

CUDA Efficient Programming

Outline

- 1. Overview and general concepts
- 2. Performance Metrics
- 3. Memory Optimizations
- 4. Execution Optimization
- 5. Tools Overview

Different worlds: host and device

	Host	Device
Threading resources	2 threads per core (SMT), 24/32 threads per node. The thread is the atomic execution unit.	e.g.: 1536 (thd x sm) * 14 (sm) = 21504. The Warp (32 thd) is the atomic execution unit.
Threads	«Heavy» entities, context switches and resources management.	Extremely lightweight, managed grouped into warps, fast context switch, no resources management (statically allocated once).
Memory	e.g.: 48 GB / 32 thd = 1.5 GB/thd, 300 cycles lat., 6.4 GB/s band (DDR3), 3 caching levels with lots of speculation logic.	e.g.: 6 GB / 21504 thd = 0.3 MB/thd, 600 cycles lat*, 144 GB/s band (GDDR5)*, fake caches. * coalesced

- Focus on how to exploit the SIMT (data parallel) programming model.
- Deeply analyze your algorithm in order to find hotspots and embarassingly parallel-enabled portions. Furthermore, pay attention to the Amdahl's law:

$$S = \frac{1}{(1-P) + P/N}$$

Hint: avoid the jump-start-to-code approach: porting your serial and/or multithreaded and/or message passing CPU application to GPU is *not* in general an easy task.

CUDA Enabled GPU: compute capability

The compute capability is a kind of version tag that identifies:

- instructions and features supported by the board;
- coalescing rules;
- the board's resources constraints;
- throughput of some instructions (hardware implementation).

The compute capability is given as a *major*.dot.*minor* version number (i.e: 2.0, 2.1, 3.0, 3.5).

Compute capability: resources constraints

Technical Specifications	Compute Capability								
reconical specifications	1.0	1.1	2.x	2.x 3.0 3					
Maximum dimensionality of grid of thread blocks		2							
Maximum x-dimension of a grid of thread blocks			65535			2 ³¹ -	2 ³¹ -1		
Maximum y- or z-dimension of a grid of thread blocks				65535					
Maximum dimensionality of thread block				3					
Maximum x- or y-dimension of a block		5	12			1024			
Maximum z-dimension of a block				64					
Maximum number of threads per block		5	12			1024			
Warp size				32					
Maximum number of resident blocks per multiprocessor		8							
Maximum number of resident warps per multiprocessor	2	24 32 4			48	64			
Maximum number of resident threads per multiprocessor	7	768 1024		1536	6 2048				
Number of 32-bit registers per multiprocessor	8	К	10	5 K	32 K	64	К		
Maximum number of 32-bit registers per thread		6	63 25						
Maximum amount of shared memory per multiprocessor	16 KB					48 KB			
Number of shared memory banks		1		32					
Amount of local memory per thread		512 KB							
Constant memory size	64 KB								
Cache working set per multiprocessor for constant memory	8 KB								
Cache working set per multiprocessor for texture memory	Device dependent, between 6 KB and 8 KB								
Maximum width for a 1D texture reference bound to a CUDA array	8192 6553								

Performance metrics

Performance metrics

- Wall-clock time
 - you always want to keep that one at a minimum
- Theoretical (peak) bandwidth Vs effective bandwidth
 - that allows you to measure performance of a <u>memory-bound kernel</u>
- Theoretical (peak) FLOPS* Vs effective FLOPS**
 - that allows you to measure performance of a <u>compute-bound kernel</u>

*theoretical **FL**oating point **O**peration **P**er **S**econd: different kind of ops have in general different throughput . Ops throughput differs among the compute capabilities.

effective **FLoating point **O**peration **P**er **S**econd: can be difficult to count the effective number of operations that the kernel is doing during execution.

