
Debugging

Paride Dagna
SuperComputing Applications and Innovation Department

18/02/2013

Introduction

One of the most widely used methods to find out the reason of a strange
behavior in a program is the insertion of “printf” or “write” statements in the
supposed critical area.

However this kind of approach has a lot of limits and requires frequent code
recompiling and becomes hard to implement for complex programs, above
all if parallel. Moreover sometimes the error may not be obvious or hidden.

Debuggers are very powerful tools able to provide, in a targeted manner, a
high number of information facilitating the work of the programmer in
research and in the solution of instability in the application.

For example, with three simple debugging commands you can have your
program run to a certain line and then pause. You can then see what value
any variable has at that point in the code.

Debugging process

The debugging process can be divided into four main steps:

1. Start your program.

2. Make your program stop on specified conditions.

3. Examine what has happened, when your program has stopped.

4. Change things in your program, so you can experiment with

correcting the effects of one bug and go on to learn about another.

Addr2line command

Sometimes it may happen that an unsuccesful job generates a

segmentation fault message where the chain of stack frames is

reported.

addr2line is an utility that allows to get information from this file about

where the job crashed, using the sintax:

addr2line –e ./myexe 0x400ab9

[[P90:05046] *** Process received signal ***

[P90:05046] Signal: Segmentation fault (11)

[P90:05046] Signal code: Address not mapped (1)

[P90:05046] Failing at address: 0x7fff54fd8000

[P90:05046] [0] /lib/x86_64-linux-gnu/libpthread.so.0(+0x10060) [0x7f8474777060]

[P90:05046] [1] /lib/x86_64-linux-gnu/libc.so.6(+0x131b99) [0x7f84744f7b99]

[P90:05046] [2] /usr/lib/libmpi.so.0(ompi_convertor_pack+0x14d) [0x7f84749c75dd]

[P90:05046] [3] /usr/lib/openmpi/lib/openmpi/mca_btl_sm.so(+0x1de8) [0x7f846fe14de8]

[P90:05046] [4] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0xd97e) [0x7f8470c6c97e]

[P90:05046] [5] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0x8900) [0x7f8470c67900]

[P90:05046] [6] /usr/lib/openmpi/lib/openmpi/mca_btl_sm.so(+0x4188) [0x7f846fe17188]

[P90:05046] [7] /usr/lib/libopen-pal.so.0(opal_progress+0x5b) [0x7f8473f330db]

[P90:05046] [8] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0x6fd5) [0x7f8470c65fd5]

[P90:05046] [9] /usr/lib/libmpi.so.0(PMPI_Send+0x195) [0x7f84749e1805]

[P90:05046] [10] nr2(main+0xe1) [0x400c55]

[P90:05046] [11] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xed) [0x7f84743e730d]

[P90:05046] [12] nr2() [0x400ab9]

[P90:05046] *** End of error message ***

Addr2line command - BGQ

If nothing is specified, an unsuccesful job generates a text core file for

the processes that caused the crash.

However, those core files are all but easily readable!

addr2line is an utility that allows to get from this file informations about

where the job crashed

Addr2line command - BGQ

Blue Gene core files are lightweight text files.

Hexadecimal addresses in section STACK describe function call chain

until program exception.

It’s the section delimited by tags: +++STACK / —STACK

In particular, “Saved Link Reg” column is the one we need!

Addr2line command - BGQ

From the core file output, save only the addresses in the “Saved Link

Reg” column:

Replace the first eight 0s with 0x:

Lauch addr2line:

 addr2line –e ./myexe 0x018b2678

Most poular debuggers

o Debuggers are generally distributed within the compiler suite.

• Commercial:

– Portland pgdbg

– Intel idb

• Free:

– GNU gdb

• Moreover there are companies specialized in the production of very
powerful debuggers , among them most popular are:

– Allinea DDT

– Totalview

Debugger capabilities

The purpose of a debugger is to allow you to see what is going on “inside”

another program while it executes or what another program was doing at the

moment it crashed.

Using specifics commands, debuggers allow real-time visualization of
variable values, static and dynamic memory state (stack, heap) and registers
state.

Most common errors are:

1. pointer errors

2. erray indexing errors

3. allocation errors

4. routines dummy and actual arguments mismatch

5. infinite loops

6. I/O errors

Compiling rules for Debugging

• In order to debug a program effectively, the debugger needs debugging
information which is produced compiling the program with the “-g” flag.

