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Different worlds: 
host and device 

Host Device 

Threading 

resources 

2 threads per core (SMT), 24/32 

threads per node. The thread is the 

atomic execution unit. 

e.g.: 1536 (thd x sm) * 14 (sm) = 21504. 

The Warp (32 thd) is the atomic 

execution unit. 

Threads «Heavy» entities, context switches 

and resources management. 

Extremely lightweight, managed 

grouped into warps, fast context switch, 

no resources management (statically 

allocated once). 

Memory e.g.: 48 GB / 32 thd = 1.5 GB/thd, 

300 cycles lat., 6.4 GB/s band 

(DDR3), 3 caching levels with lots 

of speculation logic. 

e.g.: 6 GB / 21504 thd = 0.3 MB/thd, 600 

cycles lat*, 144 GB/s band (GDDR5)*, 

fake caches. 
* coalesced 



Obtaining maximum performance 
benefit 

Focus on achieving high occupancy (more on this later, for 

know you can translate «high occupancy» as «many 

many… many threads in flight»). 

Focus on how to exploit the SIMT (data parallel ) 

programming model. 

Deeply analyze your algorithm in order to find hotspots and 

embarassingly parallel-enabled portions. 

    Furthermore, pay attention to the Amdahl’s law:  

 

 

 

𝑆 =
1

1 − 𝑃 + 𝑃/𝑁
 

Hint: avoid the jump-start-to-code approach: porting your serial and/or  

multithreaded and/or message passing CPU application to GPU 

is *not* in general an easy task. 
 



CUDA Enabled GPU: compute 
capability 

The compute capability is a kind of version tag that 

identifies: 

instructions and features supported by the board; 

coalescing rules; 

the board’s resources constraints; 

throughput of some instructions (hardware 

implementation). 

The compute capability is given as a major.dot.minor 

version number (i.e: 2.0, 2.1, 3.0, 3.5). 



Compute capability: 
resources constraints 



Performance metrics 



Performance metrics 

Wall-clock  time 

you always want to keep that one at a minimum 

Theoretical (peak) bandwidth Vs effective bandwidth 

that allows you to measure performance of a 

memory-bound kernel 

Theoretical (peak) FLOPS* Vs effective FLOPS** 

that allows you to measure performance of a 

compute-bound kernel 

**effective FLoating point Operation Per Second: can be difficult to count the effective 
number of operations that the kernel is doing during execution.  

*theoretical FLoating point Operation Per Second: different kind of ops have in general 
different throughput . Ops throughput differs among the compute capabilities. 



Timing 

You can use the standard timing facilities (host side) 

in an almost standard way… 

…but remember: CUDA calls can be asynchronous! 

 

 

 

CUDA provides the cudaEvents facility. They grant 

you access to the GPU timer. 

Needed to time a single stream without loosing 

Host/Device concurrency. 

 

 

start = clock() 

my_kernel<<< blocks, threads>>>(); 

cudaDeviceSynchronize(); 

end = clock(); 

cdaEvent_t start, stop; 

cudaEventCreate(start); cudaEventCreate(stop); 

cudaEventRecord(start, 0); 

My_kernel<<<block2, threads>>> (); 

cudaEventRecord(stop, 0); 

cudaEventSynchronize(stop); 

float ElapsedTime; 

cudaEventElapsedTime(&elapsedTime, start, stop); 

cudaEventDestroy(start); cudaEventDestroy(stop); 



Bandwidth 

1. Get GPU main memory’s theoretical 

bandwidth (ECC off):  

𝐵 = 𝑓𝑟𝑒𝑞 ∗ 𝑏𝑢𝑠𝑤 ∗ 𝑛𝑙𝑖𝑛 = 1.107 𝐺𝐻𝑧 ∗
512 ∗ 2

8
𝐵 = 141.6 𝐺𝐵/𝑠 

clock freq.  

bus width (bits) 

lines per clock  

GeForce GTX 280 Bandwidth 

2. Get kernel’s effective bandwidth:  

// slice of a totally memory bound kernel ahead: memcpy D2D;  

// dim(mat_a)=dim(mat_b)=2048x2048  

int xIdx = blockIdx.x*blockDim.x+threadIdx.x; 

int yIdx = blockIdx.y*blockDim.y+threadIdx.y; 

if (xIdx < 2048 && yIdx < 2048) 

   mat_a[xIdx][yIdx]=mat_b[xIdx][yIdx]; 

 

3. Compute the effective to theoretical bandwidth ratio. Then ask: 

 Is it around 70-75% of the peak? Good job*. 

