
CUDA Efficient Programming

Agenda

1. Overview and general concepts

2. Performance Metrics

3. Memory Optimizations

4. Execution Optimization

5. Tools Overview

Different worlds:
host and device

Host Device

Threading

resources

2 threads per core (SMT), 24/32

threads per node. The thread is the

atomic execution unit.

e.g.: 1536 (thd x sm) * 14 (sm) = 21504.

The Warp (32 thd) is the atomic

execution unit.

Threads «Heavy» entities, context switches

and resources management.

Extremely lightweight, managed

grouped into warps, fast context switch,

no resources management (statically

allocated once).

Memory e.g.: 48 GB / 32 thd = 1.5 GB/thd,

300 cycles lat., 6.4 GB/s band

(DDR3), 3 caching levels with lots

of speculation logic.

e.g.: 6 GB / 21504 thd = 0.3 MB/thd, 600

cycles lat*, 144 GB/s band (GDDR5)*,

fake caches.
* coalesced

Maximum performance benefit

Focus on achieving high occupancy.

Focus on how to exploit the SIMT model at its best.

Deeply analyze your algorithm in order to find the hotspots

and embarassingly parallel-enabled portions.

i.e.: pay attention to the Amdahl’s law, the porting could

 be very tough.
𝑆 =

1

1 − 𝑃 + 𝑃/𝑁

Capability

The version tag that identifies:

instructions and features supported by the board;

coalescing rules;

the board’s resources constraints;

througput of some instructions (hardware

implementation).

Capability:
resources constraints

Performance metrics

Performance metrics

Wall time

Theroetical vs achieved bandwidth

Achievable vs achieved occupancy

Memory conflicts

Timing

It’s allowed to use std timing facilities (host side).

Beware of asynchronous calls!

CUDA provides the Events facility.

Needed to time single streams without loosing

concurrency.

start = clock()

my_kernel<<< blocks, threads>>>();

cudaThreadSynchronize();

end = clock();

cdaEvent_t start, stop;

cudaEventCreate(start); cudaEventCreate(stop);

cudaEventRecord(start, 0);

My_kernel<<<block2, threads>>> ();

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

Float ElapsedTime;

cudaEventElapsedTime(&elapsedTime, start, stop);

cudaEventDestroy(start); cudaEventDestroy(stop);

Bandwidth

1. Get board’s theoretical bandwidth:

𝐵 = 𝑓𝑟𝑒𝑞 ∗ 𝑟𝑎𝑡𝑒 = 1107 ∗ 106 ∗
512 ∗ 2

8
= 141.6 𝐺𝐵/𝑠

clock freq. (MHz)

transfer channel width (bits)

DDR

GeForce GTX 280

2. Get kernel’s effective bandwidth:

𝐵∗ =
𝐷𝑟 + 𝐷𝑤

𝑡
=

20482 ∗ 4 ∗ 2

𝑡

// __global__ device code, single precision data

if(threadIdx.x < 2048 && threadIdx.y < 2048) {

 mat_a[threadIdx.x] [threadIdx.y] = mat_b[threadIdx.x

] [threadIdx.y];

}

3. Measure kernel’s achieved bandwidth: use profiling tools!

Beware of cudaprof: throughput result is extrapolated and considers
wasted transaction data (uncoalesced) as good.

Memory Optimizations

Data Transfers

Host and Device have their own address space

GPU boards are connected to host via PCIe bus

Low bandwidth, extremely low latency

Focus on how to minimize transfers and copybacks*.

* Try to find a good trade off!

Technology Peak Bandwidth

PCIex GEN2 (16x, full duplex) 8 GB/s (peak)

PCIex GEN3 (16x, full duplex) 16 GB/s (peak)

DDR3 (full duplex) 26 GB/s (single channel)

Page-locked memory

 Pinned (or page-locked memory) is a main memory area that is not

pageable by the operating system;

 Ensures faster transfers (the DMA engine can work without raising

interrupts);

 The only way to get closer to PCI peak bandwidth;

 Allows CUDA asynchronous operations (including Zero Copy) to

work correctly.

