CINECA E CAI
SuparComputing Apphcations and Innovation

ﬁ’;’"‘é\ CUDA Efficient Programming

CINECA

CINECA E l AI
SuparComputing Apphcations and Innowvation

a bk bR

Agenda

Overview and general concepts
Performance Metrics

Memory Optimizations
Execution Optimization

Tools Overview

CINECA

SCAI Different worlds:
host and device

Threading 2 threads per core (SMT), 24/32 e.g.: 1536 (thd x sm) * 14 (sm) = 21504.
resources threads per node. The thread isthe = The Warp (32 thd) is the atomic

atomic execution unit. execution unit.
Threads «Heavy» entities, context switches Extremely lightweight, managed

and resources management. grouped into warps, fast context switch,

no resources management (statically
allocated once).

Memory e.g.. 48 GB /32 thd = 1.5 GB/thd, e.g.. 6 GB /21504 thd = 0.3 MB/thd, 600
300 cycles lat., 6.4 GB/s band cycles lat*, 144 GB/s band (GDDR5)*,
(DDR3), 3 caching levels with lots fake caches.
of speculation logic. * coalesced

Control ALU ALU =

|
|
ALU ALU =] I
|
|
|
|

N e

CPU GPU

Maximum performance benefit

Focus on achieving high occupancy.
Focus on how to exploit the SIMT model at its best.

Deeply analyze your algorithm in order to find the hotspots
and embarassingly parallel-enabled portions.

l.e.: pay attention to the Amdahl’s law, the porting could
be very tough. 1

S=A=P)+P/N

CINECA

CINECA E l AI
SuparComputing Apphcations and Innowvation

Capability

The version tag that identifies:
Instructions and features supported by the board,
coalescing rules;
the board’s resources constraints;
througput of some instructions (hardware
Implementation).

CINECA

v S Al Capability:
o Canperg gt o resources constraints

Compute Capability
1.0 1.1 1.2 1.3 2.x 3.0 |3.5

Technical Specifications

Maximum dimensionality of grid of thread blocks 2 3

Maximum x-dimension of a grid of thread blocks 65535 2

Maximum y- or z-dimension of a grid of thread blocks 65535

Maximum dimensionality of thread block 3

Maximum x- or y-dimension of a block 512 1024

Maximum z-dimension of a block 64

Maximum number of threads per block 512 1024

Warp size 32

Maximum number of resident blocks per
multiprocessor

Maximum number of resident warps per

. 24 32 48 64
multiprocessor

Maximum number of resident threads per

. 768 1024 1536 2048
multiprocessor

Number of 32-bit registers per multiprocessor 8K 16 K 32K 64 K

Maximum number of 32-bit registers per thread 128 63 255

Maximum amount of shared memory per

. 16 KB 48 KB
multiprocessor

Number of shared memory banks 16 32

Amount of local memory per thread 16 KB 512 KB

Constant memory size 64 KB

Cache working set per multiprocessor for constant

8 KB
memory

Cache working set per multiprocessor for texture

memory Device dependent, between 6 KB and 8 KB CINECA

Maximum width for a 1D texture reference bound to

a CUDA array 8192 65536

Performance metrics

CINECA

Performance metrics

Wall time

Theroetical vs achieved bandwidth
Achievable vs achieved occupancy
Memory conflicts

CINECA

il SCA] Timing

It's allowed to use std timing facilities (host side).
Beware of asynchronous calls!

start = clock()

my kernel<<< blocks, threads>>>();
cudaThreadSynchronize () ;

end = clock() ;

CUDA provides the Events facility.

Needed to time single streams without loosing
concurrency.

cdaEvent t start, stop;

cudaEventCreate (start); cudaEventCreate (stop) ;
cudaEventRecord(start, 0);

My kernel<<<block2, threads>>> ();

cudaEventRecord (stop, 0);

cudaEventSynchronize (stop) ;

Float ElapsedTime;

cudaEventElapsedTime (&elapsedTime, start, stop); CINECA
cudaEventDestroy (start) ; cudaEventDestroy (stop) ;

il SCA] Bandwidth

1. Get board’s theoretical bandwidth:

transfer channel width (bits)
/ / DOR

GeForce GTX 280
512 * 2 &«
B = freq =rate = (1107 * 10°) * —)= 141.6 GB/s

N

clock freq. (MHz)

2. Get kernel’s effective bandwidth:

// __global device code, single precision data
if (threadIdx.x < 2048 && threadIdx.y < 2048) { - w 5

mat a[threadIdx.x] [threadldx.y] = mat b[threadIdx.x B* = D" +D —_ 2048° x4 x 2
] [threadIdx.y] t t

}

3. Measure kernel’'s achieved bandwidth: use profiling tools!

Beware of cudaprof: throughput result is extrapolated and considers
wasted transaction data (uncoalesced) as good.
CINECA

Memory Optimizations

CINECA

CINECA E l AI
SuparComputing Apphcations and Innowvation

Data Transfers

Host and Device have their own address space
GPU boards are connected to host via PCle bus
Low bandwidth, extremely low latency

PClex GEN2 (16x, full duplex) 8 GB/s (peak)
PClex GEN3 (16x, full duplex) 16 GB/s (peak)
DDR3 (full duplex) 26 GB/s (single channel)

Focus on how to minimize transfers and copybacks*.

* Try to find a good trade off!

CINECA

T SCAl Page-locked memory

Pinned (or page-locked memory) is a main memory area that is not
pageable by the operating system,

Ensures faster transfers (the DMA engine can work without raising
Interrupts);

The only way to get closer to PCI peak bandwidth;

Allows CUDA asynchronous operations (including Zero Copy) to
work correctly.