 Is it much lower than 70% of the peak? Plenty of room for memory 

access optimization and performance improvement*. 

*once again: the bandwidth metric is valid for memory bound kernel 

bytes per clock 

𝐁 =
𝐃𝐫 + 𝐃𝐰

𝐭
=

𝟐𝟎𝟒𝟖𝟐  ∗ 𝟒 ∗ 𝟐

𝐭
 



Memory Optimizations 



Data Transfers 

Host and Device have their own address space 

GPU boards are connected to host via PCIe bus 

Low bandwidth, extremely low latency 

 

 

 

 

Focus on how to minimize transfers and copybacks*. 

 

 
* Try to find a good trade off! 

Technology Peak Bandwidth 

PCIex GEN2 (16x, full duplex) 8 GB/s (peak) 

PCIex GEN3 (16x, full duplex) 16 GB/s (peak) 

DDR3 (full duplex) 26 GB/s (single channel) 



Page-locked memory 

 Pinned (or page-locked memory) is a main memory area that is not 

pageable by the operating system; 

 Ensures faster transfers (the DMA engine can work without CPU 

intervention); 

 The only way to get closer to PCI peak bandwidth; 

 Allows CUDA asynchronous operations (including Zero Copy) to 

work correctly. 

// allocate page-locked memory 

cudaMallocHost(&area, sizeof(double) * N); 

// free page-locked memory 

cudaFreeHost(area); 

Warning: page-locked memory is a scarce resource. 

Use with caution: allocating too much page-locked memory can reduce overall 
system performance 

Breath relief: nVidia guys allocate up to 95% of a Linux compute node memory as 
‘pinned’ memory in real world applications «without much problems» they say… 

// allocate regular memory 

area = (double*) malloc( sizeof(double) * N ); 

// lock area pages (CUDA >= 4.0) 

cudaHostRegister( area, sizeof(double) * N, cudaHostRegisterPortable ); 

// unlock area pages (CUDA >= 4.0) 

cudaHostUnregister(area); 

// free regular memory 

cudaFreeHost(area); 

 



Zero Copy 

CUDA allows to map a page-locked host memory area to 
the device’s address space; 

 

 

 

 

 

 

The only way to provide on-the-fly a kernel data that 
doesn’t fit into the device’s global memory. 

Very convenient for large data with sparse access pattern. 

// allocate page-locked and mapped memory 

cudaHostAlloc(&area, sizeof(double) * N, cudaHostAllocMapped); 

// invoke retrieving device pointer for mapped area 

cudaHostGetDevicePointer( &dev_area, area, 0 ); 

my_kernel<<< g, b >>>( dev_area ); 

// free page-locked and mapped memory 

cudaFreeHost(area); 



Unified Virtual Addressing 

CUDA 4.0 introduced one (virtual) address space for all CPU and 

GPUs memory: 

automatically detects physical memory location from pointer value 

enables libraries to simplify their interfaces (e.g. cudaMemcpy) 

 

 

 

 

 

 

 

 

 

 

Pre-UVA UVA 

Each source-destination 

permutation has its own option 

Same interface 

cudaMemcpyHostToHost 

cudaMemcpyHostToDevice 

cudaMemcpyDeviceToHost 

cudaMemcpyDeviceToDevice 

cudaMemcpyDefault 

 

Pointers returned by cudaHostAlloc() can be used directly from 

within kernels running on UVA enabled devices (i.e. there is no 

need to obtain a device pointer via cudaHostGetDevicePointer()) 



Multi-GPUs: P2P 

cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid_0, gpuid_1); 

cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid_1, gpuid_0); 

 

cudaSetDevice(gpuid_0); 

cudaDeviceEnablePeerAccess(gpuid_1, 0); 

