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Introduction 

One of the most widely used methods to find out the reason of a strange 
behavior in a program is the insertion of “printf” or “write” statements in the 
supposed critical area. 

 

However this kind of approach has a lot of limits and requires frequent  code 
recompiling and becomes hard to implement for complex programs, above 
all if parallel.  Moreover sometimes the error may not be obvious  or hidden.  

 

Debuggers are very powerful tools able to provide, in a targeted manner, a 
high number of information facilitating the work of the programmer in 
research and in the solution of instability in the application. 

For example, with three simple debugging commands you can have your 
program run to a certain line and then pause. You can then see what value 
any variable has at that point in the code. 

 



Debugging process 

The debugging process can be divided into four main steps: 

 

1. Start your program. 

 

2. Make your program stop on specified conditions. 

 

3. Examine what has happened, when your program has stopped. 

 

4. Change things in your program, so you can experiment with 

correcting the effects of one bug and go on to learn about another. 

 



Addr2line command 

Sometimes it may happen that an unsuccesful job generates a 

segmentation fault message where the chain of stack frames is 

reported.  

addr2line is an utility that allows to get information from this file about 

where the job crashed, using the sintax: 

addr2line –e ./myexe 0x400ab9 

 
 

[[P90:05046] *** Process received signal *** 

[P90:05046] Signal: Segmentation fault (11) 

[P90:05046] Signal code: Address not mapped (1) 

[P90:05046] Failing at address: 0x7fff54fd8000 

[P90:05046] [ 0] /lib/x86_64-linux-gnu/libpthread.so.0(+0x10060) [0x7f8474777060] 

[P90:05046] [ 1] /lib/x86_64-linux-gnu/libc.so.6(+0x131b99) [0x7f84744f7b99] 

[P90:05046] [ 2] /usr/lib/libmpi.so.0(ompi_convertor_pack+0x14d) [0x7f84749c75dd] 

[P90:05046] [ 3] /usr/lib/openmpi/lib/openmpi/mca_btl_sm.so(+0x1de8) [0x7f846fe14de8] 

[P90:05046] [ 4] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0xd97e) [0x7f8470c6c97e] 

[P90:05046] [ 5] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0x8900) [0x7f8470c67900] 

[P90:05046] [ 6] /usr/lib/openmpi/lib/openmpi/mca_btl_sm.so(+0x4188) [0x7f846fe17188] 

[P90:05046] [ 7] /usr/lib/libopen-pal.so.0(opal_progress+0x5b) [0x7f8473f330db] 

[P90:05046] [ 8] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0x6fd5) [0x7f8470c65fd5] 

[P90:05046] [ 9] /usr/lib/libmpi.so.0(PMPI_Send+0x195) [0x7f84749e1805] 

[P90:05046] [10] nr2(main+0xe1) [0x400c55] 

[P90:05046] [11] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xed) [0x7f84743e730d] 

[P90:05046] [12] nr2() [0x400ab9] 

[P90:05046] *** End of error message *** 

 



Addr2line command - BGQ 

If nothing is specified, an unsuccesful job generates a text core file for 

the processes that caused the crash. 

However, those core files are all but easily readable!  

addr2line is an utility that allows to get from this file informations about 

where the job crashed 



Addr2line command - BGQ 

Blue Gene core files are lightweight text files. 

Hexadecimal addresses in section STACK describe function call chain 

until program exception.  

It’s the section delimited by tags: +++STACK / —STACK 

In particular, “Saved Link Reg” column is the one we need! 



Addr2line command - BGQ 

From the core file output, save only the addresses in the “Saved Link 

Reg” column: 

Replace the first eight 0s with 0x: 

Lauch addr2line: 

   addr2line –e ./myexe 0x018b2678 



Most poular debuggers 

o Debuggers are generally distributed within the compiler suite.  

• Commercial: 

–  Portland pgdbg 

–  Intel idb 

• Free: 

–  GNU gdb 
 

• Moreover  there are companies specialized  in the production of very 
powerful debuggers , among them most popular are: 

 

–  Allinea DDT  

–  Totalview 

 



Debugger capabilities 

The purpose of a debugger  is to allow you to see what is going on “inside” 

another program while it executes or what another program was doing at the 

moment it crashed. 