• This debugging information is stored in the object files fused in the

executable; it describes the data type of each variable or function and the

correspondence between source line numbers and addresses in the
executable code.

– GNU compiler:

– gcc/g++/gfortran –g [other flags] source –o executable

– PGI compiler:

– pgcc/pgCC/pgf90 –g [other flags] source –o executable

– INTEL compiler:

– icc/icpc/ifort –g [other flags] source –o executable

– BGQ - IBM compiler

– bgxlc/bgxlc++/bgxlf90 –g [other flags] source –o executable

Compiling rules for Debugging
BGQ and IBM compilers

• On Blue Gene/Q the IBM compiler suite provides some extra useful flags

for debugging:

 -qfullpath : causes the full name of all source files to be added to the debug

information

 -qcheck / -qflttrap : help detecting some particular errors at run-time, thus

stopping the executionwith a SIG-TRAP (the first flag deals with array-bound

violation, the second with floating pointexceptions)

 -qhalt=<sev> : stops the compilation if it encounters an error with the degree of

severity you indicate. Possible degrees are: i (informational messages), w (warning

messages), e (errormessages, C only), s (severe error messages, default value)

 -qkeepparm : ensures that function parameters are stored on the stack even if

the application is optimized. As a result, parameters remain in the expected memory
location, providing access to the values of these incoming parameters to debuggers

Execution
• The standard way to run the debugger is:

– debugger_name executable

Otherwise it’s possible to first run the debugger and then point to the
executable to debug:

– GNU gdb:

• gdb

 > file executable

• It’s also possible to debug an already-runnig program started outside
the debugger attaching to the process id of the program.

Syntax:

– GNU gdb:

• gdb

 > attach process_id

• gdb attach process_id

Command list
run: start debugged program

list: list specified function or line. Two arguments with comma between

specify starting and ending lines to list.

 list begin,end

break <line> <function> : set breakpoint at specified line or

function, useful to stop execution before a critical point.

 break filename:line

 break filename:function

 It’s possible to insert a boolean expression with the sintax:

 break <line> <function> condition

 With no <line> <function>, uses current execution address of

selected stack frame. This is useful for breaking on return to a stack frame.

Command list

• clear <line> <func> : Clear breakpoint at specified line or
function.

• delete breakpoints [num] : delete breakpoint number “num”. With
no argument delete all breakpoints.

• If : Set a breakpoint with condition; evaluate the condition each time

the breakpoint is reached, and stop only if the value is nonzero. Allowed

logical operators:

 > , < , >= , <= , ==

 Example :

 break 31 if i >= 12

• condition <num> < expression> : As the “if” command associates
a logical condition at breakpoint number “num”.

• next <count>: continue to the next source line in the current
(innermost) stack frame, or count lines.

Command list
continue: continue program being debugged, after signal or breakpoint

where : print backtrace of all stack frames, or innermost “count” frames.

step : Step program until it reaches a different source line. If used before

a function call, allow to step into the function. The debugger stops at the first
executable statement of that function

step count : executes count lines of code as the next command

finish : execute until selected stack frame or function returns and stops

at the first statement after the function call. Upon return, the value returned

is printed and put in the value history.

set args : set argument list to give program being debugged when it is

started. Follow this command with any number of args, to be passed to the
program.

set var variable = <EXPR>: evaluate expression EXPR and assign

result to variable variable, using assignment syntax appropriate for the

current language.

Command list
search <expr>: search for an expression from last line listed

reverse-search <expr> : search backward for an expression from

last line listed

display <exp>: Print value of expression exp each time the program

stops.

print <exp>: Print value of expression exp

This command can be used to display arrays:

print array[num_el]displays element num_el

print *array@len displays the whole array

watch <exp>: Set a watchpoint for an expression. A watchpoint stops

execution of your program whenever the value of an expression changes.

info locals: print variable declarations of current stack frame.

show values <number> : shows number elements of value history

around item number or last ten.

Command list
• backtrace <number,full> : shows one line per frame, for many

frames, starting with the currently executing frame (frame zero), followed
by its caller (frame one), and on up the stack. With the number

parameter print only the innermost number frames. With the full

parameter print the values of the local variables also.
– #0 squareArray (nelem_in_array=12, array=0x601010) at

variable_print.c:67

– #1 0x00000000004005f5 in main () at variable_print.c:34

• frame <number> : select and print a stack frame.