// allocate page-locked memory

cudaMallocHost(&area, sizeof(double) * N);

// free page-locked memory

cudaFreeHost(area);

Warning: locked pages are a limited resource
(much smaller than regular pages, ulimit -l)

Use with caution! Allocating too much page-locked memory can reduce overall
system performance

// allocate regular memory

area = (double*) malloc(sizeof(double) * N);

// lock area pages (CUDA >= 4.0)

cudaHostRegister(area, sizeof(double) * N, cudaHostRegisterPortable);

// unlock area pages (CUDA >= 4.0)

cudaHostUnregister(area);

// free regular memory

cudaFreeHost(area);

Zero Copy

CUDA allows to map a page-locked host memory area to
device’s address space;

The only way to provide on-the-fly a kernel data larger
than device’s global memory.

Very convenient for large data with sparse access pattern.

// allocate page-locked and mapped memory

cudaHostAlloc(&area, sizeof(double) * N, cudaHostAllocMapped);

// invoke retrieving device pointer for mapped area

cudaHostGetDevicePointer(&dev_area, area, 0);

my_kernel<<< g, b >>>(dev_area);

// free page-locked and mapped memory

cudaFreeHost(area);

Unified Virtual Addressing

CUDA 4.0 introduced one (virtual) address space for all CPU and

GPUs memory:

automatically detects physical memory location from pointer value

enables libraries to simplify their interfaces (e.g. cudaMemcpy)

Pre-UVA UVA

Each source-destination

permutation has its own option

Same interface

cudaMemcpyHostToHost

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

cudaMemcpyDefault

Pointers returned by cudaHostAlloc() can be used directly from

within kernels running on UVA enabled devices (i.e. there is no

need to obtain a device pointer via cudaHostGetDevicePointer())

Multi-GPUs: P2P

cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid_0, gpuid_1);

cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid_1, gpuid_0);

cudaSetDevice(gpuid_0);

cudaDeviceEnablePeerAccess(gpuid_1, 0);

cudaSetDevice(gpuid_1);

cudaDeviceEnablePeerAccess(gpuid_0, 0);

cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault);

cudaMemcpy() knows that our buffers are on different devices (UVA), will
do a P2P copy now

Note that this will transparently fall back to a normal copy through the
host if P2P is not available

Multi-GPUs: direct access

cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid_0, gpuid_1);

cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid_1, gpuid_0);

cudaSetDevice(gpuid_0);

cudaDeviceEnablePeerAccess(gpuid_1, 0);

cudaSetDevice(gpuid_1);

cudaDeviceEnablePeerAccess(gpuid_0, 0);

cudaSetDevice(gpuid_0);

SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpu1_buf);

SimpleKernel<<<blocks, threads>>> (gpu1_buf, gpu0_buf);

cudaSetDevice(gpuid_1);

SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpu1_buf);

SimpleKernel<<<blocks, threads>>> (gpu1_buf, gpu0_buf);

After P2P initialization, this kernel can now read and write data in the
memory of multiple GPUs (just dereferencing pointers!)

UVA ensures that the kernel knows whether its argument is from local
memory, another GPU or zero-copy from the host

__global__ void SimpleKernel(float *src, float *dst) {

 const int idx = blockIdx.x * blockDim.x + threadIdx.x;

 dst[idx] = src[idx];

}

Asynchronous operations

Asynchronous operations: control is returned to the host thread before the
device has completed the requested task

Kernel calls are asynchronous by default

Memory copies from host to device of a memory block of 64 KB or less

Memory set function calls
The cudaMemcpy() has an asynchronous version (cudaMemcpyAsync)

Memory transfers and copybacks are blocking

Boards >= 1.1 can overlap copy-copy (opposite directions) and copy-kernel
check asyncEngineCount device property

Boards >= 2.0 (Fermi and Kepler) can overlap kernel-kernel execution.
check asyncEngineCount device property

// First transfer

cudaMemcpyAsync(d_A, h_A, size, cudaMemcpyHostToDevice, 0);