Using specifics commands,  debuggers allow real-time visualization of 
variable values, static and dynamic memory state (stack, heap) and registers 
state. 

 

Most common errors are:    
 

1.  pointer errors 

2.  erray indexing errors 

3.  allocation  errors 

4.  routines dummy and actual arguments mismatch  

5.  infinite loops 

6.  I/O errors 

    



Compiling rules for Debugging 

• In order to debug a program effectively, the debugger needs debugging 
information which is produced compiling the program with the “-g” flag.  

• This debugging information is stored in the object files fused in the 

executable; it describes the data type of each variable or function and the 

correspondence between source line numbers and addresses in the 
executable code. 

 
– GNU compiler:    

– gcc/g++/gfortran –g [other flags] source –o executable 

 

– PGI compiler:    

– pgcc/pgCC/pgf90 –g [other flags] source –o executable 

 

– INTEL compiler:   

– icc/icpc/ifort –g [other flags] source –o executable 

 

– BGQ - IBM compiler 

– bgxlc/bgxlc++/bgxlf90 –g [other flags] source –o executable 



Compiling rules for Debugging  
BGQ and IBM compilers 

• On Blue Gene/Q the IBM compiler suite provides some extra useful flags 

for debugging: 

 

  -qfullpath : causes the full name of all source files to be added to the debug 

information 

 

  -qcheck / -qflttrap : help detecting some particular errors at run-time, thus 

stopping the executionwith a SIG-TRAP (the first flag deals with array-bound 

violation, the second with floating pointexceptions) 

 

  -qhalt=<sev> : stops the compilation if it encounters an error with the degree of 

severity you indicate. Possible degrees are: i (informational messages ), w (warning 

messages), e (errormessages, C only), s (severe error messages, default value) 

 

  -qkeepparm : ensures that function parameters are stored on the stack even if 

the application is optimized. As a result, parameters remain in the expected memory 
location, providing access to the values of these incoming parameters to debuggers 

 



Execution 
• The standard way to run the debugger is: 

–  debugger_name executable 

Otherwise it’s possible to first run the debugger and then point to the 
executable to debug: 

–  GNU gdb: 

• gdb 

    > file executable 

• It’s also possible to debug an already-runnig program started outside 
the debugger attaching to the process id of the program. 

Syntax: 

–  GNU gdb: 

• gdb 

    > attach process_id 

• gdb attach process_id 



Command list 
run: start debugged program 

list: list specified function or line. Two arguments with comma between 

specify starting and ending lines to list. 

 list begin,end  

break <line> <function> : set breakpoint at specified line or 

function, useful to stop execution before a critical point. 

  break filename:line 

     break filename:function 

 

     It’s possible to insert a boolean expression with the sintax: 

    break <line> <function> condition 

 With no <line> <function>, uses current execution address of 

selected stack frame. This is useful for breaking on return to a stack frame. 



Command list 

• clear <line> <func> : Clear breakpoint at specified line or 
function. 

• delete breakpoints [num] : delete breakpoint number “num”. With 
no argument delete all breakpoints.  

• If : Set a breakpoint with condition; evaluate the condition each time 

the breakpoint is reached, and stop only if the value is nonzero. Allowed 

logical operators: 

     > , < , >= , <= , == 

     Example : 

     break 31 if i >= 12 

  

• condition <num> < expression> : As the “if” command associates 
a logical condition at breakpoint number “num”. 

• next <count>: continue to the next source line in the current 
(innermost) stack frame, or count lines. 

 

 



Command list 
continue: continue program being debugged, after signal or breakpoint 

where : print backtrace of all stack frames, or innermost “count” frames.  

step : Step program until it reaches a different source line. If used before 

a function call, allow to step into the function. The debugger stops at the first 
executable statement of that function 

step count : executes count lines of code as the next command 

finish : execute until selected stack frame or function returns and stops 

at the first statement after the function call. Upon return, the value returned 

is printed and put in the value history. 

set args : set argument list to give program being debugged when it is 

started. Follow this command with any number of args, to be passed to the 
program. 

set var variable = <EXPR>: evaluate expression EXPR and assign 

result to variable  variable, using assignment syntax appropriate for the 

current language. 