• up <number> : allow to go up number stack frames

• down <number> : allow to go up number stack frames

• info frame : gives all informations about current stack frame

• detach: detach a process or file previously attached.

• quit: quit the debugger

Attach method procedure
If an application crashes after few seconds the attach method could be very

difficult to be used.

– An inelegant-but-functional technique commonly used with this method is to

insert the following code in the application where you want to attach. This

code will then spin on the sleep() function forever waiting for you to attach

with a debugger.

– Recompile and re-launch the code attaching with the debugger to the process
returned by the function “getpid()”

– With the next command go to the while or DO instruction and change “i”

with a value ≠ 0 : set var i = 7

– Then set a breakpoint after this block of code and continue execution until the

breakpoint is hit.

{ C/C++

 int i = 0;

 printf("PID %d ready for attach\n",

getpid());

 fflush(stdout);

 while (0 == i) sleep(5);

}

 Fortran

integer :: i = 0

write (*,*) "PID", getpid()," ready for

attach"

 DO WHILE (i == 0)

 call sleep(5)

 ENDDO

Using Core dumps for Postmortem
Analysis

• In computing, a core dump, memory dump, or storage dump consists of the

recorded state of the working memory of a computer program at a specific time,

generally when the program has terminated abnormally.

• Core dumps are often used to assist in diagnosing and debugging errors in

computer programs.

• In most Linux Distributions core file creation is disabled by default for a normal user

but it can be enabled using the following command :

 ulimit -c unlimited

• Once “ulimit –c” is set to “unlimited” run the program and the core file will

be created

• The core file can be analyzed with gdb using the following syntax:

 gdb -c core executable

Debugging Serial Program

“pointer error” example

Program that:

1. constructs an array of 10 integers in the variable array1

2. gives the array to a function squareArray that executes the square

of each element of the array and stores the result in a second array
named array2

3. After the function call, it’s computed the difference between array2

and array1 and stored in array del. The array del is then written

on standard output

4. Code execution ends without error messages but the elements of
array del printed on standard output are all zeros.

Debugging Serial Program

#include <stdio.h>

#include <stdlib.h>

int indx;

void initArray(int nelem_in_array, int *array);

void printArray(int nelem_in_array, int *array);

int squareArray(int nelem_in_array, int *array);

int main(void) {

const int nelem = 12;

int *array1, *array2, *del;

array1 = (int *)malloc(nelem*sizeof(int));

array2 = (int *)malloc(nelem*sizeof(int));

del = (int *)malloc(nelem*sizeof(int));

initArray(nelem, array1);

printf("array1 = "); printArray(nelem, array1);

array2 = array1;

squareArray(nelem, array2);

Debugging Serial Program

for (indx = 0; indx < nelem; indx++)

 {

 del[indx] = array2[indx] - array1[indx];

 }

 printf(“La fifferenza fra array2 e array1 e’: ");

 printArray(nelem, del);

 free(array1);

 free(array2);

 free(del);

 return 0;}

void initArray(const int nelem_in_array, int *array)

{

 for (indx = 0; indx < nelem_in_array; indx++)

 {

 array[indx] = indx + 2;}

}

Debugging Serial Program

int squareArray(const int nelem_in_array, int *array)

{

 int indx;

 for (indx = 0; indx < nelem_in_array; indx++)

 {

 array[indx] *= array[indx];}

 return *array;

}

void printArray(const int nelem_in_array, int *array)

{

 printf("[");

 for (indx = 0; indx < nelem_in_array; indx++)

 {

 printf("%d ", array[indx]); }

 printf("]\n\n");

}

Debugging Serial Program

• Compiling: gcc –g –o ar_diff ar_diff.c

• Execution: ./arr_diff

• Expected result:

– del = [2 6 12 20 30 42 56 72 90 110 132 156]

• Real result

– del = [0 0 0 0 0 0 0 0 0 0 0 0]

Debugging Serial Program

Debugging

• Run the debugger gdb -> gdb ar_diff

• Step1: possible coding error in function squareArray()

– Procedure: list the code with the list command and

insert a breakpoint at line 35 “break 35” where there is

the call to squareArray(). Let’s start the code using

the command run. Execution stops at line 35.

 Let’s check the correctness of the function
squareArray() displaying the elements of the array

array2 using the command disp, For example (disp

array2[1] = 9) produces the expected value.

