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} This presentation provides an introduction to 
autoparallelisation, focusing on our GPSME 
toolkit.

} We will cover:
◦ What autoparallelisation is and why we want it.
◦ How the autoparallelisation process is performed.
◦ An introduction to using our toolkit.
◦ Benchmarking the toolkit and performance 

considerations.
◦ A demonstration of using the toolkit and frontend.

} Toolkit is available.

Overview



} The GPSME project is a collaboration between 
industry and academia.
◦ Multiple partners across Europe.
◦ All with different problems to solve.

} Our research project aims to make GPU 
computing more accessible.
◦ Reduce need for expert knowledge.
◦ Eliminate need for specialised languages.
◦ Avoid rewriting existing code.

Who are we?
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} Automatically converting C/C++ to OpenCL/CUDA 
has a number of advantages:
◦ Single codebase – Simplifies the process of targeting 

machines both with and without GPUS.
◦ Reuse existing code.
◦ Target a wide range of hardware.
◦ Achieve independence from specific backend 

technologies.
◦ Avoid lengthy boilerplate code.

Why autoparallelisation?



} At its heart, the GPSME toolkit converts C/C++ 
code into OpenCL/CUDA by following compiler 
#pragmas.
◦ Transfer required data to the GPU
◦ Copy the body of a loop into an OpenCL/CUDA program.
◦ Execute the program on each core simultaneously.

} This is built on a framework called ROSE, by 
extending a tool called Mint.
◦ See www.rosecompiler.org for more information.

How autoparallelisation works

http://www.rosecompiler.org/


How autoparallelisation works



} Keep in mind that the GPU has two key architectural 
differences compared to the CPU:
◦ Multiple cores operating in parallel.
◦ Separate memory space.

A simple example



for (y = 1; y < imageHeight-1; y++)
{
  for (x = 1; x < imageWidth-1; x++)
  {
    float sum = 0.0f;
    for(offsetY = -1; offsetY <= 1; offsetY++)
    {
      for(offsetX = -1; offsetX <= 1; offsetX++)
      {
        int finalX = x + offsetX;
        int finalY = y + offsetY;
        sum += srcImage[finalY * imageWidth + finalX];
      }
    }
    dstImage[y * imageWidth + x] = sum / 9.0f;
  }
}

} The code below performs a simple low-pass filter 
(blur) from a source to a destination.

A simple example



#pragma GPSME copy( srcImage,  toDevice, imageWidth, imageHeight)
#pragma GPSME copy( dstImage,  toDevice, imageWidth, imageHeight)
#pragma GPSME parallel
{
  #pragma GPSME for nest(2) tile ( 16, 16 )
  for (y = 1; y < imageHeight-1; y++)
  {
    for (x = 1; x < imageWidth-1; x++)
    {
      float sum = 0.0f;
      for(offsetY = -1; offsetY <= 1; offsetY++)
      {
        for(offsetX = -1; offsetX <= 1; offsetX++)
        {
          //Removed code for brevity
        }
      }
      dstImage[y * imageWidth + x] = sum / 9.0f;
    }
  }
}
#pragma GPSME copy( srcImage, fromDevice, imageWidth, imageHeight)
#pragma GPSME copy( dstImage, fromDevice, imageWidth, imageHeight)

} We can augment this with GPSME directives:
A simple example



} The translator is a command line tool which runs 
under Linux:

       gpsme inputFile.cpp [options]

} Generates output C++ and CUDA in a single file.
} Additional command line options can be provided
◦ --shared
◦ --register

} For people who don’t run a Linux system the translator 
can be run via a web interface.

A simple example



} The resulting code can be quite large but here are 
some core snippets:

A simple example

cudaMemcpy3DParms param_1_dev_1_srcImage = {0};
param_1_dev_1_srcImage.srcPtr = make_cudaPitchedPtr(((void *)
    srcImage),(imageWidth) * sizeof(float ),(imageWidth),(imageHeight));
param_1_dev_1_srcImage.dstPtr = dev_1_srcImage;
param_1_dev_1_srcImage.extent = ext_dev_1_srcImage;
param_1_dev_1_srcImage.kind = cudaMemcpyHostToDevice;
stat_dev_1_srcImage = cudaMemcpy3D(&param_1_dev_1_srcImage);

if (_gidy >= 0 && _gidy <= imageHeight - 1) {{{
      if (_gidx >= 0 && _gidx <= imageWidth - 1) {{
          if ((((_gidx > 0) && (_gidx < (imageWidth - 1))) && 
            (_gidy > 0)) && (_gidy < (imageHeight - 1))) {
            float sum = 0.0f;
            for (_p_offsetY = -1; _p_offsetY <= 1; _p_offsetY++) {
              _index1D = _gidx;
              for (_p_offsetX = -1; _p_offsetX <= 1; _p_offsetX++) {
                int finalX = (_gidx + _p_offsetX);
                int finalY = (_gidy + _p_offsetY);
                sum += srcImage[(finalY * imageWidth) + finalX];



} Within your project you can now replace the 
original C/C++ file with the generated one.