// First invocation

MyKernel<<<100, 512, 0, 0>>> (d_A, size);

// Second transfer

cudaMemcpyAsync(d_B, h_B, size, cudaMemcpyHostToDevice, 0);

// Second invocation

MyKernel2<<<100, 512, 0, 0>>> (d_B, size);

// Wrapup

cudaMemcpyAsync(h_A, d_A, size, cudaMemcpyDeviceToHost, 0);

cudaMemcpyAsync(h_B, d_B, size, cudaMemcpyDeviceToHost, 0);

cudaThreadSyncronize();

CUDA Streams

A stream is a FIFO command queue;

A stream is independent to every other active stream;

Streams are the main way to exploit concurrent execution and I/O operations

Default stream (aka stream ‘0’): Kernel launches and memory copies that

do not specify any stream (or set the stream to zero) are issued to the default

stream.

Explicit Synchronization:

cudaDeviceSynchronize()

blocks host until all issued CUDA calls are complete

cudaStreamSynchronize(streamid)

blocks host until all CUDA calls in streamid are complete

cudaStreamWaitEvent(stream, event)

all commands added to the stream delay their execution until the event has completed

Implicit Synchronization:

any CUDA command to the default stream,

a page-locked host memory allocation,

a device memory set or allocation,

…

CUDA Streams

cudaStream_t stream[3];

for (int i=0; i<3; ++i) cudaStreamCreate(&stream[i]);

float* hPtr; cudaMallocHost((void**)&hPtr, 3 * size);

for (int i=0; i<3; ++i) {

 cudaMemcpyAsync(d_inp + i*size, hPtr + i*size,

 size, cudaMemcpyHostToDevice, stream[i]);

 MyKernel<<<100, 512, 0, stream[i]>>>(d_out+i*size, d_inp+i*size, size);

 cudaMemcpyAsync(hPtr + i*size, d_out + i*size,

 size, cudaMemcpyDeviceToHost, stream[i]);

}

cudaDeviceSynchronize();

for (int i=0; i<3; ++i) cudaStreamDestroy(&stream[i]);

Transfer

Copyback

Kernel

Transfer

Transfer

Kernel

Kernel

Copyback

Copyback

Stream #1

Stream #2

Stream #3

time

CUDA Streams:
how to overlap kernels

Starting from capability 2.0 the board has the ability to overlap

computations from multiple kernels where:

submission of commands happens in a depth-first fashion ('usually'

best for Fermi)*

issue order matters!

no synchronization happens between command stages,

CUDA kernels are in different streams,

no operations occur on the default stream,

the active streams are less than 16*.

Threadblocks for a given kernel are scheduled if all threadblocks for

preceding kernels have been scheduled and there still are SM resources

available

*Kepler architecture introduced the HyperQ technology:

 No more need for depth-first command submission

 Supports up to 32 concurrent streams

Serial :

2 way concurrency :

3 way concurrency :

4 way concurrency :

4/+ way concurrency :

Concurrency

Requirements for Concurrency:

CUDA operations must be in different, non-0, streams

cudaMemcpyAsync with host from 'pinned' memory

Sufficient resources must be available

cudaMemcpyAsyncs in different directions

Device resources (SMEM, registers, blocks, etc.)

Concurrency: the ability to perform multiple CUDA operations simultaneously.

Fermi architecture can simultaneously support:

Up to 16 CUDA kernels on GPU

2 cudaMemcpyAsyncs (in opposite directions)

Computation on the CPU

CUDA Memory Hierarchy

Global Memory

Memory area with the same purpose

 as host’s main memory;

High(er) bandwidth, high(er) latency;

In order to exploit its bandwidth at best, all accesses must be

coalesced.