// allocate page-locked memory // allocate regular memory
cudaMallocHost (&area, sizeof (double) * N); area = (double*) malloc(sizeof (double) * N);

// lock area pages (CUDA >= 4.0)
// free Page_lOCked nien sy cudaHostRegister (area, sizeof (double) * N, cudaHostRegisterPortable) ;
cudaFreeHost (area) ; // unlock area pages (CUDA >= 4.0)

cudaHostUnregister (area) ;

// free regular memory

cudaFreeHost (area) ;

Warning: locked pages are a limited resource
(much smaller than regular pages, ulimit -1)

Use with caution! Allocating too much page-locked memory can reduce overall
system performance CINECA

it DA Zero Copy

S

CUDA allows to map a page-locked host memory area to
device’s address space,

// allocate page-locked and mapped memory

cudaHostAlloc (&area, sizeof (double) * N, cudaHostAllocMapped) ;
// invoke retrieving device pointer for mapped area
cudaHostGetDevicePointer (&dev_area, area, 0);

my kernel<<< g, b >>>(dev_area);

// free page-locked and mapped memory

cudaFreeHost (area) ;

The only way to provide on-the-fly a kernel data larger
than device’s global memory.
Very convenient for large data with sparse access pattern.

CINECA

" SCAI Unified Virtual Addressing

CUDA 4.0 introduced one (virtual) address space for all CPU and
GPUs memory:

automatically detects physical memory location from pointer value
enables libraries to simplify their interfaces (e.g. cudaMencpy)

Each source-destination Same interface
permutation has its own option
cudaMemcpyHostToHost cudaMemcpyDefault

cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

System GPUo GPU1

Memory Memory Memory
I 1 1
E (-
I I PCl-e
Pointers returned by cudaHostAlloc() can be used directly from CINECA

within kernels running on UVA enabled devices (i.e. there is no
need to obtain a device pointer via cudaHostGetDevicePointer())

T SCAl Multi-GPUs: P2P

cudaDeviceCanAccessPeer (&can_access peer 0 1, gpuid 0, gpuid 1);
cudaDeviceCanAccessPeer (&can_access peer 1 0, gpuid 1, gpuid 0);

cudaSetDevice (gpuid 0) ;
cudaDeviceEnablePeerAccess (gpuid 1, 0);

cudaSetDevice (gpuid 1) ;
cudaDeviceEnablePeerAccess (gpuid 0, 0);

cudaMemcpy (gpu0_buf, gpul buf, buf size, cudaMemcpyDefault);

cudaMemcpy () knows that our buffers are on different devices (UVA), will
do a P2P copy now

Note that this will transparently fall back to a normal copy through the
host if P2P is not available

CINECA

" SCAI Multi-GPUs: direct access

__global void SimpleKernel (float *src, float *dst) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
dst[idx] = src[idx];

}

cudaDeviceCanAccessPeer (&can_access peer 0 1, gpuid 0, gpuid 1);
cudaDeviceCanAccessPeer (&can_access peer 1 0, gpuid 1, gpuid 0);

cudaSetDevice (gpuid 0) ;
cudaDeviceEnablePeerAccess (gpuid 1, 0);
cudaSetDevice (gpuid 1) ;
cudaDeviceEnablePeerAccess (gpuid 0, 0);

cudaSetDevice (gpuid 0) ;
SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpul buf) ;
SimpleKernel<<<blocks, threads>>> (gpul_ buf, gpuO_buf) ;
cudaSetDevice (gpuid 1) ;
SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpul buf) ;
SimpleKernel<<<blocks, threads>>> (gpul_ buf, gpuO_buf) ;

After P2P initialization, this kernel can now read and write data in the

memory of multiple GPUs (just dereferencing pointers!)

UVA ensures that the kernel knows whether its argument is from local CINECA
memory, another GPU or zero-copy from the host

" SLAI Asynchronous operations

nputing App

Asynchronous operations: control is returned to the host thread before the
device has completed the requested task
Kernel calls are asynchronous by default
Memory copies from host to device of a memory block of 64 KB or less
Memory set function calls
The cudaMemcpy () has an asynchronous version (cudaMemcpyAsync)

Memory transfers and copybacks are blocking

Boards >= 1.1 can overlap copy-copy (opposite directions) and copy-kernel
check asyncEngineCount device property

Boards >= 2.0 (Fermi and Kepler) can overlap kernel-kernel execution.
check asyncEngineCount device property

cudaMemcpyAsync (d A, h A, size, cudaMemcpyHostToDevice, 0); Copy data
// First invocation S
MyKernel<<<100, 512, 0, 0>>> (d A, size);

// Second transfer

cudaMemcpyAsync (d B, h B, size, cudaMemcpyHostToDevice, 0);

// Second invocation

MyKernel2<<<100, 512, 0, 0>>> (d B, size);

// Wrapup CINECA
cudaMemcpyAsync (h A, d A, size, cudaMemcpyDeviceToHost, 0); Coriaia e [. [

cudaMemcpyAsync (h B, d B, size, cudaMemcpyDeviceToHost, O0);

cudaThreadSyncronEze(),T il BN N . -

// First transfer |

SCAI CUDA Streams

SuparComputing Apphcations &

A stream is a FIFO command queue;
A stream is independent to every other active stream,;
Streams are the main way to exploit concurrent execution and 1/O operations

Default stream (aka stream ‘0’): Kernel launches and memory copies that
do not specify any stream (or set the stream to zero) are issued to the default
stream.
Explicit Synchronization:
cudaDeviceSynchronize()
blocks host until all issued CUDA calls are complete

cudaStreamSynchronize(streamid)
blocks host until all CUDA calls in streamid are complete

cudaStreamWaitEvent(stream, event)
all commands added to the stream delay their execution until the event has completed
Implicit Synchronization:
any CUDA command to the default stream,
a page-locked host memory allocation,
a device memory set or allocation,

CINECA

o SCA CUDA Streams

aromputing App and Innovation

cudaStream t stream[3];
for (int i=0; i<3; ++i) cudaStreamCreate (&stream[i]) ;

float* hPtr; cudaMallocHost ((void**)&hPtr, 3 * size);

for (int i=0; i<3; ++i) {
cudaMemcpyAsync (d_inp + i*size, hPtr + i*size,
size, cudaMemcpyHostToDevice, stream[i]);

MyKernel<<<100, 512, 0, stream[i]>>>(d_out+i*size, d_inp+i*size, size);

cudaMemcpyAsync (hPtr + i*size, d out + i*size,
size, cudaMemcpyDeviceToHost, stream[i]);

}

cudaDeviceSynchronize () ;

for (int i=0; i<3; ++i) cudaStreamDestroy (&stream[i]) ;

Copyback Kernel Transfer Stream #1
Copyback Kernel Transfer Stream #2
Copyback Kernel Transfer Stream #3 CINECA

time

i SEA CUDA Streams:
o how to overlap kernels

Starting from capability 2.0 the board has the ability to overlap
computations from multiple kernels where:

submission of commands happens in a depth-first fashion (‘usually'
best for Fermi)*

iIssue order matters!
no synchronization happens between command stages,
CUDA kernels are in different streams,
no operations occur on the default stream,
the active streams are less than 16*.