 

cudaSetDevice(gpuid_1); 

cudaDeviceEnablePeerAccess(gpuid_0, 0); 

 

cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault); 

cudaMemcpy() knows that our buffers are on different devices (UVA), will 
do a P2P copy now 

 

Note that this will transparently fall back to a normal copy through the 
host if P2P is not available 



Multi-GPUs: direct access 

cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid_0, gpuid_1); 

cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid_1, gpuid_0); 

 

cudaSetDevice(gpuid_0); 

cudaDeviceEnablePeerAccess(gpuid_1, 0); 

cudaSetDevice(gpuid_1); 

cudaDeviceEnablePeerAccess(gpuid_0, 0); 

 

cudaSetDevice(gpuid_0); 

SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpu1_buf); 

SimpleKernel<<<blocks, threads>>> (gpu1_buf, gpu0_buf); 

cudaSetDevice(gpuid_1); 

SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpu1_buf); 

SimpleKernel<<<blocks, threads>>> (gpu1_buf, gpu0_buf); 

After P2P initialization, this kernel can now read and write data in the 
memory of multiple GPUs (just dereferencing pointers!) 

UVA ensures that the kernel knows whether its argument is from local 
memory, another GPU or zero-copy from the host 

__global__ void SimpleKernel(float *src, float *dst) { 

  const int idx = blockIdx.x * blockDim.x + threadIdx.x; 

  dst[idx] = src[idx]; 

} 



Asynchronous CPU/GPU  
operations 

Asynchronous operations: control is returned to the host thread before the 
device has completed the requested task 

Kernel calls are asynchronous by default 

Memory copies from host to device of a memory block of 64 KB or less 

Memory set function calls 
The cudaMemcpy() has an asynchronous version (cudaMemcpyAsync) 

Remember: standard memory transfers and copybacks are blocking 

// First transfer 

cudaMemcpyAsync(d_A, h_A, size, cudaMemcpyHostToDevice, 0);  

// First invocation 

MyKernel<<<100, 512, 0, 0>>> (d_A, size);  

// Second transfer 

cudaMemcpyAsync(d_B, h_B, size, cudaMemcpyHostToDevice, 0);  

// Second invocation 

MyKernel2<<<100, 512, 0, 0>>> (d_B, size); 

// Wrapup 

cudaMemcpyAsync(h_A, d_A, size, cudaMemcpyDeviceToHost, 0); 

cudaMemcpyAsync(h_B, d_B, size, cudaMemcpyDeviceToHost, 0); 

cudaThreadSyncronize(); 



Asynchronous GPU 
Operations: CUDA Stream 

A stream is a FIFO command queue; 

Default stream (aka stream ‘0’): Kernel launches and memory copies that 

do not specify any stream (or set the stream to zero)  are issued to the default 

stream. 

A stream is independent to every other active stream; 

Streams are the main way to exploit concurrent execution and I/O operations 

Explicit Synchronization: 

cudaDeviceSynchronize() 

blocks host until all issued CUDA calls are complete 

cudaStreamSynchronize(streamId) 

blocks host until all CUDA calls in streamid are complete 

cudaStreamWaitEvent(streamId, event) 

all commands added to the stream delay their execution until the event has completed 

Implicit Synchronization: 

any CUDA command to the default stream, 

a page-locked host memory allocation, 

a device memory set or allocation, 

… 

 



Serial : 

2-way concurrency : 

3-way concurrency : 

4-way concurrency : 

+4-way concurrency : 

CUDA streams enable  
concurrency 

Requirements for Concurrency: 

CUDA operations must be in different, non-0, streams 

cudaMemcpyAsync with host from 'pinned' memory 

Sufficient resources must be available 

cudaMemcpyAsyncs in different directions 

Device resources (SMEM, registers, blocks, etc.) 

 

Concurrency: the ability to perform multiple CUDA operations simultaneously. 