Command list 
search <expr>: search for an expression from last line listed 

reverse-search <expr> : search backward for an expression from 

last line listed 

display <exp>: Print value of expression exp each time the program 

stops. 

print <exp>: Print value of expression exp  

This command can be used to display arrays: 

print array[num_el]displays element num_el 

print *array@len displays the whole array 

watch <exp>: Set a watchpoint for an expression. A watchpoint stops 

execution of your program whenever the value of an expression changes. 

info locals: print variable declarations of current stack frame. 

show values <number> : shows number elements of value history 

around item number or last ten. 



Command list 
• backtrace <number,full> : shows one line per frame, for many 

frames, starting with the currently executing frame (frame zero), followed 
by its caller (frame one), and on up the stack. With the number 

parameter print only the innermost number frames. With the full 

parameter print the values of the local variables also. 
– #0  squareArray (nelem_in_array=12, array=0x601010) at 

variable_print.c:67 

– #1  0x00000000004005f5 in main () at variable_print.c:34 

• frame <number> : select and print a stack frame. 

• up <number> : allow to go up number stack frames 

• down <number> : allow to go up number stack frames 

• info frame : gives all informations about current stack frame 

• detach: detach a process or file previously attached. 

• quit: quit the debugger 

 



Attach method procedure 
If an application crashes after few seconds the attach method could be very 

difficult to be used. 

– An inelegant-but-functional technique commonly used with this method is to 

insert the following code in the application where you want to attach. This 

code will then spin on the sleep() function forever waiting for you to attach 

with a debugger. 

 

 

 

 

– Recompile and re-launch the code attaching with the debugger to the process  
returned by the function “getpid()” 

– With the next command go to the while or DO instruction and change “i” 

with a value ≠ 0 : set var i = 7 

– Then set a breakpoint after this block of code and continue execution until the 

breakpoint is hit.  

{                         C/C++ 

  int i = 0;  

  printf("PID %d ready for attach\n", 

getpid()); 

  fflush(stdout);  

  while (0 == i) sleep(5); 

} 

             Fortran 

integer ::  i = 0 

write (*,*) "PID", getpid()," ready  for 

attach" 

   DO WHILE (i == 0) 

    call sleep(5) 

   ENDDO 



Using Core dumps for Postmortem 
Analysis 

•  In computing, a core dump, memory dump, or storage dump consists of the 

recorded state of the working memory of a computer program at a specific time, 

generally when the program has terminated abnormally. 

• Core dumps are often used to assist in diagnosing and debugging errors in 

computer programs. 

• In most Linux Distributions core file creation is disabled by default for a normal user 

but it can be enabled using the following command : 

   ulimit -c unlimited 

 

•  Once “ulimit –c” is set to “unlimited” run the program and the core file will 

be created 

 

•  The core file can be analyzed with gdb using the following syntax: 

 gdb -c core executable 



Debugging Serial Program 

 

“pointer error” example 

 

Program that: 

 

1. constructs an array of 10 integers in the variable array1 

2. gives the array to a function squareArray that executes the square 

of each element of the array and stores the result in a second array 
named array2  

3. After the function call, it’s computed the difference between array2 

and array1 and stored in array del. The array del is then written 

on standard output 

4. Code execution ends without error messages but the elements of 
array del printed on standard output are all zeros.  



Debugging Serial Program 

#include <stdio.h>  

#include <stdlib.h>  

int indx;  

void initArray(int nelem_in_array, int *array);  

void printArray(int nelem_in_array, int *array);  

int squareArray(int nelem_in_array, int *array);  

int main(void) {  

const int nelem = 12;  

int *array1, *array2, *del; 

array1 = (int *)malloc(nelem*sizeof(int));  

array2 = (int *)malloc(nelem*sizeof(int));  

del = (int *)malloc(nelem*sizeof(int));  

initArray(nelem, array1);  

printf("array1 = "); printArray(nelem, array1);  

array2 = array1;  

squareArray(nelem, array2); 



Debugging Serial Program 

for (indx = 0; indx < nelem; indx++) 