FERMI architecture introduces caching mechanisms for

GMEM accesses (constant and texture are cached since 1.0)

L1: private to thread, virtual cache implemented into shared

memory

L2: 768KB, grid-coherent, 25% better latency than DRAM

// L1 = 48 KB

// SH = 16 KB

cudaFuncSetCacheConfig(kernel, cudaFuncCachePreferL1);

// L1 = 16 KB

// SH = 48 KB

cudaFuncSetCacheConfig(kernel, cudaFuncCachePreferShared);

// Try to decrease spilled registers eviction from L1,

// disable L1 caching for global memory loads

$ nvcc –Xptas –dlcm=cg

*Kepler architecture introduced some improvements:

 New 32 KB + 32 KB partition option

Global Memory

FERMI (Compute Capability 2.x) GMEM Operations

Two types of loads:

Caching

Default mode

Attempts to hit in L1, then L2, then GMEM

Load granularity is 128-byte line

Non-caching

Compile with –Xptxas –dlcm=cg

Attempts to hit in L2, then GMEM

 Do not hit in L1,

 invalidate the line if it’s in L1 already

Load granularity is 32-bytes

Stores:

Invalidate L1, write-back for L2

Global Memory
Load Operation

Memory operations are issued per warp (32 threads)

like all other instructions

Operation:

Threads in a warp provide memory addresses

Determine which lines/segments are needed

Request the needed lines/segments

Warp requests 32 aligned, consecutive 4-byte words (128 bytes)

Caching Load Non-caching Load

Addresses fall within 1 cache-line Addresses fall within 4 segments

128 bytes move across the bus 128 bytes move across the bus

Bus utilization: 100% Bus utilization: 100%

Global Memory
Load Operation

Warp requests 32 misaligned, consecutive 4-byte words (128 bytes)

Caching Load Non-caching Load

Addresses fall within 2 cache-lines Addresses fall within at most 5 segments

256 bytes move across the bus 160 bytes move across the bus

Bus utilization: 50% Bus utilization: at least 80%

Warp requests 32 aligned, permuted 4-byte words (128 bytes)

Caching Load Non-caching Load

Addresses fall within 1 cache-line Addresses fall within 4 segments

128 bytes move across the bus 128 bytes move across the bus

Bus utilization: 100% Bus utilization: 100%

Global Memory
Load Operation

Warp requests 32 scattered 4-byte words (128 bytes)

Caching Load Non-caching Load

Addresses fall within N cache-lines Addresses fall within N segments

N*128 bytes move across the bus N*32 bytes move across the bus

Bus utilization: 128 / (N*128) Bus utilization: 128 / (N*32)

All threads in a warp request the same 4-byte word (4 bytes)

Caching Load Non-caching Load

Addresses fall within 1 cache-line Addresses fall within 1 segments

128 bytes move across the bus 32 bytes move across the bus

Bus utilization: 3.125% Bus utilization: 12.5%

Global Memory

Compute capability 1.0 and 1.1

A global memory request for a warp is split into two memory

requests, one for each half-warp, that are issued independently.

In order to exploit its bandwidth at best, all accesses must be

coalesced (half-warp accesses contiguous region of device

memory).

The global memory is accessed by 16 threads (half-warp) coalesced

if the following three conditions are met:

either 4-byte words, resulting in one 64-byte memory transaction

Or 8-byte words, resulting in one 128-byte memory transaction

Or 16-byte words, resulting in two 128-byte memory transactions

All 16 words must lie in the same aligned segment

Threads must access the words in a strictly increasing sequence:

 the nth thread in the half-warp must access the nth word.

Coalescing

Compute capability 1.0 and 1.1

stricter access requirements

k-th thread must access k-th word in the segment

not all threads need to participate

Coalescing

Compute capability 1.2 and 1.3

The memory controller is much improved

Coalescing: examples

Shared memory

 A sort of explicit cache

 Resides on the chip so it is much faster than the on-board memory

 Divided into equally-sized memory modules (banks) which can be

accessed simultaneously (32 banks can be accessed simultaneously

by the same warp)

 48KB on Fermi by default*

 Uses:

 Inter-thread communication within a block

 Cache data to reduce redundant global memory accesses

 To improve global memory access patterns

 Organization:

 32 banks, 4-byte wide banks

 Successive 4-byte words belong to different banks

 Each bank has 32-bit per cycle bandwidth.