Fermi architecture can simultaneously support: 

Up to 16 CUDA kernels on GPU 

2 cudaMemcpyAsyncs (in opposite directions) 

Computation on the CPU 



CUDA streams enable 
concurrency 

cudaStream_t stream[3]; 

for (int i=0; i<3; ++i) cudaStreamCreate(&stream[i]); 

 

float* hPtr; cudaMallocHost((void**)&hPtr, 3 * size); 

 

for (int i=0; i<3; ++i) { 

  cudaMemcpyAsync(d_inp + i*size, hPtr + i*size, 

                    size, cudaMemcpyHostToDevice, stream[i]); 

 

  MyKernel<<<100, 512, 0, stream[i]>>>(d_out+i*size, d_inp+i*size, size); 

 

  cudaMemcpyAsync(hPtr + i*size, d_out + i*size,  

                    size, cudaMemcpyDeviceToHost, stream[i]); 

} 

cudaDeviceSynchronize(); 

 

for (int i=0; i<3; ++i) cudaStreamDestroy(&stream[i]); 

Transfer 

Copyback 

Kernel 

Transfer 

Transfer 

Kernel 

Kernel 

Copyback 

Copyback 

Stream #1 

Stream #2 

Stream #3 

time 



CUDA Streams: 
overlapping kernels execution 

Starting from capability 2.0 the board has the ability to overlap 

computations from multiple kernels.  

CUDA kernels are in different streams, 

no operations occur on the default stream, 

the active streams are less than 16. 

no synchronization happens between command stages, 

Threadblocks for a given kernel are scheduled if all threadblocks for 

preceding kernels have already been scheduled and there are SM 

resources available 

Concurrent execution can be limited by implicit dependencies due to 

hardware limitations: command issue order matters! 

 

 

 

 

// Depth-first commands submission.  

Beware: PSEUDO CODE ahead: 

for each StreamId: 

  do H2D data tile transfer 

  launch kernel on data tile 

  do D2H result data tile transfer 

// Breadth-first commands submission.  

Beware: PSEUDO CODE ahead: 

for each StreamId: 

  do H2D data tile transfer 

for each StreamId: 

  launch kernel on data tile 

for each StreamId: 

  do D2H result data tile transfer hint: depth-first commands submission is usually better  

on Fermi. It’s a no-issue for Kepler K20 with HyperQ technology 

 



CUDA Memory Hierarchy 



Global Memory 

It is a memory area with the same purpose 

    of the host’s main memory; 

High(er) bandwidth, high(er) latency; 

In order to exploit its bandwidth at best, all accesses must be coalesced, 

i.e. memory accesses from different threads need to be grouped toghether 

and serviced in one memory transaction. 

beware: some threads memory access patterns can be coalesced, some 

others cannot (coalescence rules depends on GPU compute capability) 

FERMI architecture introduces caching mechanisms for GMEM accesses 

(constant and texture are cached since 1.0) 

L1: private to thread, virtual cache implemented into shared memory 

L2: 768KB, grid-coherent, 25% better latency than DRAM  

 
// L1 = 48 KB 

// SH = 16 KB 

cudaFuncSetCacheConfig( kernel, cudaFuncCachePreferL1); 

// L1 = 16 KB 

// SH = 48 KB 

cudaFuncSetCacheConfig( kernel, cudaFuncCachePreferShared ); 

Kepler architecture introduced  

  some improvements: 

  32 KB + 32 KB partition option 



Global Memory (pre-Fermi) 

Compute capability 1.0 and 1.1 

A global memory request for a warp is split into two memory 

requests, one for each half-warp, that are issued independently. 

In order to exploit its bandwidth at best, all accesses must be 

coalesced (half-warp accesses contiguous region of device 

memory).  

Threads must access the words in a strictly increasing sequence: the 

nth thread in the half-warp must access the nth word. 