Debugging Serial Program

• Step2: check of the difference between the element values

in the two arrays

– For loop analysis:

 #35: for (indx = 0; indx < nelem; indx++)

(gdb) next

37 del[indx] = array2[indx] - array1[indx];

(gdb) next

35 for (indx = 0; indx < nelem; indx++)

– Visualize array after two steps in the for loop:

(gdb) disp array2[1]

array2[1]=9

(gdb) disp array1[1]

array1[1]=9

Debugging Serial Program
As highlighted in the previous slide the values of the elements of
array1 and array2 are the same. But this is not correct because
array, array1, was never passed to the function squareArray().
Only array2 was passed in line 38 of our code. If we think about it a bit,
this sounds very much like a “pointer error”.

To confirm our suspicion, we compare the memory address of both
arrays:

(gdb) disp array1

 1: array1 = (int *) 0x607460

(gdb) disp array2

 2: array2 = (int *) 0x607460

We find that the two addresses are identical.

Debugging Serial Program

The error occurs in the statement: array2 = array1 because in this way
the first element in array2 points to the address of the first element in
array1.

Solution:

To solve the problem we just have to change the statement

array2 = array1;

in
for (indx = 0; index < nelem; indx++)

{

 array2[k] = array1[k]

}

Parallel debugging

Normally debuggers can be applied to multi-threaded parallel codes,

containing OpenMP or MPI directives, or even OpenMP and MPI hybrid

solutions.

In general the threads of a single program are akin to multiple processes

except that they share one address space (that is, they can all examine

and modify the same variables). On the other hand, each thread has its

own registers and execution stack, and perhaps private memory.

GDB provides some facilities for debugging multi-thread programs.

Although specific commands are not provided, gdb still allows a very

powerful approach for codes parallelized using MPI directives. For this

reason it’s widely used by programmers also for these kind of codes.

Debug OpenMP Applications
GDB facilities for debugging multi-thread programs :

automatic notification of new threads

thread <thread_number> command to switch among threads

info threads command to inquire about existing threads

 (gdb) info threads

* 2 Thread 0x40200940 (LWP 5454) MAIN__.omp_fn.0

(.omp_data_i=0x7fffffffd280) at serial_order_bug.f90:27

 1 Thread 0x2aaaaaf7d8b0 (LWP 1553) MAIN__.omp_fn.0

(.omp_data_i=0x7fffffffd280) at serial_order_bug.f90:27

thread apply <thread_number> <all> args allow to apply a command to apply a

command to a list of threads.

When any thread in your program stops, for example, at a breakpoint, all other threads in

the program are also stopped by GDB.

GDB cannot single-step all threads in lockstep. Since thread scheduling is up to your

debugging target’s operating system (not controlled by GDB), other threads may execute

more than one statement while the current thread completes a single step unless you use
the command :set scheduler-locking on.

GDB is not able to show the values of private and shared variables in OpenMP parallel regions.

Debug OpenMP Applications
• Example of “hung process”

– In the following OpenMP code, using the SECTIONS directive, two
threads initialize threir own array and than sum it to the other.

PROGRAM lock

 INTEGER*8 LOCKA, LOCKB

 INTEGER NTHREADS, TID, I,OMP_GET_NUM_THREADS, OMP_GET_THREAD_NUM

 PARAMETER (N=1000000)

 REAL A(N), B(N), PI, DELTA

 PARAMETER (PI=3.1415926535)

 PARAMETER (DELTA=.01415926535)

 CALL OMP_INIT_LOCK(LOCKA)

 CALL OMP_INIT_LOCK(LOCKB)

!$OMP PARALLEL SHARED(A, B, NTHREADS, LOCKA, LOCKB) PRIVATE(TID)

 TID = OMP_GET_THREAD_NUM()

!$OMP MASTER

 NTHREADS = OMP_GET_NUM_THREADS()

 PRINT *, 'Number of threads = ', NTHREADS

!$OMP END MASTER

 PRINT *, 'Thread', TID, 'starting...'