Threadblocks for a given kernel are scheduled if all threadblocks for
preceding kernels have been scheduled and there still are SM resources
available

*Kepler architecture introduced the HyperQ technology:
= No more need for depth-first command submission CINECA
= Supports up to 32 concurrent streams

w SCAN Concurrency

mpasting App

Concurrency: the ability to perform multiple CUDA operations simultaneously.
Fermi architecture can simultaneously support:

Up to 16 CUDA kernels on GPU

2 cudaMemcpyAsyncs (in opposite directions)

Computation on the CPU

Requirements for Concurrency:
CUDA operations must be in different, non-0, streams
cudaMemcpyAsync with host from 'pinned' memory
Sufficient resources must be available
cudaMemcpyAsyncs in different directions
Device resources (SMEM, registers, blocks, etc.)

Serial : 4 way concurrency :
cudaMemopyAsyno(H2D) R o]
HD2
2 way concurrency ;. | HO3 |
cudaMemcpyfsync(H2D) m —
--
K1.3
- K2.2 -
Y___Q_Q_U_Q_U rrency . [HD3 [K3.1 PPoed
-- K4.3 CINECA

K5.2 IEEE

Ka 1106 [K6.1|K6.2 | K6.3 | DHe |

CINECA 5 CAI

SuparComputing Apphcations and Innowvation

CUDA Memory Hierarchy

Block (0, 0) Block (1, 0)

Memory Location Cached Access | Scope Lifetime
on/off chip
Register On n/a R/W 1 thread Thread
Thread (0,0) Thread (1, 0) Thread (0,0) Thread (1, 0) Local Off T R/W 1 thread Thread
Shared On n/a R/W All threads in block | Block

Global Off T R/W All threads + host Host allocation
Constant Off Yes R All threads + host Host allocation
Texture Off Yes R All threads + host Host allocation

CINECA

it DA Global Memory

Memory area with the same purpose
as host’'s main memory;

High(er) bandwidth, high(er) latency;
In order to exploit its bandwidth at best, all accesses must be
coalesced.

FERMI architecture introduces caching mechanisms for
GMEM accesses (constant and texture are cached since 1.0)

L1: private to thread, virtual cache implemented into shared

memaory *Kepler architecture introduced some improvements:
New 32 KB + 32 KB partition option

/L1 =48 KB

Il SH =16 KB

cudaFuncSetCacheConfig(kernel, cudaFuncCachePreferL1); /l Try to decrease spilled registers eviction from L1,
//L1=16 KB /I disable L1 caching for global memory loads

/l SH = 48 KB $ nvce —Xptas —dicm=cg

cudaFuncSetCacheConfig(kernel, cudaFuncCachePreferShared);

L2: 768KB, grid-coherent, 25% better latency than DRAM (M52

CINECA E l AI
nd Imnovation

SuparComputing Apphcations &

Global Memory

FERMI (Compute Capability 2.x) GMEM Operations

Two types of loads:

Caching
Default mode

Attempts to hit in L1, then L2, then GMEM

Load granularity is 128-byte line
Non-caching

Compile with -Xptxas -dlcm=cg

Attempts to hit in L2, then GMEM

Do not hitin L1,

invalidate the line if it's in L1 already

Load granularity is 32-bytes

Stores:
Invalidate L1, write-back for L2

{Device) Grid

Block (0, 0)

Block (1, 0)

Threads

Threads

L1
cache

3 3

L1
cache

Host

!

!

L2 cache (768 KB)

! 1

! 1

CINECA

e o Al Global Memory

Memory operations are issued per warp (32 threads)
like all other instructions
Operation:

Threads in a warp provide memory addresses
Determine which lines/segments are needed
Request the needed lines/segments

Caching Load Non-caching Load
Addresses fall within 1 cache-line Addresses fall within 4 segments
128 bytes move across the bus 128 bytes move across the bus
Bus utilization: 100% Bus utilization: 100%

addresses from a warp addresses from a warp

Y Vil
[| —

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 0
Memory addresses

B CINECA

32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

e S C Al Global Memory
Load Operation

Caching Load Non-caching Load
Addresses fall within 1 cache-line Addresses fall within 4 segments
128 bytes move across the bus 128 bytes move across the bus
Bus utilization: 100% Bus utilization: 100%

addresses from a warp addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses Memory addresses

Caching Load Non-caching Load
Addresses fall within 2 cache-lines Addresses fall within at most 5 segments
256 bytes move across the bus 160 bytes move across the bus
Bus utilization: 50% Bus utilization: at least 80%

addresses from a warp

o | | “/}?ﬁes 1r.c.).m w
T 1T T

CINECA
I I | I I 1
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memary addresses Memory addresses

CINECA E l AI
SuparComputing Apphcations and Innowvation

Global Memory

Load Operation

Caching Load
Addresses fall within 1 cache-line
128 bytes move across the bus
Bus utilization: 3.125%

addresses from a warp

NY——"

Non-caching Load
Addresses fall within 1 segments
32 bytes move across the bus
Bus utilization: 12.5%

addresses from a warp

N

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Caching Load
Addresses fall within N cache-lines
N*128 bytes move across the bus
Bus utilization: 128 / (N*128)

addresses from a warp

A T

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Non-caching Load
Addresses fall within N segments
N*32 bytes move across the bus
Bus utilization: 128 / (N*32)

addresses from a warp

1

T T T T [I | —]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

CINECA

T SCAl Global Memory

Compute capability 1.0 and 1.1

A global memory request for a warp is split into two memory
requests, one for each half-warp, that are issued independently.