  { 

    del[indx] = array2[indx] - array1[indx]; 

  } 

  printf(“La fifferenza fra array2 e array1 e’:  "); 

  printArray(nelem, del); 

  free(array1); 

  free(array2); 

  free(del); 

  return 0;} 

void initArray(const int nelem_in_array, int *array) 

{ 

  for (indx = 0; indx < nelem_in_array; indx++) 

  { 

    array[indx] = indx + 2;}   

} 



Debugging Serial Program 

int squareArray(const int nelem_in_array, int *array) 

{ 

  int indx; 

  for (indx = 0; indx < nelem_in_array; indx++) 

  { 

    array[indx] *= array[indx];} 

  return *array; 

} 

void printArray(const int nelem_in_array, int *array) 

{ 

  printf("[  "); 

  for (indx = 0; indx < nelem_in_array; indx++) 

  { 

    printf("%d  ", array[indx]); }  

  printf("]\n\n"); 

} 

 



Debugging Serial Program 

• Compiling:  gcc –g –o ar_diff ar_diff.c   

 

• Execution:  ./arr_diff 

 

• Expected result:  

 

–  del = [ 2 6 12 20 30 42 56 72 90 110 132 156 ]   

 

• Real result 

 

– del = [ 0 0 0 0 0 0 0 0 0 0 0 0 ] 



Debugging Serial Program 

Debugging  

 

• Run the debugger gdb -> gdb ar_diff 

 

• Step1: possible coding error in function squareArray()  

– Procedure: list the code with the list command and 

insert a breakpoint at line  35 “break 35” where there is 

the call to squareArray(). Let’s start the code using 

the command run. Execution stops at line 35. 

 Let’s check the correctness of the function 
squareArray() displaying the elements of the array 

array2 using the command disp, For example (disp 

array2[1] = 9) produces the expected value. 



Debugging Serial Program 

• Step2: check of the difference between the element values 

in the two arrays 

– For loop analysis: 

 #35: for (indx = 0; indx < nelem; indx++) 

(gdb) next 

37          del[indx] = array2[indx] - array1[indx]; 

(gdb) next 

35        for (indx = 0; indx < nelem; indx++) 

– Visualize array after two  steps in the for loop: 

(gdb) disp array2[1] 

array2[1]=9 

(gdb) disp array1[1] 

array1[1]=9 



Debugging Serial Program 
As highlighted in the previous slide the values of the elements of 
array1 and array2 are the same. But this is  not correct because 
array, array1, was never passed to the function squareArray(). 
Only array2 was passed in line 38 of our code. If we think about it a bit, 
this sounds very much like a “pointer error”. 

 

To confirm our suspicion, we compare the memory address of both 
arrays: 

(gdb) disp array1 

  1: array1 = (int *) 0x607460 

(gdb) disp array2 

  2: array2 = (int *) 0x607460 

 

We find that the two addresses are identical.  



Debugging Serial Program 

The error  occurs in the statement: array2 = array1 because in this way  
the first element in array2 points to the address of the first element in 
array1. 

 

Solution: 

To solve the problem we just have to change the statement 
 

array2 = array1; 

in 
for (indx = 0; index < nelem; indx++) 

{ 

  array2[ k ]  =  array1[ k ] 

} 



Parallel debugging 

Normally debuggers can be applied to multi-threaded parallel codes, 

containing OpenMP or MPI directives, or even OpenMP and MPI hybrid 

solutions. 

In general the threads of a single program are akin to multiple processes 

except that they share one address space (that is, they can all examine 

and modify the same variables). On the other hand, each thread has its 

own registers and execution stack, and perhaps private memory. 

 

GDB provides some facilities for debugging multi-thread programs. 

 

Although specific commands are not provided, gdb still allows a very 

powerful approach for codes parallelized using MPI directives. For this 

reason it’s widely used  by programmers also for these kind of codes. 