} Also set up your project for OpenCL/CUDA
◦ Install software development kit
◦ Set up include/linker paths in your project
◦ Install runtime/drivers
� This must also be done on target machines.

} Watch out for naming conflicts if you keep the old 
code as well. 

A simple example



} Several of the GPSME directives are available:
◦ #pragma GPSME parallel
� Marks the region to be parallelised.
◦ #pragma GPSME for
� A ‘for’ loop to be transferred to the GPU. Options are 

available to control the way this is split across threads.
◦ #pragma GPSME barrier
� Inserts a synchronisation point.
◦ #pragma GPSME single
� Marks a region to be executed serially.
◦ #pragma GPSME copy
� Performs a memory transfer.

A simple example



A real world example
.
.
int iter = 0;
int iX, iY, iZ;
CPU_FLOAT_TYPE* pTemp;

#pragma GPSME copy(pInputData, toDevice, width, height, depth)
#pragma GPSME copy(pOutputData, toDevice, width, height, depth)
#pragma GPSME copy(pFullMaskData, toDevice, width, height, depth)

#pragma GPSME parallel
{
    for(iter=0; iter < 50; iter++) 
    {
        #pragma GPSME for  nest(all) tile(8,8,8)
        for(iZ=0; iZ < depth; iZ++)
        {
            .
            .
            E = 1.0f + first[0] * first[0] / (first[2] * first[2]);
            F = first[0] * first[1] / (first[2] * first[2]);
            G = 1.0f + first[1] * first[1] / (first[2] * first[2]);
            L = (2.0f*first[0]*first[2]*second[0 * 3 + 2] - first[0]...
            M = (first[0]*first[2]*second[1 * 3 + 2] +first[1]*first[2]...
            N = (2.0f*first[1]*first[2]*second[1 * 3 + 2] - first[1]... 
            .
            .
        }
    }
}

#pragma GPSME copy(pInputData, fromDevice, width, height, depth)
#pragma GPSME copy(pOutputData, fromDevice, width, height, depth)
#pragma GPSME copy(pFullMaskData, fromDevice, width, height, depth)
.
.



} The GPSME toolkit can create huge speedups
◦ Depends on underlying code structure.

} The code should:
◦ Include (nested) for loops which can be moved to the GPU.
◦ Avoid interloop dependencies.
◦ Avoid function calls and recursion.
◦ Avoid conditional logic.
◦ Avoid system operations (allocations, disk access, etc)
◦ Avoid dependencies on external libraries.

} The performance increase from parallelism must 
outweigh the cost of start up and memory transfers.

Practical concerns



} What if we want to apply multiple passes of our 
previous filter?

Interloop dependencies

for (count = 0; count < 1000; count++)
{
  for (y = 1; y < imageHeight-1; y++)
  {
    for (x = 1; x < imageWidth-1; x++)
    {
      float sum = 0.0f;
      for(offsetY = -1; offsetY <= 1; offsetY++)
      {
        for(offsetX = -1; offsetX <= 1; offsetX++)
        {
          int finalX = x + offsetX;
          int finalY = y + offsetY;
          sum += srcImage[finalY * imageWidth + finalX];
        }
      }
      dstImage[y * imageWidth + x] = sum / 9.0f;
    }
  }
  swap(srcImage, dstImage);
}



} In general such interloop dependencies are 
problematic for all GPUification approaches as 
they break parallelism.
◦ Techniques exist to reduce them but they are limited.

} You should consider whether you can revise your 
code to remove the dependencies.

} In some cases it would help to add 
synchronisation primitives to the toolkit. We’re 
investigating this.

Interloop dependencies



} Proper function calls are not supported on all GPU 
hardware.
◦ Functions are usually inlined in the compiled code.
◦ GPSME toolkit only supports functions which can be inlined.
◦ Recursion is not possible

} Possible workarounds:
◦ Make sure the function can be inlined and contains code 

appropriate for the GPU.
◦ Bring the function call outside the loop if it doesn’t really need 

to be executed every iteration.
◦ Split the loop in to two loops – one following the other. Only 

parallelise one of them.

Function calls



} GPUs have a Single Instruction Multiple Data 
(SIMD) architecture.