In order to exploit its bandwidth at best, all accesses must be
coalesced (half-warp accesses contiguous region of device
memory).

The global memory is accessed by 16 threads (half-warp) coalesced
If the following three conditions are met:

either 4-byte words, resulting in one 64-byte memory transaction
Or 8-byte words, resulting in one 128-byte memory transaction
Or 16-byte words, resulting in two 128-byte memory transactions
All 16 words must lie in the same aligned segment

Threads must access the words in a strictly increasing sequence:
the nt" thread in the half-warp must access the nth word. CINECA

i SCA Coalescing

Compute capability 1.0 and 1.1
stricter access requirements
k-th thread must access k-th word in the segment
not all threads need to participate

Coalesces — 1 transaction

Out of sequence — 16 transactions

CINECA

T SCAl Coalescing

Compute capability 1.2 and 1.3
The memory controller is much improved

1 transaction - 64B segment

AT T A7

2 transactions - 64B and 32B segments

|/'/'//f// A

1 transaction - 128B segment

FT7717171717[771771777

64-byte segments HEEEEEEERENEEEEE| CINECA

Half-warp of threads

T SCAl Coalescing: examples

SuparComputing Apphcations and Innowvation

Aligned and sequential Aligned and non-sequential
resses: 96 128 160 192 224 256 288
Addresses: 96 128 160 192 224 256 288 Add e [——
THHTTET TR T A A Threads: i 3
Threads: 0 31
Compute capability: 1.0 and 1.1 1.2 and 1.3 2.xand 3.0
Compute capability: 1.0and 1.1 1.2 and 1.3 2.x and 3.0 Memory transactions: Uncached Cached
Memory Wransactions: Uncached Cached 8x 32Bat128|1x 64Bat 128|1x128B at 128
1x 64Bat128|1x 64Bat128|1x128B at 128 8x 32Bat160|1x 64Bat192
1x 64Bat192|1x 64Bat 192 8x 32Bat192
8x 32Bat 224

Misaligned and sequential

Y

7x 32Bat128|1x128Bat128|1x128B at 128
8x 32Bat160|1x 64Bat192|1x128B at 256
8x 32Bat192|1x 32Bat 256
8x 32Bat224

1x 32Bat 256 CINECA

T SCAl Shared memory

A sort of explicit cache |
Resides on the chip so it is much faster than the on-board memory

Divided into equally-sized memory modules (banks) which can be
accessed simultaneously (32 banks can be accessed simultaneously

by the same warp) _ .
_ *Kepler architecture introduced some
48KB on Fermi by default* improvements:

- ability to switch from 4B to 8B banks
- (2x bandwidth for double precision codes)

Uses:

Inter-thread communication within a block

Cache data to reduce redundant global memory accesses

To improve global memory access patterns
Organization:

32 banks, 4-byte wide banks

Successive 4-byte words belong to different banks

Each bank has 32-bit per cycle bandwidth.

CINECA

il SCA

perComputing Apphcabions ai

Shared Memory
Bank Conflicts

If at least two threads belonging to the same half-warp (whole warp for
capability 1.0) access the same shared memory bank, there is a bank
conflict and the accesses are serialized (groups transactions in conflict-
free accesses);

If all the threads access the same address, a broadcast is performed,;

If part of the half-warp accesses the same address, a multicast is
performed (capability >= 2.0);

No Bank Conflict 2-way Bank Conflicts | 8-way Bank Conflicts

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 0 Thread 0
Thread 1 Thread 1
Thread 2 Thread 2
Thread 3 Thread 3
Thread 4 Thread 4
Thread 5
Thread 6
Thread 7

Thread 31 Bank 31

Thread 6
Thread 7

Thread 31 Bank 31

Thread 28
Thread 29
Thread 30
Thread 31

CINECA

o SCA Texture Memory

Read only, must be set by the host; O

Load requests are cached (dedicated cache);

specifically, texture memories and caches are designed for
graphics applications where memory access patterns exhibit a
great deal of spatial locality;

Dedicated texture cache hardware provides:
Out-of-bounds index handling (clamp or wrap-around)
Optional interpolation (on-the-fly interpolation)
Optional format conversion

could bring benefits if the threads within the same block access
memory using regular 2D patterns, but you need appropriate

binding;
Thread 0 e
For typical linear patterns, Thread 1 .
global memory (if coalesced) Thread 2 H CINECA

is faster. Thread 3

T SCAl Texture Memory

// allocate array and copy image data
cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc (32, 0, 0, 0, cudaChannelFormatKindFloat) ;
cudaArray* cu array;
cudaMallocArray(&cu array, &channelDesc, width, height);
cudaMemcpyToArray(cu array, 0, 0, h data, size, cudaMemcpyHostToDevice) ;
// set texture parameters
tex.addressMode [0] = cudaAddressModeWrap;
tex.addressMode[1l] = cudaAddressModeWrap;
tex.filterMode = cudaFilterModelLinear;
tex.normalized = true; // access with normalized texture coordinates
// Bind the array to the texture
cudaBindTextureToArray(tex, cu array, channelDesc);

// declare texture reference for 2D float texture
texture<float, 2, cudaReadModeElementType> tex;

__global void transformKernel (float* g odata, int width, int height, float theta)
{

// calculate normalized texture coordinates

unsigned int x = blockIdx.x*blockDim.x + threadIldx.x;

unsigned int y = blockIdx.y*blockDim.y + threadIldx.y;

float u = x / (float) width;

float v = y / (float) height;

// transform coordinates

u —= 0.5f;

v -= 0.5f;

float tu = u*cosf (theta) - v*sinf (theta) + 0.5f;

float tv = v*cosf(theta) + u*sinf (theta) + 0.5f;

// read from texture and write to global memory CINECA

g odata[y*width + x] = tex2D(tex, tu, tv);

CINECA 5CA|

global loads through texture

The compiler (LLVM) can detect texture-compliant loads

and map them to the new «global load through texture»
PTX Instruction:

global loads are going to pass through texture pipeline;

dedicated cache (no L1 pressure) and memory pipe,
relaxed coalescing;

automatically generated by compiler (no texture map
needed) for accesses through compliant pointers
(constant and restricted);

useful for bandwidth-limited kernels (bandwidths sum).