Debug OpenMP Applications 
GDB facilities for debugging multi-thread programs :  

automatic notification of new threads 

thread <thread_number> command to switch among threads  

info threads command to inquire about existing threads 

 (gdb) info threads 

*  2 Thread 0x40200940 (LWP 5454)  MAIN__.omp_fn.0 

(.omp_data_i=0x7fffffffd280) at serial_order_bug.f90:27 

  1 Thread 0x2aaaaaf7d8b0 (LWP 1553)  MAIN__.omp_fn.0 

(.omp_data_i=0x7fffffffd280) at serial_order_bug.f90:27 

thread apply <thread_number> <all> args allow to apply a command to apply a 

command to a list of threads.  

When any thread in your program stops, for example, at a breakpoint, all other threads in 

the program are also stopped by GDB. 

GDB cannot single-step all threads in lockstep. Since thread scheduling is up to your 

debugging target’s operating system (not controlled by GDB), other threads may execute 

more than one statement while the current thread completes a single step unless you use 
the command :set scheduler-locking on. 

GDB is not able to show the values of private and shared variables in OpenMP parallel regions. 



Debug OpenMP Applications 
• Example of “hung process” 

– In the following OpenMP code, using the SECTIONS directive, two 
threads initialize threir own array and than sum it to the other. 

  
PROGRAM lock     

      INTEGER*8 LOCKA, LOCKB 

      INTEGER NTHREADS, TID, I,OMP_GET_NUM_THREADS, OMP_GET_THREAD_NUM 

      PARAMETER (N=1000000) 

      REAL A(N), B(N), PI, DELTA 

      PARAMETER (PI=3.1415926535) 

      PARAMETER (DELTA=.01415926535) 

  

      CALL OMP_INIT_LOCK(LOCKA) 

      CALL OMP_INIT_LOCK(LOCKB) 

  

!$OMP PARALLEL SHARED(A, B, NTHREADS, LOCKA, LOCKB) PRIVATE(TID) 

  

      TID = OMP_GET_THREAD_NUM() 

!$OMP MASTER 

      NTHREADS = OMP_GET_NUM_THREADS() 

      PRINT *, 'Number of threads = ', NTHREADS 

!$OMP END MASTER 

      PRINT *, 'Thread', TID, 'starting...' 

!$OMP BARRIER 

 

 

 



Debug OpenMP Applications 

!$OMP SECTIONS 

!$OMP SECTION 

  PRINT *, 'Thread',TID,' initializing A()' 

  CALL OMP_SET_LOCK(LOCKA) 

      DO I = 1, N 

         A(I) = I * DELTA 

      ENDDO 

  CALL OMP_SET_LOCK(LOCKB) 

  PRINT *, 'Thread',TID,' adding A() to B()' 

      DO I = 1, N 

         B(I) = B(I) + A(I) 

      ENDDO 

   CALL OMP_UNSET_LOCK(LOCKB) 

   CALL OMP_UNSET_LOCK(LOCKA) 

 

!$OMP SECTION 

 

   PRINT *, 'Thread',TID,' initializing B()' 

   CALL OMP_SET_LOCK(LOCKB) 

      DO I = 1, N 

         B(I) = I * PI 

      ENDDO 

   CALL OMP_SET_LOCK(LOCKA) 

   PRINT *, 'Thread',TID,' adding B() toA()' 

      DO I = 1, N 

         A(I) = A(I) + B(I) 

      ENDDO 

   CALL OMP_UNSET_LOCK(LOCKA) 

   CALL OMP_UNSET_LOCK(LOCKB) 

  

!$OMP END SECTIONS NOWAIT 

  

      PRINT *, 'Thread',TID,' done.' 

  

!$OMP END PARALLEL 

  

      END 



Debug OpenMP Applications 

• Compiling:  

   gfortran –fopenmp –g –o omp_debug omp_debug.f90  

• Esecution:  

– export OMP_NUM_THREADS=2 

– ./omp_debug 

– The program produces the following output before hanging: 

Number of threads =            2 

Thread           0 starting... 

Thread           1 starting... 

