
Introduction to the Xeon
Phi programming model

Fabio AFFINITO, CINECA

What is a Xeon Phi?

• MIC = Many Integrated Core
architecture by Intel

• Other names: KNF, KNC, Xeon Phi...

• Not a CPU (but somewhat similar to
the A2 chip..)

• Not an accelerator (but with the same
philosophy of a GPU...

.... It’s a “coprocessor”

What is a Xeon Phi?

• It’s a coprocessor

– Based on a x86 architecture (Pentium III)

– Designed to reach the 1-Tflop/s peak
power

“Now you can think reuse rather than recode with x86
compatibility” (Intel website)

What is a Xeon Phi?

6 GB/s

320 GB/s

~1.1TFlops

~50 GB/s

~170 GFlops

Numa Region

SIMD Unit

SIMD Unit32~64 GB
8 GB

Xeon processor vs coprocessor

• The Xeon Phi has:

– Very large number of cores

– Large bw to the memory

– Small memory

• The Xeon processor has:

– Higher clock frequency

– Larger memory

– Narrow bw to the memory

In any case, they are very far... PCIe
6GB/s

Xeon Phi vs GPU

• Similarities

– They require a host

– They communicate through a PCIe

– They need “very parallel code”

– They allow to offload part of code

• Differences

– Xeon Phi is a x86 architecture

– Xeon Phi has a fully coherent cache

– Xeon Phi supports OpenMP multithreading

All the truth about Xeon Phi
• Technicalities

– 61 x86 based cores, but not fully x86 compatible (you need to cross compilation)

– Coherent cache but evidences show cache behavior similar to GPU

– FPU is powerful (32 8-fold DP registers, FMA), nice masked instructions but some
serious limitations (permutations, broadcast in the 256-bit lanes only…)

– You can run in native mode, but performance can be limited by:

– Memory

– Amdahl law

– FPU is powerful (32 8-fold DP registers, FMA), nice masked instructions but some
serious limitations (permutations, broadcast in the 256-bit lanes only…)

• Bottom line: porting is (almost) for free. Getting performance is not.

Is the Xeon Phi right for you?

Xeon Phi programming models

• There are three options:

– Symmetric: using both the MIC and the host in an
independent way, communicating through MPI

– Native: running directly code compiled for MIC,
using the coprocessor as a many-core SMP node

– Offload: running on the host and offloading high
parallel kernels on the MIC, using pragmas or
through accelerated libraries (for example MKL AO)

• Click to edit Master text styles
– Second level
– Third level

• Fourth level
– Fifth level

Comparing execution modes

• Use matrix-matrix multiplication as a test
case

– OpenMP sgemm on HOST

– OpenMP sgemm on MIC native

– Offload mode

Comparing execution modes

Test-case: offloading dgemm

__declspec(target(m ic))
void gem m (char transa, char transb,
 int M , int N, int K,
 double alpha, double* A, int lda,
 double* B, int ldb, double beta,
 double* C, int ldc)
{
 DGEM M (&transa, &transb,&M , &N, &K,
 &alpha, A, &lda, B, &ldb, &beta, C, &ldc);
}

pragm a offload target(m ic)
 in(A[0:M *K]:align(Align))
 in(B[0:K*N]:align(Align))
 inout(Cg[0:M *N]:align(Align))
 inout(otim e)
{
 otim e -= m ysecond();
 gem m (transa, transb, M , N, K,
 alpha, A, lda, B, ldb,
 beta, Cg, ldc);
 otim e + = m ysecond();
}

Benchmarking offload...