CINECA

T SCAl Constant Memory

Extremely fast on-board memory area
Read only, must be set by the host

64 KB, cached reads in a dedicated L1 (register space)
Coalesced access if all threads of a warp read the same
address (Serialized otherwise)

constant__ qualifier in declarations

Useful:
To off-load long argument lists from shared memory

For coefficients and other data that is read uniformly
by warps
__device = constant parameters t args;

__host void copy params (const parameters t* const host args) {

cudaMemcpyToSymbol (“args", host args, sizeof (parameters t)); CINECA

CINECA E l AI
SuparComputing Apphcations and Innowvation

Registers

Just like CPU registers, access has no latency;
used for scalar data local to a thread,;

taken by the compiler from the SM pool (32K for Fermi, 64K for
Kepler) and statically allocated to each thread,

register pressure one of the most dangerous occupancy
limiting factors.

CINECA

Registers

Some tips:
try to fold “stack™ variables (it would be less useful on LLVM)
try to offload data to shared memory;
use launch bounds to force the number of resident blocks;

#define MAX THREADS PER BLOCK 256
#define MIN BLOCKS PER MP 2

__global void

__launch bounds__ (MAX THREADS PER BLOCK,
MIN BLOCKS PER MP)
my kernel(int* inArr, int* outArr) { .. }

limit register usage via compiler option.

nvcc —-Xptas -v mykernel.cu
ptxas info : Compiling entry function ' Z12my kernelP9domain t ' for 'sm 20'
ptxas info : Used 13 registers, 8+16 bytes smem

nvcc —--maxrregcount 10 —-Xptas -v mykernel.cu
ptxas info : Compiling entry function ' Zl2my kernelP9domain t ' for 'sm 20'
ptxas info : Used 10 registers, 12+0 bytes lmem, 8+16 bytes smem

CINECA

Local memory

“Local” because it's private on a per-thread basis;

it's actually a global area used to spill out data when SM
runs out of resources;

addressing is resolved by the compiler;
cached (store only).

CINECA

Execution Optimization

CINECA

CINECA E l AI
SuparComputing Apphcations and Innowvation

Occupancy

The board’s occupancy is the ratio of active warps to
the maximum number of warps supported on a
multiprocessor.

Keeping the hardware busy helps the warp scheduler to
hide latencies.

CINECA

Occupancy: constraints

Every board’s resource can become an occupancy
limiting factor:

shared memory;

grid and block sizes;

(max threads per SM/max blocks per SM)

used (and spilled) registers

Given an actual kernel configuration, is possible to
predict the maximum theoretical occupancy allowed.

CINECA

Occupancy: block sizing tips

Some experimentation Is required.

However there are some heuristic rules:
threads per block should be a multiple of warp size;
a minimum of 64 threads per block should be used,;

128-256 threads per block is universally known to be
a good starting point for further experimentation;

prefer to split very large blocks into smaller blocks.

CINECA

- Kepler: dynamic parallelism

One of the biggest CUDA limitations is the need to fit a single grid
configuration for the whole kernel.

If you need to reshape the grid, you have to resync back to host and split your code.

Kepler (in addition to CUDA 5.x) introduced Dynamic Parallelism
It enables a global kernel to be called from within another kernel
The child grid can be dynamically sized and optionally synchronized

Parent-Child Launch Nesting

Time —»
__global ChildKernel (void* data) {
CPU Thread > //Operate on data
Grid A Launch Grid A Complete }
l P __global ParentKernel (void *data) {

Grid A Threads ChildKernel<<<16, 1>>>(data);

Grid A - Parent PY i }
*
\\ PR URURR s : // In Host Code:
Grid B Launch Grid B Complete ParentKernel<<<256, 64>>(data):;
Grid B - Child Grid B Threads C |N ECA
..

CINECA E l AI
SuparComputing Apphcations and Innowvation

Instructions

Arithmetic ops:

prefer integer shift operators instead of division and
modulo (would be less useful with LLVM);

beware of (implicit) casts (very expensive);
use intrinsics for trascendental functions where possible;
try the fast math implementation.

CINECA

CINECA 5 CAI

aromputing App

ns and Imng

- Capabi

ity : instruction throughput

Compute
Capability

1.0

1.1 1.3 2.0 2.1 3.0 3.5

1.2
32-bit floating-point add,
multiply, multiply-add 8 8 32 8 192 192
64-bit floating-point add, N
multiply, multiply-add 1 1 16() 4 8 64
32-bit integer add 10 10 32 48 160 160
32-bit integer compare 10 10 32 48 160 160
32-bit integer shift 8 8 16 16 32 64
Logical operations 8 8 32 48 160 160
32-bit integer multiply, . .
multiply-add, sum of _ Multiple) Multiple 16 16 32 32

- instructions | instructions

absolute difference
24-bit integer multiply 8 8 Multiple Multiple Multiple Multiple
([ulmulzd) instructions | instructions | instructions | instructions
32-bit floating-point
reciprocal, reciprocal
square root, base-2
logarithm (_ logZf),
base 2 exponential 2 2 4 8 32 32
(exp2f), sine
(__sinf), cosine
(__cosf)
Type conversions from 8-
bit and 16-bit integer to 8 8 16 16 128 128
32-bit types
Type conversions from and Multiple .
to 64-bit types instructions ! 16() 4 8 32
All other type conversions 8 8 16 16 32 32

(*) Throughput is lower for
GeForce GPUs.