Thread           0  initializing A() 

Thread           1  initializing B() 

 



Debug OpenMP Applications 

• Debugging 

• List the source code from line 10 to 50 using the command: list 10,50 

• Insert a breakpoint at the beginning of the parallel region b 20 and run 

the executable with the command:  run 

• Check the threads are at the breakpoint : info threads 

* 2 Thread 0x40200940 (LWP 8533)  MAIN__.omp_fn.0 

(.omp_data_i=0x7fffffffd2b0) at openmp_bug2_nofix.f90:20 

  1 Thread 0x2aaaaaf7d8b0 (LWP 8530)  MAIN__.omp_fn.0 

(.omp_data_i=0x7fffffffd2b0) at openmp_bug2_nofix.f90:20 

• Looking at the source it’s clear that in the SECTION region the threads 

don’t execute the statements: 
PRINT *, 'Thread',TID,' adding A() to B()' 

PRINT *, 'Thread',TID,' adding B() to A()‘ 

• Insert a breakpoint in the two sections: 
thread apply 2 b 35 

thread apply 1 b 49 

 



Debug OpenMP Applications 
• Restart the execution: thread apply all cont 
Continuing. 

 Thread           1 starting... 

 Number of threads =            2 

 Thread           0 starting... 

 Thread           1  initializing A() 

 Thread           0  initializing B() 

• The execution hangs without reaching the breakpoints! 

• Stop execution with “ctrl c” and check where threads are: thread 
apply all where 

 

Thread 2 (Thread 0x40200940 (LWP 8533)): 

  0x00000000004010b5 in MAIN__.omp_fn.0 (.omp_data_i=0x7fffffffd2b0) 

at openmp_bug2_nofix.f90:29 

  

Thread 1 (Thread 0x2aaaaaf7d8b0 (LWP 8530)): 

  0x0000000000400e6d in MAIN__.omp_fn.0 (.omp_data_i=0x7fffffffd2b0) 

at openmp_bug2_nofix.f90:43 



Debug OpenMP Applications 

• Thread number 2 is stopped at line 29 on the statement: 

CALL OMP_SET_LOCK(LOCKB) 

• Thread number 1 is stopped at line 43 on the statement : 

CALL OMP_SET_LOCK(LOCKA) 

• So it’s clear that the bug is in the calls to routines OMP_SET_LOCK that 

cause execution stopping 

• Looking at the order of the routine calls to OMP_SET_LOCK and 

OMP_UNSET_LOCK it raise up the there is an error. 

• The correct order provides that the call to OMP_SET_LOCK must be 

followed by the correspective OMP_UNSET_LOCK 

• Arranging the order the code finishes succesfully 



Debug MPI Applications 

• There are two common ways to use serial debuggers such GDB to debug 

MPI applications 

 

– Attach to individual MPI processes after they are running using the  
“attach” method available for serial codes launching some 

instances of the debugger to attach to the different MPI processes. 

  

– Open a debugging session for each MPI process trough the 
command “mpirun”. 



Debug MPI Applications 

• Attach method procedure. 

 

– Run the MPI application in the standard way 

• mpirun –np 4 executable 

• From another shell, using the “top” command look at the MPI 

processes which are bind to the executable. 

 

PID executable 

MPI processes 



Debug MPI Applications 

• Attach method procedure. 

 

– Run up to “n” instances of the debugger in “attach” mode, where “n” 
is the number of the  MPI processes of the application. Using this 
method you should have to open up to “n” shells. For this reason, if 
not necessary, is advisable to use a little number of MPI processes. 

– Referring to the previous slide we have to run four instances of GDB: 

• gdb attach 12513 (shell 1) 

• gdb attach 12514 (shell 2) 

• gdb attach 12515 (shell 3) 

• gdb attach 12516 (shell 4) 

– Use debugger commands for each shell as in the serial case 

 

 



Debug MPI Applications 
• Procedure with the “mpirun” command. 

– This technique launches a separate window for each MPI process in 

MPI_COMM_WORLD, each one running a serial instance of GDB that will 

launch and run your MPI application. 

• mpirun -np 2 xterm -e gdb nome_eseguibile 

 

 

 

 

 

 

 

 

 

– Now we can debug our MPI application using for each shell all the 

functionalities of GDB. 

 



Debug MPI Applications 

Debug MPI hung process 

 

• In parallel codes using message passing, processes are typically 

performing independent tasks simultaneously. When the time comes to 

send and receive messages, certain conditions must be met in order to 

successfully transfer the data. One of these conditions involves blocking 

vs. nonblocking sends and receives. 