!$OMP BARRIER

Debug OpenMP Applications

!$OMP SECTIONS

!$OMP SECTION

 PRINT *, 'Thread',TID,' initializing A()'

 CALL OMP_SET_LOCK(LOCKA)

 DO I = 1, N

 A(I) = I * DELTA

 ENDDO

 CALL OMP_SET_LOCK(LOCKB)

 PRINT *, 'Thread',TID,' adding A() to B()'

 DO I = 1, N

 B(I) = B(I) + A(I)

 ENDDO

 CALL OMP_UNSET_LOCK(LOCKB)

 CALL OMP_UNSET_LOCK(LOCKA)

!$OMP SECTION

 PRINT *, 'Thread',TID,' initializing B()'

 CALL OMP_SET_LOCK(LOCKB)

 DO I = 1, N

 B(I) = I * PI

 ENDDO

 CALL OMP_SET_LOCK(LOCKA)

 PRINT *, 'Thread',TID,' adding B() toA()'

 DO I = 1, N

 A(I) = A(I) + B(I)

 ENDDO

 CALL OMP_UNSET_LOCK(LOCKA)

 CALL OMP_UNSET_LOCK(LOCKB)

!$OMP END SECTIONS NOWAIT

 PRINT *, 'Thread',TID,' done.'

!$OMP END PARALLEL

 END

Debug OpenMP Applications

• Compiling:

 gfortran –fopenmp –g –o omp_debug omp_debug.f90

• Esecution:

– export OMP_NUM_THREADS=2

– ./omp_debug

– The program produces the following output before hanging:

Number of threads = 2

Thread 0 starting...

Thread 1 starting...

Thread 0 initializing A()

Thread 1 initializing B()

Debug OpenMP Applications

• Debugging

• List the source code from line 10 to 50 using the command: list 10,50

• Insert a breakpoint at the beginning of the parallel region b 20 and run

the executable with the command: run

• Check the threads are at the breakpoint : info threads

* 2 Thread 0x40200940 (LWP 8533) MAIN__.omp_fn.0

(.omp_data_i=0x7fffffffd2b0) at openmp_bug2_nofix.f90:20

 1 Thread 0x2aaaaaf7d8b0 (LWP 8530) MAIN__.omp_fn.0

(.omp_data_i=0x7fffffffd2b0) at openmp_bug2_nofix.f90:20

• Looking at the source it’s clear that in the SECTION region the threads

don’t execute the statements:
PRINT *, 'Thread',TID,' adding A() to B()'

PRINT *, 'Thread',TID,' adding B() to A()‘

• Insert a breakpoint in the two sections:
thread apply 2 b 35

thread apply 1 b 49

Debug OpenMP Applications
• Restart the execution: thread apply all cont
Continuing.

 Thread 1 starting...

 Number of threads = 2

 Thread 0 starting...

 Thread 1 initializing A()

 Thread 0 initializing B()

• The execution hangs without reaching the breakpoints!

• Stop execution with “ctrl c” and check where threads are: thread
apply all where

Thread 2 (Thread 0x40200940 (LWP 8533)):

 0x00000000004010b5 in MAIN__.omp_fn.0 (.omp_data_i=0x7fffffffd2b0)

at openmp_bug2_nofix.f90:29

Thread 1 (Thread 0x2aaaaaf7d8b0 (LWP 8530)):

 0x0000000000400e6d in MAIN__.omp_fn.0 (.omp_data_i=0x7fffffffd2b0)

at openmp_bug2_nofix.f90:43

Debug OpenMP Applications

• Thread number 2 is stopped at line 29 on the statement:

CALL OMP_SET_LOCK(LOCKB)

• Thread number 1 is stopped at line 43 on the statement :

CALL OMP_SET_LOCK(LOCKA)

• So it’s clear that the bug is in the calls to routines OMP_SET_LOCK that

cause execution stopping

• Looking at the order of the routine calls to OMP_SET_LOCK and

OMP_UNSET_LOCK it raise up the there is an error.

• The correct order provides that the call to OMP_SET_LOCK must be

followed by the correspective OMP_UNSET_LOCK

• Arranging the order the code finishes succesfully

Debug MPI Applications

• There are two common ways to use serial debuggers such GDB to debug

MPI applications

– Attach to individual MPI processes after they are running using the
“attach” method available for serial codes launching some

instances of the debugger to attach to the different MPI processes.

– Open a debugging session for each MPI process trough the
command “mpirun”.

Debug MPI Applications

• Attach method procedure.

– Run the MPI application in the standard way

• mpirun –np 4 executable

• From another shell, using the “top” command look at the MPI

processes which are bind to the executable.

PID executable

MPI processes

Debug MPI Applications

• Attach method procedure.

– Run up to “n” instances of the debugger in “attach” mode, where “n”
is the number of the MPI processes of the application. Using this
method you should have to open up to “n” shells. For this reason, if
not necessary, is advisable to use a little number of MPI processes.