*Kepler architecture introduced some
improvements:

- ability to switch from 4B to 8B banks

- (2x bandwidth for double precision codes)

Shared Memory
Bank Conflicts

If at least two threads belonging to the same half-warp (whole warp for
capability 1.0) access the same shared memory bank, there is a bank
conflict and the accesses are serialized (groups transactions in conflict-
free accesses);

If all the threads access the same address, a broadcast is performed;

If part of the half-warp accesses the same address, a multicast is
performed (capability >= 2.0);

No Bank Conflict 2-way Bank Conflicts 8-way Bank Conflicts

Texture Memory

Read only, must be set by the host;

Load requests are cached (dedicated cache);

specifically, texture memories and caches are designed for

graphics applications where memory access patterns exhibit a

great deal of spatial locality;

Dedicated texture cache hardware provides:

Out-of-bounds index handling (clamp or wrap-around)

Optional interpolation (on-the-fly interpolation)

Optional format conversion

could bring benefits if the threads within the same block access

memory using regular 2D patterns, but you need appropriate

binding;

For typical linear patterns,

global memory (if coalesced)

is faster.

// allocate array and copy image data

cudaChannelFormatDesc channelDesc =

 cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);

cudaArray* cu_array;

cudaMallocArray(&cu_array, &channelDesc, width, height);

cudaMemcpyToArray(cu_array, 0, 0, h_data, size, cudaMemcpyHostToDevice);

// set texture parameters

tex.addressMode[0] = cudaAddressModeWrap;

tex.addressMode[1] = cudaAddressModeWrap;

tex.filterMode = cudaFilterModeLinear;

tex.normalized = true; // access with normalized texture coordinates

// Bind the array to the texture

cudaBindTextureToArray(tex, cu_array, channelDesc);

Texture Memory

// declare texture reference for 2D float texture

texture<float, 2, cudaReadModeElementType> tex;

__global__ void transformKernel(float* g_odata, int width, int height, float theta)

{

 // calculate normalized texture coordinates

 unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;

 unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

 float u = x / (float) width;

 float v = y / (float) height;

 // transform coordinates

 u -= 0.5f;

 v -= 0.5f;

 float tu = u*cosf(theta) - v*sinf(theta) + 0.5f;

 float tv = v*cosf(theta) + u*sinf(theta) + 0.5f;

 // read from texture and write to global memory

 g_odata[y*width + x] = tex2D(tex, tu, tv);

}

Kepler
global loads through texture

The compiler (LLVM) can detect texture-compliant loads

and map them to the new «global load through texture»
PTX instruction:

global loads are going to pass through texture pipeline;

dedicated cache (no L1 pressure) and memory pipe,

relaxed coalescing;

automatically generated by compiler (no texture map

needed) for accesses through compliant pointers

(constant and restricted);

useful for bandwidth-limited kernels (bandwidths sum).

Constant Memory

Extremely fast on-board memory area

Read only, must be set by the host

64 KB, cached reads in a dedicated L1 (register space)

Coalesced access if all threads of a warp read the same
address (Serialized otherwise)

__constant__ qualifier in declarations

Useful:

To off-load long argument lists from shared memory

For coefficients and other data that is read uniformly
by warps

__device__ __constant__ parameters_t args;

__host__ void copy_params(const parameters_t* const host_args) {

 cudaMemcpyToSymbol(“args", host_args, sizeof(parameters_t));

}

Registers

Just like CPU registers, access has no latency;

used for scalar data local to a thread;

taken by the compiler from the SM pool (32K for Fermi, 64K for

Kepler) and statically allocated to each thread;

register pressure one of the most dangerous occupancy
limiting factors.

Registers
Some tips:

try to fold “stack” variables (it would be less useful on LLVM)

try to offload data to shared memory;

use launch bounds to force the number of resident blocks;

limit register usage via compiler option.