instructions x cycle x sm

CINECA

Control Flow

Different execution paths inside the same warp are managed by the
predication mechanism and lead to thread divergence.

if (threadldx.x==0){...} if (threadldx.x==0){...} if (threadldx.x==0){...}
else{...} else if (threadldx.x == 1){...}

if (vec[threadldx.x] > 1.0) {...}

Minimize the number of execution branches inside the same warp;
make the compiler’s life easier by unrolling loops (hand-coded,
pragma or option);

use signed counters for loops (would be less useful with LLVM);

CINECA

CINECA E l AI
SuparComputing Apphcations and Innowvation

Exploiting Multi-GPUs
CUDA >= 4.0 introduced the N-to-N bound feature:

1. Every thread can be bound to any board

2. Every board can be bound to an arbitrary number of
threads

#pragma omp parallel
#pragma omp sections
{

#pragma omp section

{

ML”tI-GPU can be eXpIOited cutilSafeCall (cudaSetDevice (0)) ;
i i cudaMemcpy (device data 1, host data 1, size, cudaMemcpyHostToDevice);
through your fav_ou”te mUItI my kernel<<< grid, block >>>(device data 1);
threading paradigm /1
(OpenMP, pthreads, etc...))

#pragma omp section
{
cutilSafeCall (cudaSetDevice (1)) ;
cudaMemcpy (device data 2, host data 2, size, cudaMemcpyHostToDevice);
my kernel<<< grid, block >>>(device data 2);
70 ooc

CINECA

Tools Overview

CINECA

Development tools

Common
Memory Checker
Built-in profiler
Visual Profiler

Linux
CUDA GDB
Parallel Nsight for Eclipse

Windows
Parallel Nsight for VisualStudio CINECA

" SCAI profiling tools: built-in

The CUDA runtime provides a useful profiling facility without the need
of external tools.

export CUDA PROFILE=1
export CUDA PROFILE CONFIG=SHOME/.config

gld incoherent: Number of non-coalesced global memory loads
gld coherent: Number of coalesced global memory loads
gst incoherent: Number of non-coalesced global memory stores

// Contents of config gst coherent: Number of coalesced global memory stores

gld_coherent local load: Number of local memory loads

gld_incoherent local store: Number of local memory stores

gst coherent branch: Number of branch events taken by threads

gst incoherent divergent branch: Number of divergent branches within a warp

instructions: instruction count

warp serialize: Number of threads in a warp that serialize
based on address conflicts to shared or constant memory
cta launched: executed thread blocks

method, gputime, cputime, occupancy,gld incoherent,gld coherent,gst incoherent,gst coherent
method=[memcopy] gputime=[438.432]

method=[Zl7reverseArrayBlockPiS] gputime=[267.520] cputime=[297.000] occupancy=[1.000]
gld incoherent=[0] gld coherent=[1952] gst incoherent=[62464] gst coherent=[0]

method=[memcopy] gputime=[349.344]

CINECA

CINECA 5 CAI

S ons and Innoval

rComputing Apphcs

Profiling: Visual Profiler

Traces execution at host, driver and kernel levels (unified
timeline)

Supports automated analysis (hardware counters)

File View Run Help

EEE BeS Q@ B8
i *dct8x8.vp 2 = O | Wg Properties % W@ Detail Graphs =0
161.7 ms
[El Process: 11119
[= Thread: -1494415584 = e Qe @ a
nimes I — D/ B9% aaa RA
Driver APl @ +diverge.vp 2 = O | g Properties B# Detail Graphs 2 =08
Wli0]\CerarelGTtaho 0.1s 0.125s 0.15s 0.175 s
[=l Context 1 (CUDA) B — o i = o Max: 95.261 ms
T MemCpy (HtoD) Runtime API o Avg: 7.048 ms
T MemCpy (DtoH) Driver API 17-85 M5 \in: 176 s
T MemCpy (DtoD) | = (01 GeForce GTx 480 Duration
= Compute [=l Context 1 (CUDA) - Max: 28.07 GB/s
W 0.7% [101] CUD... T MemCpy (HtoD) | 17.52 GB/s
T 0.3% [10] CUDAK... F MemCpy (DtoH) :a‘{qj g‘gﬁ GB/s
T 0.0% [2] CUDAke... = Compute Vecl... VecThen... VecS0(int, in... Veclof32(int*... DRAM Write Th}Qggh,}jt
5 0.0% [1] CUDAke... T 42.5% [4] Veclof32x(... N [
T 0.0% [1] CUDAke... T 7.5% [4] Veclof32(int... I I I - Max: 155.49 MB/s
T 0.0% [1] CUDAke... T 7.4% [4] Vec50(int, i...]] [] Avg: 8.75 MBJs
T 0.0% [1] CUDAke... T 6.4% [4] VecThen(int®... [| [| [8.31 MB/s—= win: 0 B/s
F 0.0% [1] CUDAke... T 4.0% [4] Vec320f32(i...]] | DRAM Read Throughput
= streams T 0.0% [4] VecEmpty() | \ | | 80 Max: 100%
Stream 1 | CUDAkemelQua... | =l Streams | Ava: 35.8%
Stream 1 Vecl... VecThen(... Vec50(int*, in... Veclof32(int*... -Mig; 0°A;
. - " Global Memarv Stare Ffficiencv N
W& Analysis | iF Details 2 B Console | i Settings Ly 708
W& Analysis £3 | & Details | B Console | B Settings
- Name Start Time Duration Grid Size Block Size Regs DRAM Write Throughput DRAM Read Throughput Global Memory Store Efficiency Global Memory *
B Reset All Analyze all Analysi: "VecThen(int*, int*, int*, int) 89.682ms; 1522ms; [L11] [111] 16 41.05 MB/s 369.48 KB/s 12.5%
.. Hit| Vecso(int*, int*, int*, int) 91.208 ms! 764.707 us [1,1,1] [1,1,1], 16 40.91 MB/s 367.79 KB/s 12.5%
Timeline @ * piv Veclof32(int*, int*, int*, int) | 91.975ms| 764.547 ps [1,1,1] [1,1,1], 16 40.91 MB/s 40.87 KB/s 12.5%
R Hi(| Veclof32x{int, int*, int*, int), 92.742 ms 7.717 ms [1,1.1] [1,1,1] 16 40.5 MB/s 4.05 KB/s 12.5%
Multiprocessor (] & . . - p
Ac| Vec32of32(int*, int*, int*, int)| 100.461 ms| 764.706 us [1,1,1] [1,1,1], 16 40.91 MB/s 40.87 KB/s 12.5%
Kernel Memory) Hit VecEmpty() 101.228 ms 1.921 ps [2,1,1] [1,1,1] 2 0 B/s 0 B/s 0%
& *| VecThen(int*, int*, int*, int) 101.233 ms 1.522 ms [2,1,1] [1,1,1] 16 81 MB/s 0Bfs 12.5%
Nol
Kernel Instruction (V) Vec50(int*, int*, int*, int) 102.757 ms| 762.979 us [2,1,1] [1,1,1], 16 81.24 MB/s 0BJ/s 12.5% c I N E CA
Veclof32(int*, int*, int*, int) | 103.522 ms| 762.914 ps [2,1,1] [1,1,1], 16 81.16 MB/s 0 B/s 12.5%
Veclof32x(int*, int*, int*, int), 104.287 ms 7.717 ms [2,1,1] [1,1,1] 16 43.76 MB/s 0Bfs 12.5% 5