Timing

 You can use the standard timing facilities (host side) in an almost standard way...


```
start = clock()
my_kernel<<< blocks, threads>>>();
cudaDeviceSynchronize();
end = clock();
```

- CUDA provides the cudaEvents facility. They grant you access to the GPU timer.
- Needed to time a single stream without loosing Host/Device concurrency.

```
cdaEvent_t start, stop;
cudaEventCreate(start); cudaEventCreate(stop);
cudaEventRecord(start, 0);
My_kernel<<<block2, threads>>> ();
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float ElapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);
```


Bandwidth

2. Get kernel's effective bandwidth:

- 3. Compute the effective to theoretical bandwidth ratio. Then ask:
 - Is it around 70-75% of the peak? Good job*.
 - Is it much lower than 70% of the peak? Plenty of room for memory access optimization and performance improvement*.

*once again: the bandwidth metric is valid for memory bound kernel

Memory Optimizations

Data Transfers

- Host and Device have their own address space
- GPU boards are connected to host via PCIe bus
- Low bandwidth, extremely low latency

Technology	Peak Bandwidth
PCIex GEN2 (16x, full duplex)	8 GB/s (peak)
PCIex GEN3 (16x, full duplex)	16 GB/s (peak)
DDR3 (full duplex)	26 GB/s (single channel)

Focus on how to minimize transfers and copybacks*.

* Try to find a good trade off!

Page-locked memory

Pinned (or page-locked memory) is a main memory area that is not pageable by the operating system;

Ensures faster transfers (the DMA engine can work without CPU intervention);

The only way to get closer to PCI peak bandwidth;

Allows CUDA asynchronous operations (including Zero Copy) to work correctly.

```
// allocate page-locked memory
cudaMallocHost(&area, sizeof(double) * N);
// free page-locked memory
cudaFreeHost(area);
```

```
// allocate regular memory
area = (double*) malloc( sizeof(double) * N );
// lock area pages (CUDA >= 4.0)
cudaHostRegister( area, sizeof(double) * N, cudaHostRegisterPortable );
// unlock area pages (CUDA >= 4.0)
cudaHostUnregister(area);
// free regular memory
cudaFreeHost(area);
```

Warning: page-locked memory is a scarce resource. Use with caution: allocating too much page-locked memory can reduce overall system performance Breath relief: nVidia guys allocate up to 95% of a Linux compute node memory as 'pinned' memory in real world applications «without much problems» they say...

Zero Copy

 CUDA allows to map a page-locked host memory area to the device's address space;

// allocate page-locked and mapped memory cudaHostAlloc(&area, sizeof(double) * N, cudaHostAllocMapped); // invoke retrieving device pointer for mapped area cudaHostGetDevicePointer(&dev_area, area, 0); my_kernel<<< g, b >>>(dev_area); // free page-locked and mapped memory cudaFreeHost(area);

- The only way to provide on-the-fly a kernel data that doesn't fit into the device's global memory.
- Very convenient for large data with sparse access pattern.

Unified Virtual Addressing

CUDA 4.0 introduced one (virtual) address space for all CPU and GPUs memory:

- automatically detects physical memory location from pointer value
- enables libraries to simplify their interfaces (e.g. cudaMemcpy)

Pre-UVA	UVA							
Each source-destination permutation has its own option	Same interface							
cudaMemcpyHostToHost cudaMemcpyHostToDevice cudaMemcpyDeviceToHost cudaMemcpyDeviceToDevice	cudaMemcpyDefault							
System Memory SuffFFF SuffFFF SuffFF SuffFFF SuffFF SuffFF SuffFF SuffFF SuffFF	System GPU0 GPU1 Memory Memory CPU GPU0 GPU1 GPU0 GPU1							

Pointers returned by cudaHostAlloc() can be used directly from within kernels running on UVA enabled devices (i.e. there is no need to obtain a device pointer via cudaHostGetDevicePointer())

PCI-e

Multi-GPUs: P2P


```
cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid_0, gpuid_1);
cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid_1, gpuid_0);
cudaSetDevice(gpuid_0);
cudaDeviceEnablePeerAccess(gpuid_1, 0);
cudaSetDevice(gpuid_1);
cudaDeviceEnablePeerAccess(gpuid_0, 0);
cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault);
```

- cudaMemcpy() knows that our buffers are on different devices (UVA), will do a P2P copy now
- Note that this will *transparently* fall back to a normal copy through the host if P2P is not available

