside buffer misses  

PAPI_STL_ICY Cycles with no instruction issue  

PAPI_HW_INT Hardware interrupts  

PAPI_BR_TKN Conditional branch instructions taken  

PAPI_BR_MSP Conditional branch instructions mispredicted  

PAPI_TOT_INS Instructions completed  

PAPI_FP_INS Floating point instructions  

PAPI_BR_INS Branch instructions  

Counter/Event Name Meaning 

PAPI_VEC_INS Vector/SIMD instructions  

PAPI_RES_STL Cycles stalled on any resource  

PAPI_TOT_CYC Total cycles  

PAPI_L1_DCA Level 1 data cache accesses  

PAPI_L2_DCA Level 2 data cache accesses  

PAPI_L2_ICH Level 2 instruction cache hits  

PAPI_L1_ICA Level 1 instruction cache accesses  

PAPI_L2_ICA Level 2 instruction cache accesses  

PAPI_L1_ICR Level 1 instruction cache reads  

PAPI_L2_TCA Level 2 total cache accesses  

PAPI_L3_TCR Level 3 total cache reads  

PAPI_FML_INS Floating point multiply instructions 

PAPI_FAD_INS 
Floating point add instructions (Also includes 
subtract instructions) 

PAPI_FDV_INS 
Floating point divide instructions (Counts both 
divide and square root instructions) 

PAPI_FSQ_INS 
Floating point square root instructions (Counts 
both divide and square root instructions) 

PAPI_FP_OPS Floating point operations  



#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include <time.h> 

#define nn (2048) 

double a[nn][nn], b[nn][nn], c[nn][nn]; /** matrici**/ 

int main() 

{ 

int k, i, j, ii, jj; 

float time1, time2, dub_time,somma; 

/* initialize matrix */ 

time1 = clock(); 

for (j = 0; j < nn; j++) 

{ 

 for (i = 0; i < nn; i++) 

 { 

  a[j][i] = ((double)rand())/((double)RAND_MAX); 

  b[j][i] = ((double)rand())/((double)RAND_MAX); 

  c[j][i] = 0.0L; 

} 

} 

time2 = clock(); 

dub_time = (time2 - time1)/(double) CLOCKS_PER_SEC; 

printf("Tempo impiegato per inizializzare \n"); 

printf("Tempo -----------------> %f \n", dub_time); 

time1 = clock(); 

for (i = 0; i < nn; i++) 

 for (k = 0; k < nn; k++) 

  for (j = 0; j < nn; j ++) 

   c[i][j] = c[i][j] + a[i][k]*b[k][j]; 

time2 = clock(); 

dub_time = (time2 - time1)/(double) CLOCKS_PER_SEC; 

printf("===============================\n");} 

Example 

I Option 

 
for (j = 0; j< nn; j++) 
        for (k = 0; k < nn; k++) 
           for (i = 0; i < nn; i ++) 
            c[i][j] = c[i][j] + a[i][k]*b[k][j]; 
 

II Option 



Example 



Example 

Tempi (s) 

Dimension Opzione 1 Opzione 2 

512 1.9 3.46 

1024 10.42 19.45 

2048 77.23 182.91 

L1 Cache Missing 

Dimension Opzione 1 Opzione 2 

512 1.6938 E7 2.7585 E8 

1024 1.3531 E8 2.2164 E9 

2048 1.1339 E9 1.826 E10 

MFlops 

Dimension Opzione 1 Opzione 2 

512 141.28 77.58 

1024 206.09 110.41 

2048 222.42 93.92 



Example 

1st row 2nd row 3rd row 4th row 

address 

rows in 

memory 

memory 

lines 

memory/cache line 

Opzione 1 

Buona Località! 

 

Opzione 2 