All 16 words must lie in the same aligned segment 

A coalesced memory access results in: 

in one 64-byte memory transaction, for 4-byte words  

in one 128-byte memory transaction, for 8-byte words  

in two 128-byte memory transactions, for 16-byte words 

 

 



Coalescing (pre-Fermi) 

Compute capability 1.0 and 1.1 

stricter access requirements 

memory accesses serviced on a half-warp (16 threads) basis 

not all threads need to participate but their memory accesses 

must be aligned and in order: 

k-th thread must access k-th word in the segment 

 



Coalescing (pre-Fermi) 

Compute capability 1.2 and 1.3 

The memory controller is much improved 



Global Memory (Fermi) 

FERMI (Compute Capability 2.x) GMEM Operations 

Two types of loads: 

Caching 

default mode 

attempts to hit in L1, then L2, then GMEM 

load granularity is 128-byte line 

Non-caching 

compile with –Xptxas –dlcm=cg 

attempts to hit in L2, then GMEM 

    does not hit in L1.     

load granularity is 32-bytes 

Stores: 

Invalidate L1, write-back for L2 



Global Memory 
Load Operation (Fermi) 

Memory operations are issued per warp (32 threads) 

just like all other instructions 

Operation: 

Threads in a warp provide memory addresses 

Determine which lines/segments are needed 

Request the needed lines/segments 

Warp requests 32 aligned, consecutive 4-byte words (128 bytes) 

Caching Load Non-caching Load 

Addresses fall within 1 cache-line Addresses fall within 4 segments 

128 bytes move across the bus 128 bytes move across the bus  

Bus utilization: 100% Bus utilization: 100% 



Global Memory 
Load Operation (Fermi) 

Warp requests 32 misaligned, consecutive 4-byte words (128 bytes) 

Caching Load Non-caching Load 

Addresses fall within 2 cache-lines Addresses fall within at most 5 segments 

256 bytes move across the bus 160 bytes move across the bus 

Bus utilization: 50% Bus utilization: at least 80% 

Warp requests 32 aligned, permuted 4-byte words (128 bytes) 

Caching Load Non-caching Load 

Addresses fall within 1 cache-line Addresses fall within 4 segments 

128 bytes move across the bus 128 bytes move across the bus  

Bus utilization: 100% Bus utilization: 100% 



Global Memory 
Load Operation (Fermi) 

Warp requests 32 scattered 4-byte words (128 bytes) 

Caching Load Non-caching Load 

Addresses fall within N cache-lines Addresses fall within N segments 

N*128 bytes move across the bus N*32 bytes move across the bus 

Bus utilization:  128 / (N*128) Bus utilization:  128 / (N*32) 

All threads in a warp request the same 4-byte word (4 bytes) 

Caching Load Non-caching Load 

Addresses fall within 1 cache-line Addresses fall within 1 segments 

128 bytes move across the bus 32 bytes move across the bus  

Bus utilization: 3.125% Bus utilization: 12.5% 



Shared memory 

 A sort of explicit cache (i.e. under programmer control) 

 Resides on the chip so it is much faster than the on-board memory 

 Divided into equally-sized memory modules (banks) which can be 

accessed simultaneously (32 banks can be accessed simultaneously 

by the same warp) 

 48KB on Fermi by default* 

 

 Uses: 

 Inter-thread communication within a block 

 Cache data to reduce redundant global memory accesses 

 To improve global memory access patterns 

 Organization: 

 32 banks, 4-byte wide banks 

 Successive 4-byte words belong to different banks 

 Each bank has 32-bit per cycle bandwidth. 

*Kepler architecture introduced some 
improvements: 

- ability to switch from 4B to 8B banks 

- (2x bandwidth for double precision codes) 



Shared Memory 
Bank Conflicts 

If at least two threads belonging to the same half-warp (whole warp for 
capability 1.0) access the same shared memory bank, there is a bank 
conflict and the accesses are serialized (groups transactions in conflict-
free accesses); 

 

If all the threads access the same address, a broadcast is performed; 

 

If part of the half-warp accesses the same address, a multicast is 
performed (capability >= 2.0); 

 

 
No Bank Conflict 2-way Bank Conflicts 8-way Bank Conflicts 



Lunch break 

The second part will start  at 14:30. 
Please, try to be on time  



Texture Memory 

Read only, must be set by the host; 

Load requests are cached (dedicated cache); 

specifically, texture memories and caches are designed for 

graphics applications where memory access patterns exhibit a 

great deal of spatial locality; 

Dedicated texture cache hardware provides: 

Out-of-bounds index handling (clamp or wrap-around) 

Optional interpolation  (on-the-fly interpolation) 

Optional format conversion 

could bring benefits if the threads within the same block access 

memory using regular 2D patterns, but you need appropriate 

binding; 

 

For typical linear patterns,  

global memory (if coalesced)  

is faster. 