} All threads follow the same execution path.
◦ Relevant when testing boundary conditions (e.g. at edge 

of image)
} Conditional logic is possible but might not deliver 

the expected benefits.
◦ This was relevant for the MedicSight code.

Conditional logic



Conditional logic
#pragma GPSME for nest(2) tile(16,16)
for(int x = 0; x < 128; x++)
{
    for(int y = 0; y < 128; y++)
    {
        float val = someArray[x][y];
        if(val < 0.001f)
        {
            continue; // Optimisation
        }
        else
        {
            // Some expensive code here
        }
    }
}



} GPUs typically have memory which is physically 
separate from the main system memory.
◦ The #pragma GPSME copy directive performs transfers.

} Transfers must be performed immediately before 
execution of the parallel region.
◦ The GPSME toolkit will enforce this.

Memory transfers



} You should consider:
◦ Bandwidth: There is a limit to the rate at which data can 

be transferred to the GPU. This rate varies between 
cards (typically 10-200 Gb/sec).
◦ Latency: There is a small delay between requesting a 

memory transfer and it actually happening. Therefore 
one large transfer is faster than several small one.
◦ Memory Size: GPUs typically have between 128Mb to 

2Gb of memory, and some is reserved for rendering 
processes.

Memory Transfers



} It is common (and generally good practice) to 
build applications on third-party libraries.

} Unfortunately this causes some problems for 
parallelisation toolkits.
◦ Must be able to see source code to the libraries being 

used.
◦ Libraries must be available on Linux.
◦ Libraries cannot be used within parallel regions.
◦ Webserver add some extra complications.

} How can we work around these issues?

Use of External Libraries



} This is a problem case:

Use of External Libraries

#include <windows.h>
.
.
.
someWindowsFunction();
.
.
.
#pragma GPSME for nest(2) tile(16,16)
for(int x = 0; x < 128; x++)
{
for(int y = 0; y < 128; y++)
{

//Some code here
}
}



} Solve it by splitting the file in two:

Use of External Libraries

// In ‘parallelisable.cpp’ (for example)
#pragma GPSME for nest(2) tile(16,16)
for(int x = 0; x < 128; x++)
{

for(int y = 0; y < 128; y++)
{

//some code here
}

}

//In main.cpp
#include <windows.h>
#include “parallelisable.h”
.
.
someWindowsFunction();
.
.
//Now call parallelised function in parallelisable.cpp



} A more difficult scenario:

Use of External Libraries

#pragma GPSME for nest(2) tile(16,16)
for(int x = 0; x < 128; x++)
{

for(int y = 0; y < 128; y++)
{

.

.
// External function call
cvSomeFunction();
.
.

}
}



} When working through the webserver:
◦ Make sure the required dependencies are installed.
◦ Upload all project-specific headers which are needed.

Use of External Libraries

#include "OpenCV.h"
#include "VTK.h"
.
.
#include "MyHeader1.h" // Upload this one
#include "MyHeader2.h" // Upload this one
.
.
int main(int argc, char** argv)
{

//Some code here
}



Now let’s see how this works on 
some harder problems…



} Collection of micro-benchmarks
} Originally developed for the CPU
} CUDA/OpenCL versions were developed recently

} Implemented OpenMP, OpenACC and GPSME 
version

} Recently submitted a paper that presents the 
results

Polybench benchmark suite



Polybench benchmark suite
} Convolution:

2DCONV - 2D convolutional filter
3DCONV - 3D convolutional filter

} Linear Algebra:
2MM - 2 Matrix Multiplications (D=A*B; E=C*D)
3MM - 3 Matrix Multiplications (E=A*B; F=C*D; G=E*F)
ATAX - Matrix Transpose and Vector Multiplication
BICG - BiCG Sub Kernel of BiCGStab Linear Solver
GEMM - Matrix-multiply C=alpha.A.B+beta.C
GESUMMV - Scalar, Vector and Matrix Multiplication
GRAMSCHMIDT-Gram-Schmidt decomposition 
MVT - Matrix Vector Product and Transpose
SYR2K - Symmetric rank-2k operations
SYRK - Symmetric rank-k operations

} Datamining:
CORRELATION - Correlation Computation
COVARIANCE   - Covariance Computation

} Stencils:
FDTD-2D - 2-D Finite Difference Time Domain Kernel



} OpenACC
◦ Open standard for 

directive-based GPU 
computing
◦ Announced at SC11 

[November 2011]
◦ Caps, Cray, and PGI 

are currently providing 
OpenACC compilers
◦ Version 2.0 is to be 

released soon…

Open standards
} OpenMP
◦ Open standard 

for directive-
based multi-core 
programming
◦ Most compilers 

support it by now
◦ Easy to harness 

shared memory 
multi-core 
parallelism



Polybench initial results
} Most tests benefit from speed-ups compared to 

the OpenMP version.