• In a blocking send, the function or subroutine does not return until the 

"buffer" (the message being sent) is reusable. This means that the 

message either has been safely stored in another buffer or has been 

successfully received by another process. 

• There is generally a maximum allowable buffer size. If the message 

exceeds this size, it must be received by the complimentary call (e.g., 

MPI_RECV) before the send function returns. This has the potential to 

cause processes to hang if the message passing is not handled carefully. 

 



Debug MPI Applications 

The following code is designed to run on exactly two processors. An array is 

filled with process numbers. The first half of the array is filled with the local 

process number, and the second half of the array is filled with the other 

process number. The second halves of the local arrays are filled by 

message passing. 

#include <stdio.h>  

#include <stdlib.h>  

#include <mpi.h>  

void main(int argc, char *argv[]){  

int nvals, *array, myid, i;  

MPI_Status status;  

MPI_Init(&argc, &argv);  

MPI_Comm_rank(MPI_COMM_WORLD, &myid);  

nvals = atoi(argv[1]);  

array = (int *) malloc(nvals*sizeof(int)); 



Debug MPI Applications 

for(i=0; i<nvals/2; i++);  

array[i] = myid;  

if(myid==0){ 

MPI_Send(array,nvals/2,MPI_INT,1,1,MPI_COMM_WORLD); 

MPI_Recv(array+nvals/2,nvals/2,MPI_INT,1,1,MPI_COMM_WORL

D,&status);}  

else  

{ 

MPI_Send(array,nvals/2,MPI_INT,0,1,MPI_COMM_WORLD); 

MPI_Recv(array+nvals/2,nvals/2,MPI_INT,0,1,MPI_COMM_WO

RLD,&status);} 

printf("myid=%d:array[nvals-1]=%dn",myid,array[nvals-

1]);  

MPI_Finalize();  

} 

 



Debug MPI Applications 

• Compile:  mpicc –g –o hung_comm hung_comm.c   

• Run:  

– Array dimension: 100 
•  mpirun –np 2 ./hung_comm 100 

•  myid = 0: array[nvals-1] = 1  

•   myid = 1: array[nvals-1] = 0 

– Array dimension: 1000 
•  mpirun –np 2 ./hung_comm 1000 

•  myid = 0: array[nvals-1] = 1  

•   myid = 1: array[nvals-1] = 0 

– Array dimension: 10000 
• mpirun –np 2 ./hung_comm 10000 

• With array dimension equal to 10000 the program hangs! 



Debug MPI Applications 
Debugging  

• Run GDB with mpirun: 

–  mpirun -np 2 xterm -e gdb hung_proc 

 

• When the two separate windows, containing the “GDB” instances, are 
ready, visualize the source with list and insert a breakpoint at line 19 
with break 19 where there is the first MPI_Send call. 

• Let’s give the message dimension with set args 1000000 

• Run the code with the comand  run on the two shells, which continues 
until line 19 is hit. 

• Step line by line on the two shells using next 

(gdb) next 

20 MPI_Send(array,nvals/2,MPI_INT,1,1,MPI_COMM_WORLD); 

(gdb) next 

23 MPI_Send(array,nvals/2,MPI_INT,0,1,MPI_COMM_WORLD); 

 



Debug MPI Applications 
• The second next doesn’t produce any output underlying that the 

execution is halted in the calls to MPI_Send waiting for the 

corresponding MPI_Recv. 

• Let’s type “Ctrl c” to exit from hanging. Using where we receive some 

information about where the program stopped. Among them there is the 

following message that indicates that the process is waiting for the 

completion of the send: 
• #4  ompi_request_wait_completion (buf=0x2aaab4801010, count=500000, 

datatype=0xfb8, dst=0, tag=1, sendmode=MCA_PML_BASE_SEND_STANDARD, 

comm=0x60c180) at ../../../../ompi/request/request.h:375 

• #7  0x0000000000401fee in main (argc=2, argv=0x7fffffffd2a8) at 

hung_proc.c:23 

• Solution:  

– Reverse the two calls MPI_Send and MPI_Recv at lines 

23 and 24. 