 



// allocate array and copy image data 

cudaChannelFormatDesc channelDesc =  

                    cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat); 

cudaArray* cu_array; 

cudaMallocArray( &cu_array, &channelDesc, width, height );  

cudaMemcpyToArray( cu_array, 0, 0, h_data, size, cudaMemcpyHostToDevice); 

// set texture parameters 

tex.addressMode[0] = cudaAddressModeWrap; 

tex.addressMode[1] = cudaAddressModeWrap; 

tex.filterMode = cudaFilterModeLinear; 

tex.normalized = true;    // access with normalized texture coordinates 

// Bind the array to the texture 

cudaBindTextureToArray( tex, cu_array, channelDesc); 

Texture Memory 

// declare texture reference for 2D float texture 

texture<float, 2, cudaReadModeElementType> tex; 

 

__global__ void transformKernel( float* g_odata, int width, int height, float theta)  

{ 

  // calculate normalized texture coordinates 

  unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; 

  unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; 

  float u = x / (float) width; 

  float v = y / (float) height; 

  // transform coordinates 

  u -= 0.5f; 

  v -= 0.5f; 

  float tu = u*cosf(theta) - v*sinf(theta) + 0.5f; 

  float tv = v*cosf(theta) + u*sinf(theta) + 0.5f; 

  // read from texture and write to global memory 

  g_odata[y*width + x] = tex2D(tex, tu, tv); 

} 



Kepler 
global loads through texture 

The compiler (LLVM) can detect texture-compliant loads 

and map them to the new «global load through texture» 
PTX instruction: 

global loads are going to pass through texture pipeline; 

dedicated cache (no L1 pressure) and memory pipe, 

relaxed coalescing; 

automatically generated by compiler (no texture map 

needed) for accesses through compliant pointers 

(constant and restricted); 

useful for bandwidth-limited kernels  

global memory bandwidth and texture memory 

bandwidth stack up. 

 



Constant Memory 

Extremely fast on-board memory area 

Read only, must be set by the host 

64 KB, cached reads in a dedicated L1 (register space) 

Coalesced access if all threads of a warp read the same 
address (serialized otherwise) 

__constant__ qualifier in declarations 

Useful: 

To off-load long argument lists from shared memory 
(compute capability 1.x) 

For coefficients and other data that is read uniformly 
by warps 

__device__ __constant__ parameters_t args; 

 

__host__ void copy_params(const parameters_t* const host_args) { 

 

    cudaMemcpyToSymbol(“args", host_args, sizeof(parameters_t)); 

 

} 



Registers 

Just like CPU registers, access has no latency; 

used for scalar data local to a thread; 

taken by the compiler from the Streaming Multiprocessor 
(SM) pool and statically allocated to each thread; 

each SM of a Fermi GPU has a 32KB register file, 64KB for a 
Kepler GPU 

register pressure one of the most dangerous occupancy 
limiting factors. 



Registers 
Some tips to reduce register pressure: 

try to offload data to shared memory; 

use launch bounds to force the number of resident blocks; 

 

 

 

 

limit register usage via compiler option. 

#define MAX_THREADS_PER_BLOCK 256 

#define MIN_BLOCKS_PER_MP     2 

 

__global__ void 

__launch_bounds__( MAX_THREADS_PER_BLOCK, 

MIN_BLOCKS_PER_MP ) 

my_kernel( int* inArr, int* outArr ) { … } 

# nvcc –Xptas –v mykernel.cu 

ptxas info    : Compiling entry function '_Z12my_kernelP9domain_t_' for 'sm_20' 

ptxas info    : Used 13 registers, 8+16 bytes smem 

# nvcc –-maxrregcount 10 –Xptas –v mykernel.cu 

ptxas info    : Compiling entry function '_Z12my_kernelP9domain_t_' for 'sm_20' 

ptxas info    : Used 10 registers, 12+0 bytes lmem, 8+16 bytes smem 



Local memory 

“Local” because it’s private on a per-thread basis; 

it’s actually a global memory area used to spill out data 

when the SM runs out of register resources; 

arrays declared inside a kernel go to LMEM;  

local memory accesses are cached (just like global 

memory). 