Example – GEMM OpenACC

#pragma acc data copyin(A[NI*NJ],B[NI*NJ]) copyout(C[NI*NJ]){
   #pragma acc kernels loop independent vector(32)  
   for (i = 0; i < NI; i++) {
       #pragma acc loop independent vector(32)
       for (j = 0; j < NJ; j++) {
            C[i*NJ + j] = 0.0;
           for (k = 0; k < NK; ++k)   {

C[i*NJ + j] += A[i*NK + k] * B[k*NJ + j];
   }

        }
    }
}



Example – GEMM GPSME

#pragma GPSME copy(A,toDevice, NI, NJ)
#pragma GPSME copy(B,toDevice, NI, NJ)   
#pragma GPSME parallel {
#pragma GPSME for  nest(2) tile(32,32)
for (i = 0; i < NI; i++) {

for (j = 0; j < NJ; j++) {
           C[i*NJ + j] = 0.0;
           for (k = 0; k < NK; ++k)   {

C[i*NJ + j] += A[i*NK + k] * B[k*NJ + j];
   }

        }
    }
}
#pragma GPSME copy(C,  fromDevice, NI,NJ)



Example – GRAMSCHMIDT
#pragma GPSME copy(A,toDevice, N, M)
#pragma GPSME copy(R,toDevice, N, M)
#pragma GPSME copy(Q,toDevice, N, M)
#pragma GPSME parallel{
#pragma GPSME for nest(1) tile(128)
for (k = 0; k < N; k++) {
    nrm = 0;
    for (i = 0; i < M; i++)  {

nrm += A[i*N + k] * A[i*N + k];
    }
    R[k*N + k] = sqrt(nrm);
    for (i = 0; i < M; i++)  {

Q[i*N + k] = A[i*N + k] / R[k*N + k];
    }
    for (j = k + 1; j < N; j++)   {

R[k*N + j] = 0;
for (i = 0; i < M; i++)     {           
     R[k*N + j] += Q[i*N + k] * A[i*N + j];

        }
        for (i = 0; i < M; i++)      {      

     A[i*N + j] = A[i*N + j] - Q[i*N + k] * R[k*N + j];
}

     }
} 
}
#pragma GPSME copy(A,fromDevice, N, M)

Reduction limits 2nd level
parallelization



Example – GRAMSCHMIDT
for (k = 0; k < N; k++) {
    nrm = 0;
    for (i = 0; i < M; i++)  {

nrm += A[i*N + k] * A[i*N + k];
    }
    R[k*N + k] = sqrt(nrm);
    for (i = 0; i < M; i++)  {

Q[i*N + k] = A[i*N + k] / R[k*N + k];
    }
}
#pragma GPSME copy(A,toDevice, N, M)
#pragma GPSME copy(R,toDevice, N, M)
#pragma GPSME copy(Q,toDevice, N, M)
#pragma GPSME parallel{
#pragma GPSME for nest(2) tile(16,16)
for (k = 0; k < N; k++) {
    for (j = k + 1; j < N; j++)   {

R[k*N + j] = 0;
for (i = 0; i < M; i++)     {           
     R[k*N + j] += Q[i*N + k] * A[i*N + j];

        }
        for (i = 0; i < M; i++)      {      

     A[i*N + j] = A[i*N + j] - Q[i*N + k] * R[k*N + j];
}

     }
} 
}
#pragma GPSME copy(A,fromDevice, N, M)

Triangular loop limits 
2nd level parallelization



Triangular loop support
} Thread blocks can be:
◦ Full: All threads are part of the iteration space. Resources are not wasted.
◦ Empty: No thread is part of the iteration space. Resources are not wasted.
◦ Half-full: This create divergent branch behavior. Some threads are to be 

executed, and some are not.