" SCAI bebugging: CUDA-GDB

...... aromputing App ind Inncvation

Well-known tool enhanced with CUDA extensions

Works well on single-gpu systems (OS graphics disabled)

Can be run under GDB-targeted tools and GUIs (multi-
gpu systems)

(cuda-gdb) info cuda threads
BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line
Kernel 0* (0,0,0) (0,0,0) (0,0,0) (255,0,0) 256 0x0000000000866400 bitreverse.cu 9

(cuda-gdb) thread

[Current thread is 1 (process 16738)]

(cuda-gdb) thread 1

[Switching to thread 1 (process 16738)]

#0 0x000019d5 in main () at bitreverse.cu:34

34 bitreverse<<<l, N, N*sizeof (int)>>>(d);
(cuda-gdb) backtrace

#0 0x000019d5 in main () at bitreverse.cu:34
(cuda-gdb) info cuda kernels

Kernel Dev Grid SMs Mask GridDim BlockDim Name Args
0 0 1 0x00000001 (1,1,1) (256,1,1) bitreverse data=0x110000

CINECA

CINECA 5 CAI

TR uibing |'

and Imno

Debugging: CUDA-MEMCHECK

It's able to detect buffer overflows, misaligned global memory
accesses and leaks

Device-side allocations are supported
Standalone or fully integrated in CUDA-GDB

$ cuda-memcheck --continue ./memcheck demo
========= CUDA-MEMCHECK

Mallocing memory

Running unaligned kernel

Ran unaligned kernel: no error

Sync: no error

Running out of bounds kernel

Ran out of bounds kernel: no error

Sync: no error

========= Invalid _ global write of size 4
========= gt 0x00000038 in memcheck demo.cu:5:unaligned kernel
========= by thread (0,0,0) in block (0,0,0)
========= Address 0x200200001 is misaligned

========= Invalid _ global write of size 4

========= gt 0x00000030 in memcheck demo.cu:10:out of bounds kernel
========= by thread (0,0,0) in block (0,0,0)

========= Address 0x87654320 is out of bounds

========= ERROR SUMMARY: 2 errors

CINECA

Plug-in for major IDEs (Eclipse and VisualStudio)

Aggregates all external functionalities:
Debugger (fully integrated)
Visual Profiler
Memory correctness checker

As a plug-in, it extends all the convenience of IDEs to
CUDA

On Windows systems:
Now works on a single GPU
Supports remote debugging and profiling

Latest version (2.2) introduced live PTX assembly
view, warp inspector and expression lamination