DISCLAIMER: local memory is not a GPU resource you 

want to use: It used by the compiler as needed. Its use 

can hardly hit your kernel performance too: variables that 

you think are in registers are instead stored in the device 

global memory. 



Execution Optimization 



Occupancy 

 

 

Keeping the hardware busy helps the warp scheduler to 

hide latencies. 

The board’s occupancy is the ratio of active warps to 
the maximum number of warps supported on a 

multiprocessor. 



Occupancy: constraints 

Every board’s resource can become an occupancy 
limiting factor: 

shared memory allocated per block, 

registers allocated per thread, 

block size 
(max threads (warp) per SM/max blocks per SM) 

Given an actual kernel configuration, is possible to 
predict the maximum theoretical occupancy allowed. 



Occupancy: block sizing tips 

Some experimentation is required. 

 

However there are some heuristic rules: 

threads per block should be a multiple of warp size; 

a minimum of 64 threads per block should be used; 

128-256 threads per block is universally known to be 
a good starting point for further experimentation; 

prefer to split very large blocks into smaller blocks. 



Kepler: dynamic parallelism 

One of the biggest CUDA limitations is the need to fit a single grid 

configuration for the whole kernel. 

 

 

Kepler K20 (in addition to CUDA 5.x) introduced Dynamic Parallelism 

It enables a global kernel to be called from within another kernel 

The child grid can be dynamically sized and optionally synchronized 

__global__ ChildKernel(void* data){ 

  //Operate on data 

}  

 

__global__ ParentKernel(void *data){ 

  ChildKernel<<<16, 1>>>(data); 

}  

 

// In Host Code: 

ParentKernel<<<256, 64>>(data);  

If you need to reshape the grid, you have to resync back to host and split your code. 



Instructions throughput 

Arithmetic ops: 

prefer integer shift operators instead of division and 
modulo (would be less useful with LLVM); 

beware of (implicit) casts (very expensive); 

use intrinsics for trascendental functions where possible; 

try the fast math implementation. 



Capability: instruction throughput 
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Control Flow 

Different execution paths inside the same warp are managed by the 
predication mechanism and lead to thread divergence. 

if ( threadIdx.x == 0 ) {…} 

Minimize/avoid the number of execution branches inside a threads 
warp; 

make the compiler’s life easier by unrolling loops (hand-coded, 

pragma or option); 

use signed counters for loops (relaxed semantic in respect to the 

unsigned int: it allows more aggressive loop optimizations); 

if ( threadIdx.x == 0 ) {…} 

else {…} 

if ( threadIdx.x == 0 ) {…} 

else  if (threadIdx.x == 1) {…} 

if ( vec[ threadIdx.x ] > 1.0f ) {…} 



Exploiting Multi-GPUs 
CUDA >= 4.0 introduced the N-to-N bound feature: 

1. Every host thread can be bound to any board 

2. Every board can be bound to an arbitrary number of 

host threads 

3. Multi-GPU can be exploited through your favourite 

multi-threading paradigm (OpenMP, pthreads, etc…) 

 

 

#pragma omp parallel 

#pragma omp sections 

{ 

#pragma omp section 

  { 

     cutilSafeCall(cudaSetDevice(0)); 

     cudaMemcpy(device_data_1, host_data_1, size, cudaMemcpyHostToDevice); 

     my_kernel<<< grid, block >>>(device_data_1); 

     // ... 

  } 

#pragma omp section 

  { 

     cutilSafeCall(cudaSetDevice(1)); 

     cudaMemcpy(device_data_2, host_data_2, size, cudaMemcpyHostToDevice); 

     my_kernel<<< grid, block >>>(device_data_2); 

     // ... 