Polybench benchmark suite

} Triangular support increases performance by more than 30 times
} Outperforms OpenACC by a good margin on these tests



Future work – Multi dimensional arrays

} Tests have been modified to access memory in a 2D manner 
a[i][j], as opposed to a[i*M+j]

} GPSME finds extra optimization opportunities by exploiting the 
2D access pattern

} 25% performance increase when using explicit 2D arrays



Arithmetic intensity
} Arithmetic intensity is defined as the ratio between 

computation and memory load/store



Float vs. double

} GPSME is equal or better than OpenACC in all cases



Conclusions on Polybench

Memory Space Bandwidth

Register memory ≈ 8,000 GB/s

Shared memory ≈ 1,600 GB/s

Global memory ≈ 177 GB/s

Mapped memory ≈ 8 GB/s
Source: Rob Farber
“CUDA Application Design and Development”

} GPSME outperforms OpenACC on the majority of 
cases:
◦ Better register usage
◦ Cleaner output code



} The ASIFT algorithm for feature extraction
◦ Keypoint matching

} Rotasoft have successfully evaluated the ASIFT 
implementations
◦ On their own dataset
◦ On a dataset provided by the RTD performers

} Matching accuracy is almost the same as with the 
CPU version
◦ Highly invariant to camera viewpoint change

} Main modification: Replaced Array of Structures with 
Structure of Arrays

Rotasoft Evaluation



Array of Structures vs Structures of 
Arrays
} GPU global memory is accessed in chunks and aligned.

struct key_aos
{

int angle;
int scale;
int descriptor[128];

};

key_aos *d_keys;
cudaMalloc((void**)&d_keys, ...);

struct key_soa
{

int  * angle;
int  * scale;
int  * descriptor[128];

};

key_soa d_keys;
cudaMalloc((void**)
&d_keys.angle, ...);

cudaMalloc((void**)
&d_keys.scale, ...);

cudaMalloc((void**)
&d_keys.descriptor, ...);



Rotasoft Evaluation – Keypoint 
matching

} Tested on 800x600  image:
◦ Computes matches between two sets of around 11,000 keypoints

Rotasoft workstation
(time in seconds)

Groningen workstation
(time in seconds)

Original 69.5 25.9
OpenMP 25.7 6.7
Manual GPU 12.5 1.9
Auto GPU 14.6 3.2

• Speed-up of 6x for a lower grade system
• Speed-up of up to 13.6x for a high-performance system

Rotasoft: Core i3@2.1GHz+GT520M Groningen: Core i7@3.4GHz+GTX680



Rotasoft Evaluation – Keypoint 
matching



Rotasoft Evaluation
} We continue with evaluating parts of ASIFT keypoint 

detection, starting with convolution
◦ Convolution is about 45-50% of the detection stage



Convolution - GPSME

#pragma GPSME copy (A, toDevice,N,M)
#pragma GPSME copy (B, toDevice,N,M)
#pragma GPSME copy (c, toDevice,3,3)
#pragma GPSME parallel  {   
#pragma GPSME for  nest(2) tile(32,16)     
 for (int i = 1; i < M - 1; ++i)   {
     for (int j = 1; j < N - 1; ++j)    {        

B[i][j] = c[0][0] * A[i - 1][j - 1] + c[0][1] * A[i + 0][j - 1] + 
  c[0][2] * A[i + 1][j - 1] + c[1][0] * A[i - 1][j + 0] + 
  c[1][1] * A[i + 0][j + 0] + c[1][2] * A[i + 1][j + 0] + 
  c[2][0] * A[i - 1][j + 1] + c[2][1] * A[i + 0][j + 1] + 
  c[2][2] * A[i + 1][j + 1];      

      }    
  }  
}
#pragma GPSME copy (B, fromDevice,N,M)



Convolution performance

Small data 
model*

3x3 kernel 
[Hz]

Small data 
model*

5x5 kernel
[Hz]

Big data 
model**

3x3 kernel
[Hz]

Big data 
model**

5x5 kernel
[Hz]

CPU – GCC 486 64.5 2.94 0.44

PGI OpenACC 4629 2127 26.17 12.33

GPSME 4901 2785 34.6 16.28

• Speed-up between 10x and 43x vs. CPU code
• Between 5%-30% faster than PGI’s OpenACC

* 1024x1024 image
**12288X12288 image

• Intel i7@3.4GHz ; NVidia GTX680



} OpenACC advantages:
◦ It’s an open standard implemented by compiler vendors.
◦ Flexibility
� Synchronisation, memory and device management, caching.

◦ Ease of use (integrated into Visual Studio)
} GPSME advantages:
◦ Simplicity
◦ Generates cleaner output code
� CUDA, as well as OpenCL code

◦ Doesn’t incur performance penalties for the above advantages
◦ Full access to source code makes it easily extendable

OpenACC vs. GPSME



} GPSME toolkit can deliver large performance 
gains for some classes of problems.

} Better or equal than PGI OpenACC compiler on 
Polybench

} For real-world code, usually some revising of is 
needed:
◦ Isolate code you wish to parallelise
◦ Try to eliminate library and loop dependencies.
◦ Consider memory transfers, especially inside loops
◦ Use SoA instead of AoS

Conclusions