• 60 cores (+1) x 4 threads per core...
$ export O M P_NUM _THREADS= 240

$./dgem m _offload

M N K = 10000 10000 10000 Gflops M ax: 285.3

Let’s calculate the expected performance ...

peak = (# cores)*(vector size)*(ops/cycle)*(frequency)
peak = 60*8*2*1.052 = 1011 Gflop/s

285 << 1011
Gflop/s

Affinity

• In many cores architectures affinity and core-
binding are crucial. Setting the KMP_AFFINITY
things can change...$ export M IC_ENV_PREFIX= M IC; export M IC_KM P_AFFINITY= scatter; ./dgem m _offload

M N K = 10000 10000 10000 Gflops M ax: 374.741736

$ export M IC_KM P_AFFINITY= com pact; ./dgem m _offload

M N K = 10000 10000 10000 Gflops M ax: 641.1

$ export M IC_KM P_AFFINITY= balanced; ./dgem m _offload

M N K = 10000 10000 10000 Gflops M ax: 641.63

This behavior holds for DGEMM algorithm... Maybe not for others
(for FFT “scatter” is best choice...)

We are still very
far from the
expected
performance....

Alignment
• As a general rule, we need to align arrays to the vector size. For example,

16-byte alignement for SSE processors, 32-byte alignement for AVX
processors, 64-byte for Xeon Phi. Unfortunately, in offload mode the
compiler will consider that arrays alignment is the same on both the host
and the device. We need to change the alignement on the host to match
that on the device:double *A = (double*) _m m _m alloc(sizeof(double)*size_A, Alignm ent);

$./t3_offload
M N K = 10000 10000 10000 Gflops Max: 641.63

$./t3_offload
M N K = 10000 10000 10000 Gflops Max: 724.22

Alignment = 16

Alignment = 64

285 -> 641 -> 724 ... Can we do
something more?

Huge pages

• We recall that Xeon Phi has a large bandwith access to
memory. Huge pages then might help.

• This means that for any array allocation larger than 100MB,
uses huge pages

$ export MIC_USE_2MB_BUFFERS=100M

$./t3_offload

PEs = 1, M N K = 10000 10000 10000 Gflops Max: 806.9

80% of the peak
performance

Overlapping offload
Double buffering:
- Overlap computations and

communications
- Increase the maximum problem size• Click to edit Master text styles

– Second level
– Third level

• Fourth level
– Fifth level

A C

B1 B2

Overlapping offload

• Asynchronous movement of data

• Hide the bottleneck of data transfer
with computation

• Exploits the data persistence on MIC

• It permits to work on larger matrices

Normal dgemm, maximum size = 14800x14800:

Split dgemm, size = 20000x20000:

Split dgemm, size = 26624x26624:

NBLOCKS Gflops w/o data
transfer

Gflops w/ data
transfer

4 730 218

8 675 244

16 649 300

25 634 289

32 614 297

NBLOC
KS

Gflops w/o data
transfer

Gflops w/ data
transfer

1 750 334

NBLOCKS Gflops w/o data
transfer

Gflops w/ data
transfer

64 750 334

C
o
u
rt

e
sy

 o
f

C
S
C

S

Xeon Phi in the world

21

EURORA
@CINECA

STAMPEDE
@TACC

Xeon Phi Online

• Intel have only recently publically unveiled
Xeon Phi, and the first commercially available
cards are being delivered. You can find more
information about developing for Xeon Phi as it
comes available on the Intel developer site:

22

The Intel Software development website has a
guide for developing software on Xeon Phi (KNC).
The guide has a very good summary of
vectorization techniques with the Intel compiler
that is equally valid for Sandy Bridge:

O nline Docum entation: http://softw are.intel.com /en-
us/articles/program m ing-and-com piling-for-intel-m any-integrated-core-
architecture

http://softw are.intel.com /m ic-developer

	Slide 1
	What is a Xeon Phi?
	What is a Xeon Phi?
	What is a Xeon Phi?
	Xeon processor vs coprocessor
	Xeon Phi vs GPU
	All the truth about Xeon Phi
	Is the Xeon Phi right for you?
	Xeon Phi programming models
	Slide 10
	Comparing execution modes
	Comparing execution modes
	Test-case: offloading dgemm
	Benchmarking offload...
	Affinity
	Alignment
	Huge pages
	Overlapping offload
	Overlapping offload
	Slide 20
	Xeon Phi in the world
	Xeon Phi Online