  } 

} 



Tools Overview 
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Profiling tools: built-in 

The CUDA runtime provides a useful profiling facility without the need 
of external tools. 

export CUDA_PROFILE=1 

export CUDA_PROFILE_CONFIG=$HOME/.config 

// Contents of config 

gld_coherent 

gld_incoherent 

gst_coherent 

gst_incoherent 

method,gputime,cputime,occupancy,gld_incoherent,gld_coherent,gst_incoherent,gst_coherent 

method=[ memcopy ] gputime=[ 438.432 ]  

method=[ _Z17reverseArrayBlockPiS_ ] gputime=[ 267.520 ] cputime=[ 297.000 ] occupancy=[ 1.000 ] 

gld_incoherent=[ 0 ] gld_coherent=[ 1952 ] gst_incoherent=[ 62464 ] gst_coherent=[ 0 ] 

method=[ memcopy ] gputime=[ 349.344 ]  

gld_incoherent: Number of non-coalesced global memory loads 

gld_coherent: Number of coalesced global memory loads 

gst_incoherent: Number of non-coalesced global memory stores 

gst_coherent: Number of coalesced global memory stores 

local_load: Number of local memory loads 

local_store: Number of local memory stores 

branch: Number of branch events taken by threads 

divergent_branch: Number of divergent branches within a warp 

instructions: instruction count 

warp_serialize: Number of threads in a warp that serialize 

based on address conflicts to shared or constant memory 

cta_launched: executed thread blocks 



Profiling: Visual Profiler 

Traces execution at host, driver and kernel levels (unified 

timeline) 

Supports automated analysis (hardware counters) 



Debugging: CUDA-GDB 

Well-known tool enhanced with CUDA extensions 

Works well on single-gpu systems (OS graphics disabled) 

Can be run under GDB-targeted tools and GUIs (multi-

gpu systems) 

(cuda-gdb) info cuda threads 

BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line 

Kernel 0* (0,0,0) (0,0,0) (0,0,0) (255,0,0) 256 0x0000000000866400 bitreverse.cu 9 

(cuda-gdb) thread 

[Current thread is 1 (process 16738)] 

(cuda-gdb) thread 1 

[Switching to thread 1 (process 16738)] 

#0 0x000019d5 in main () at bitreverse.cu:34 

34 bitreverse<<<1, N, N*sizeof(int)>>>(d); 

(cuda-gdb) backtrace 

#0 0x000019d5 in main () at bitreverse.cu:34 

(cuda-gdb) info cuda kernels 

Kernel Dev Grid SMs Mask GridDim BlockDim Name Args 

0 0 1 0x00000001 (1,1,1) (256,1,1) bitreverse data=0x110000 



Debugging: CUDA-MEMCHECK 

It’s able to detect buffer overflows, misaligned global memory 

accesses and leaks 

Device-side allocations are supported 

Standalone or fully integrated in CUDA-GDB 

 $ cuda-memcheck --continue ./memcheck_demo 

========= CUDA-MEMCHECK 

Mallocing memory 

Running unaligned_kernel 

Ran unaligned_kernel: no error 

Sync: no error 

Running out_of_bounds_kernel 

Ran out_of_bounds_kernel: no error 

Sync: no error 

========= Invalid __global__ write of size 4 

========= at 0x00000038 in memcheck_demo.cu:5:unaligned_kernel 

========= by thread (0,0,0) in block (0,0,0) 

========= Address 0x200200001 is misaligned 

========= 

========= Invalid __global__ write of size 4 

========= at 0x00000030 in memcheck_demo.cu:10:out_of_bounds_kernel 

========= by thread (0,0,0) in block (0,0,0) 

========= Address 0x87654320 is out of bounds 

========= 

========= 

========= ERROR SUMMARY: 2 errors 



Parallel NSight 

Plug-in for major IDEs (Eclipse and VisualStudio) 

Aggregates all external functionalities: 

Debugger (fully integrated) 

Visual Profiler 

Memory correctness checker 

As a plug-in, it extends all the convenience of IDEs to 

CUDA 

On Windows systems: 

Now works on a single GPU 

Supports remote debugging and profiling 

Latest version (2.2) introduced live PTX assembly 

view, warp inspector and expression lamination 
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