– Referring to the previous slide we have to run four instances of GDB:

• gdb attach 12513 (shell 1)

• gdb attach 12514 (shell 2)

• gdb attach 12515 (shell 3)

• gdb attach 12516 (shell 4)

– Use debugger commands for each shell as in the serial case

Debug MPI Applications
• Procedure with the “mpirun” command.

– This technique launches a separate window for each MPI process in

MPI_COMM_WORLD, each one running a serial instance of GDB that will

launch and run your MPI application.

• mpirun -np 2 xterm -e gdb nome_eseguibile

– Now we can debug our MPI application using for each shell all the

functionalities of GDB.

Debug MPI Applications

Debug MPI hung process

• In parallel codes using message passing, processes are typically

performing independent tasks simultaneously. When the time comes to

send and receive messages, certain conditions must be met in order to

successfully transfer the data. One of these conditions involves blocking

vs. nonblocking sends and receives.

• In a blocking send, the function or subroutine does not return until the

"buffer" (the message being sent) is reusable. This means that the

message either has been safely stored in another buffer or has been

successfully received by another process.

• There is generally a maximum allowable buffer size. If the message

exceeds this size, it must be received by the complimentary call (e.g.,

MPI_RECV) before the send function returns. This has the potential to

cause processes to hang if the message passing is not handled carefully.

Debug MPI Applications

The following code is designed to run on exactly two processors. An array is

filled with process numbers. The first half of the array is filled with the local

process number, and the second half of the array is filled with the other

process number. The second halves of the local arrays are filled by

message passing.

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

void main(int argc, char *argv[]){

int nvals, *array, myid, i;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

nvals = atoi(argv[1]);

array = (int *) malloc(nvals*sizeof(int));

Debug MPI Applications

for(i=0; i<nvals/2; i++);

array[i] = myid;

if(myid==0){

MPI_Send(array,nvals/2,MPI_INT,1,1,MPI_COMM_WORLD);

MPI_Recv(array+nvals/2,nvals/2,MPI_INT,1,1,MPI_COMM_WORL

D,&status);}

else

{

MPI_Send(array,nvals/2,MPI_INT,0,1,MPI_COMM_WORLD);

MPI_Recv(array+nvals/2,nvals/2,MPI_INT,0,1,MPI_COMM_WO

RLD,&status);}

printf("myid=%d:array[nvals-1]=%dn",myid,array[nvals-

1]);

MPI_Finalize();

}

Debug MPI Applications

• Compile: mpicc –g –o hung_comm hung_comm.c

• Run:

– Array dimension: 100
• mpirun –np 2 ./hung_comm 100

• myid = 0: array[nvals-1] = 1

• myid = 1: array[nvals-1] = 0

– Array dimension: 1000
• mpirun –np 2 ./hung_comm 1000

• myid = 0: array[nvals-1] = 1

• myid = 1: array[nvals-1] = 0

– Array dimension: 10000
• mpirun –np 2 ./hung_comm 10000

• With array dimension equal to 10000 the program hangs!

Debug MPI Applications
Debugging

• Run GDB with mpirun:

– mpirun -np 2 xterm -e gdb hung_proc

• When the two separate windows, containing the “GDB” instances, are
ready, visualize the source with list and insert a breakpoint at line 19
with break 19 where there is the first MPI_Send call.

• Let’s give the message dimension with set args 1000000

• Run the code with the comand run on the two shells, which continues
until line 19 is hit.

• Step line by line on the two shells using next

(gdb) next

20 MPI_Send(array,nvals/2,MPI_INT,1,1,MPI_COMM_WORLD);

(gdb) next

23 MPI_Send(array,nvals/2,MPI_INT,0,1,MPI_COMM_WORLD);

Debug MPI Applications
• The second next doesn’t produce any output underlying that the

execution is halted in the calls to MPI_Send waiting for the

corresponding MPI_Recv.

• Let’s type “Ctrl c” to exit from hanging. Using where we receive some

information about where the program stopped. Among them there is the

following message that indicates that the process is waiting for the

completion of the send:
• #4 ompi_request_wait_completion (buf=0x2aaab4801010, count=500000,

datatype=0xfb8, dst=0, tag=1, sendmode=MCA_PML_BASE_SEND_STANDARD,

comm=0x60c180) at ../../../../ompi/request/request.h:375

• #7 0x0000000000401fee in main (argc=2, argv=0x7fffffffd2a8) at

hung_proc.c:23

• Solution:

– Reverse the two calls MPI_Send and MPI_Recv at lines

23 and 24.