#define MAX_THREADS_PER_BLOCK 256

#define MIN_BLOCKS_PER_MP 2

__global__ void

__launch_bounds__(MAX_THREADS_PER_BLOCK,

MIN_BLOCKS_PER_MP)

my_kernel(int* inArr, int* outArr) { … }

nvcc –Xptas –v mykernel.cu

ptxas info : Compiling entry function '_Z12my_kernelP9domain_t_' for 'sm_20'

ptxas info : Used 13 registers, 8+16 bytes smem

nvcc –-maxrregcount 10 –Xptas –v mykernel.cu

ptxas info : Compiling entry function '_Z12my_kernelP9domain_t_' for 'sm_20'

ptxas info : Used 10 registers, 12+0 bytes lmem, 8+16 bytes smem

Local memory

“Local” because it’s private on a per-thread basis;

it’s actually a global area used to spill out data when SM

runs out of resources;

addressing is resolved by the compiler;

cached (store only).

Execution Optimization

Occupancy

Keeping the hardware busy helps the warp scheduler to

hide latencies.

The board’s occupancy is the ratio of active warps to
the maximum number of warps supported on a

multiprocessor.

Occupancy: constraints

Every board’s resource can become an occupancy
limiting factor:

 shared memory;

 grid and block sizes;

 (max threads per SM/max blocks per SM)

 used (and spilled) registers

Given an actual kernel configuration, is possible to
predict the maximum theoretical occupancy allowed.

Occupancy: block sizing tips

Some experimentation is required.

However there are some heuristic rules:

threads per block should be a multiple of warp size;

a minimum of 64 threads per block should be used;

128-256 threads per block is universally known to be
a good starting point for further experimentation;

prefer to split very large blocks into smaller blocks.

Kepler: dynamic parallelism

One of the biggest CUDA limitations is the need to fit a single grid

configuration for the whole kernel.

Kepler (in addition to CUDA 5.x) introduced Dynamic Parallelism

It enables a global kernel to be called from within another kernel

The child grid can be dynamically sized and optionally synchronized

__global__ ChildKernel(void* data){

 //Operate on data

}

__global__ ParentKernel(void *data){

 ChildKernel<<<16, 1>>>(data);

}

// In Host Code:

ParentKernel<<<256, 64>>(data);

If you need to reshape the grid, you have to resync back to host and split your code.

Instructions

Arithmetic ops:

prefer integer shift operators instead of division and
modulo (would be less useful with LLVM);

beware of (implicit) casts (very expensive);

use intrinsics for trascendental functions where possible;

try the fast math implementation.

Capability: instruction throughput

i
n
s
t
r
u
c
t
i
o
n
s

x

c
y
c
l
e

x

s
m

Control Flow

Different execution paths inside the same warp are managed by the
predication mechanism and lead to thread divergence.

if (threadIdx.x == 0) {…}

Minimize the number of execution branches inside the same warp;

make the compiler’s life easier by unrolling loops (hand-coded,

pragma or option);

use signed counters for loops (would be less useful with LLVM);

if (threadIdx.x == 0) {…}

else {…}

if (threadIdx.x == 0) {…}

else if (threadIdx.x == 1) {…}

if (vec[threadIdx.x] > 1.0f) {…}

Exploiting Multi-GPUs
CUDA >= 4.0 introduced the N-to-N bound feature:

1. Every thread can be bound to any board

2. Every board can be bound to an arbitrary number of

threads
#pragma omp parallel

#pragma omp sections

{

#pragma omp section

 {

 cutilSafeCall(cudaSetDevice(0));

 cudaMemcpy(device_data_1, host_data_1, size, cudaMemcpyHostToDevice);

 my_kernel<<< grid, block >>>(device_data_1);

 // ...

 }

#pragma omp section

 {

 cutilSafeCall(cudaSetDevice(1));

 cudaMemcpy(device_data_2, host_data_2, size, cudaMemcpyHostToDevice);

 my_kernel<<< grid, block >>>(device_data_2);

 // ...