CINECA

CINECA 5 CAI

SuparComputing Apphcations and Innowvation

Parallel NSight

oo voxelpipe_demo_vcl0 (Debugging) - Microsoft Visual Studic (Administrator)
File Edit View Project Build Debug Team MNsight Data Tools Test Anpalyze Window Help
Pl S| 4 E@R 9 - -85 b [Debug 164 | [# | SubFrame | REF GBI RO GRS B @ cunan, 200 .
Process: |[1840]v0xelpipe_demo.ace '| Thread: |[28?4912] <MNo Name> '| Y \\) Stack Frame: |CUm0duIe05508feﬂ - [2] trace - Line 148 '| =
i L Connections: ||0ca|host v| =
A b CUDA WarpWatch 1 > 1 x
| =z [|Y Filter: Viewing 128/128
Name # ray_inv.x @ ray_invy U
Current | blockldx Warp Index | PC Active Mask | Status Exception | File Name Source Lin| Lanes ; Type _local_float _local_ float
(8, 8 @) @ oxpd3elads GxFFFFFFSe () Breakpoint None rt_render.cu e [T LI I I T T LTI T T T L] 0 -14444908 -1.7955524 -2.17
| (8, @8 @) 1 @xpdleladd OxfFFFFFee () Breakpoint None rt_render.cu e LI LI LI I I I T T L I I T I I T L] 1 -144425 -1.7967783 21
| (o, o o 2 owoelsds ourtrrrcoo @ reskesint fone rtrecer.cs 10 DDEDREIEDEEEEEN AN 2 Lo 70 217
| (o o o > oomess oxtrreroo Mo None rtrecer.co 100 DRDIDDID I D SRR 3 ames Lyes 217
| = (1, e @ @ 9xP3e1298 GxB3ePE00@ (J) Breakpoint None rt_render.cu v LI LI I I I T I I T T T T IT] 4 -14435281 -1.800477 -217
| (1, 8 @ 1 @xp93e1298 ©x67c00008 () Breakpoint None rt_render.cu v LI L LI I I I T LT LTI I T I T LT 5 -14432876 -1.8017174 -2.17
| (1 o o 2 oomesro oxfrrreerr None tone cincwsen <23 NN | ¢ o imes 20
B - - — T e = 7 -14428074 -1.8042094 -2.164
8 -14425675 -1.8054608 -2.164
CUDA Info 1 [N g 14423276 -1.8067161 _2.16
rt_render.cu < Disassembly 10 -14420878 -1.8079749 -2.164
T 11 -1.4418485 -1.8092378 -2.164
| Crknown Scope) | - adi=| -l 12 -14416089 1810546 -2.164
143 node_index = node.get_index(); // jump to child %8 v Viewing Options 13 14413697 -18117749 -2.16]
as 3 ‘ 148: 14 -14411306 -1.8130492 -2.164
zlse O exea3e1208 23 15 -14408917 18143274 215
. . Fj oxoe3elze 28 16 -14406527 -18156093 -215
// leaf intersection BxB@3e12a8 28 R7, RZ s
-] const uint32 leaf_index = node.get_index(); BxBB3el2bB 28 R6, RE 3 17 -14404141 -1.8168953 -2.15
const Bvh_leaf leaf = geometry.m_bvh_leaves[leaf_index]; BxB03e12b3 48 IADD R4.CC, R4, 18 -14401754 -1.818185 -213
const uint32 leaf_end = leaf.get_index() + leaf.get size(); BxBB3el2cd 48 IADD.X RS, RS, 19 -1439937 -1.8194786 -215
const uint32 leaf_begin = leaf.get_index(); 8x@03e12c8 28 R4, R4; 20 -14396986 -1.820776 -2.15§
152 ex@e3e12de 28 RS, RS; 21 -14394605 -1.8220775 2154
153 for (uint32 tri_index = leaf_begin; tri_index < leaf_end; ++tri_index) ~ BxBB3e12d8 28 RS, RS; - 22 14392275 18733831 214
00% - | - | - K m ’ 23 -14380844 18246926 -2.14§
Locals ~ 0 X Call Stack 24 -14387469 -1.8260052 -2.144
Name Value Type = Name Language - = -14385002 -18273233 -214
@ leaf {m_size = 67106176, m_index = 0} _local_ O] CUmodule 05508fed - [2] trace - Line 148 CUDA RO =152 718 Sbiilep |k
o leaf_index ‘leaf_index' has no value at the target location. CUmodule 05508fe0 - [1] render_pixel - Line 409 CuDA 27 -14380344 -1.8299706 _2'14
o leaf_end ‘leaf_end' has no value at the target location. CUmodule 05508fe0 - [0] rt_trace_primary_kernel - Line 493 CuDA 28 -14377974 -1.8313001 214
¥ leaf_begin 'leaf_begin' has no value at the target location. 5 29 -1.4375603 -1.832634 -2.13
¥ node {m_packed_data = 2147484877, m_skip_node = 24{ _local__— 30 -14373236 -1.8339716 -2.134
¥ _T21669 {x = -1.4394605, y = -1.8220775, z = -2.150774} _local_ 31 -14370868 -1.8353136 -213
@ ray_inv {x = -1.4394605, y = -1.8220775, z = -2.150774} _local_ ‘ "
@ node_index 'node_index' has no value at the target location. il e CUDAWarpWatchl B Output
Ready

CINECA 5 CAI

aromputing cations and Imno

Parallel NSight

oo supersonicsled - Microsoft Visual Studio (Administrator) o - e —
File Edit View Project Build Debug Team Nsight Data Tools Test Apalyze Window Help
AR R = | #h =2 _."_L|| Lol '__;">| '3 |Debug '||Win32 '||@|RuntimehpiTrace_t v||ll’fgﬁ._?ﬁ§‘}b BlE - i

ﬁ SupersonicSled111]...pture 000.nvreport < taiiiyBiRy Y la i 1::'
v — p-d
% ° O‘n |O » Timeline ||j'| 3
1] o
N Row Filters g
g ; 0 01 02 03 04 05 06 07 08 0O 14 15 16 17 1B 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 37 38 39 4 N -
=) _ _ Time AT A N R : Db b b b o D b G Db oo w
A 0.0 % [71] fluid_advectVelocity_k | [RN AR AN AR AR AN AR RN 5
5 0.0 % [70] fluid_diffuseProject_k | [l RN RN AR RN o
= 0.0 % [70] fluid_updateVelocity_k | [AR RIRRARAA N AR AR AR ARRAE E
% 0.0 % [70] fluid_updateParticles_k | il AR RN RN AR AR g
0.0 % [71] fluid_offsetelocities_k | [RN AR R NAR A NN RN RAR AR A
0.0 % [284] fluid_setVelocity_k | I FEEEEEEEEEE e e e e e g
Streams Er
Counters =
= DX "'g
Frames _ cPu z
D3C2BCC0 ’
= Device Context 0x3C2BCCO Level 0| IR A AN AR RN NN NN ENANRINANNANENNNNNNNEANINENA NN
- m
= Device 0x200 I 0 000 A 0O 00O OO Y0 O 00 g
-]
R ————
Draw Calls E
B
o
—
B System ;—
= CPU Usage | L z
Core0 Mk st Sh SERA AMGGGG lal SRR dalih, R . sams. B
Core 1 MEGEA A g, AA B A & JH
Core ? I.ul. b Akl & W WY VY L e bobi o .4 duh Y nl “
“ " 3 =
Draw Calls [DirectX Draw Calls Row] Start Before Capture
4 Cursor Information End - After Capture
=| Duration
4 161491 [Direct® Draw Call Worklcad]
.
8850 [DirectX Command Buffer Workload] Process supersonicsled.exe [5812]
4 Drawindexed [Direct) Draw Function Call] # Threads 32
B OX3C2BCCO [Direct), Davice Context] {é;:nsr:l:t:: Line ;?\;emp\sdomine-lt4\c\program files (xB6)\nvidia corporation\nvidia demos'\supersonic sled\bin\supersonicsled.exe” .

B Output B Find Results 1
Ready