 }

}

Multi-GPU can be exploited
through your favourite multi-
threading paradigm
(OpenMP, pthreads, etc…)

Tools Overview

Development tools

Common

Memory Checker

Built-in profiler

Visual Profiler

Linux

CUDA GDB

Parallel Nsight for Eclipse

Windows

Parallel Nsight for VisualStudio

Profiling tools: built-in

The CUDA runtime provides a useful profiling facility without the need
of external tools.

export CUDA_PROFILE=1

export CUDA_PROFILE_CONFIG=$HOME/.config

// Contents of config

gld_coherent

gld_incoherent

gst_coherent

gst_incoherent

method,gputime,cputime,occupancy,gld_incoherent,gld_coherent,gst_incoherent,gst_coherent

method=[memcopy] gputime=[438.432]

method=[_Z17reverseArrayBlockPiS_] gputime=[267.520] cputime=[297.000] occupancy=[1.000]

gld_incoherent=[0] gld_coherent=[1952] gst_incoherent=[62464] gst_coherent=[0]

method=[memcopy] gputime=[349.344]

gld_incoherent: Number of non-coalesced global memory loads

gld_coherent: Number of coalesced global memory loads

gst_incoherent: Number of non-coalesced global memory stores

gst_coherent: Number of coalesced global memory stores

local_load: Number of local memory loads

local_store: Number of local memory stores

branch: Number of branch events taken by threads

divergent_branch: Number of divergent branches within a warp

instructions: instruction count

warp_serialize: Number of threads in a warp that serialize

based on address conflicts to shared or constant memory

cta_launched: executed thread blocks

Profiling: Visual Profiler

Traces execution at host, driver and kernel levels (unified

timeline)

Supports automated analysis (hardware counters)

Debugging: CUDA-GDB

Well-known tool enhanced with CUDA extensions

Works well on single-gpu systems (OS graphics disabled)

Can be run under GDB-targeted tools and GUIs (multi-

gpu systems)

(cuda-gdb) info cuda threads

BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line

Kernel 0* (0,0,0) (0,0,0) (0,0,0) (255,0,0) 256 0x0000000000866400 bitreverse.cu 9

(cuda-gdb) thread

[Current thread is 1 (process 16738)]

(cuda-gdb) thread 1

[Switching to thread 1 (process 16738)]

#0 0x000019d5 in main () at bitreverse.cu:34

34 bitreverse<<<1, N, N*sizeof(int)>>>(d);

(cuda-gdb) backtrace

#0 0x000019d5 in main () at bitreverse.cu:34

(cuda-gdb) info cuda kernels

Kernel Dev Grid SMs Mask GridDim BlockDim Name Args

0 0 1 0x00000001 (1,1,1) (256,1,1) bitreverse data=0x110000

Debugging: CUDA-MEMCHECK

It’s able to detect buffer overflows, misaligned global memory

accesses and leaks

Device-side allocations are supported

Standalone or fully integrated in CUDA-GDB

$ cuda-memcheck --continue ./memcheck_demo

========= CUDA-MEMCHECK

Mallocing memory

Running unaligned_kernel

Ran unaligned_kernel: no error

Sync: no error

Running out_of_bounds_kernel

Ran out_of_bounds_kernel: no error

Sync: no error

========= Invalid __global__ write of size 4

========= at 0x00000038 in memcheck_demo.cu:5:unaligned_kernel

========= by thread (0,0,0) in block (0,0,0)

========= Address 0x200200001 is misaligned

=========

========= Invalid __global__ write of size 4

========= at 0x00000030 in memcheck_demo.cu:10:out_of_bounds_kernel

========= by thread (0,0,0) in block (0,0,0)

========= Address 0x87654320 is out of bounds

=========

=========

========= ERROR SUMMARY: 2 errors

Parallel NSight

Plug-in for major IDEs (Eclipse and VisualStudio)

Aggregates all external functionalities:

Debugger (fully integrated)

Visual Profiler

Memory correctness checker

As a plug-in, it extends all the convenience of IDEs to

CUDA

On Windows systems:

Now works on a single GPU

Supports remote debugging and profiling

Latest version (2.2) introduced live PTX assembly

view, warp inspector and expression lamination

Parallel NSight

Parallel NSight