Multi-GPUs: direct access

```
__global___void SimpleKernel(float *src, float *dst) {
   const int idx = blockIdx.x * blockDim.x + threadIdx.x;
   dst[idx] = src[idx];
}
```

```
cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid_0, gpuid_1);
cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid_1, gpuid_0);
cudaSetDevice(gpuid_0);
cudaSetDevice(gpuid_1, 0);
cudaSetDevice(gpuid_1);
cudaDeviceEnablePeerAccess(gpuid_0, 0);
cudaSetDevice(gpuid_0);
SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpu1_buf);
SimpleKernel<<<blocks, threads>>> (gpu1_buf, gpu0_buf);
cudaSetDevice(gpuid_1);
SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpu1_buf);
```

- After P2P initialization, this kernel can now read and write data in the memory of multiple GPUs (just *dereferencing pointers!*)
- UVA ensures that the kernel knows whether its argument is from local memory, another GPU or zero-copy from the host

Asynchronous CPU/GPU operations

- Asynchronous operations: control is returned to the host thread before the device has completed the requested task
 - Kernel calls are asynchronous by default
 - Memory copies from host to device of a memory block of 64 KB or less
 - Memory set function calls
 - The cudaMemcpy() has an asynchronous version (cudaMemcpyAsync)
- **Remember: standard memory transfers and copybacks are** *blocking*

```
// First transfer
cudaMemcpyAsync(d_A, h_A, size, cudaMemcpyHostToDevice, 0);
// First invocation
MyKernel<<<100, 512, 0, 0>>> (d_A, size);
// Second transfer
cudaMemcpyAsync(d_B, h_B, size, cudaMemcpyHostToDevice, 0);
// Second invocation
MyKernel2<<<100, 512, 0, 0>>> (d_B, size);
// Wrapup
cudaMemcpyAsync(h_A, d_A, size, cudaMemcpyDeviceToHost, 0);
cudaMemcpyAsync(h_B, d_B, size, cudaMemcpyDeviceToHost, 0);
cudaThreadSyncronize();
```


Asynchronous GPU Operations: CUDA Stream

A stream is a FIFO command queue;

- Default stream (aka stream '0'): Kernel launches and memory copies that do not specify any stream (or set the stream to zero) are issued to the default stream.
- **A stream is independent to every other active stream;**
- T Streams are the main way to exploit concurrent execution and I/O operations
- Explicit Synchronization:
 - \$ cudaDeviceSynchronize()
 - blocks host until all issued CUDA calls are complete
 - cudaStreamSynchronize(streamId)
 - blocks host until all CUDA calls in streamid are complete
 - cudaStreamWaitEvent(streamId, event)
 - all commands added to the stream delay their execution until the event has completed
 - Implicit Synchronization:

8

A 41 A

- any CUDA command to the default stream,
- a page-locked host memory allocation,
- a device memory set or allocation,

CUDA streams enable concurrency

- <u>Concurrency</u>: the ability to perform multiple CUDA operations simultaneously. Fermi architecture can simultaneously support:
- Up to 16 CUDA kernels on GPU
- 2 cudaMemcpyAsyncs (in opposite directions)
- Computation on the CPU
- Requirements for Concurrency:
- CUDA operations must be in different, non-0, streams
- cudaMemcpyAsync with host from 'pinned' memory
- Sufficient resources must be available
 - cudaMemcpyAsyncs in different directions
 - Device resources (SMEM, registers, blocks, etc.)

CUDA streams enable concurrency

CUDA Streams:

- Starting from capability 2.0 the board has the ability to overlap computations from multiple kernels.
 - CUDA kernels are in different streams,
 - no operations occur on the default stream,
 - the active streams are less than 16.
 - no synchronization happens between command stages,
- Threadblocks for a given kernel are scheduled if all threadblocks for preceding kernels have already been scheduled and there are SM resources available
- Concurrent execution can be limited by implicit dependencies due to hardware limitations: command issue order matters!

// Depth-first commands submission.
Beware: PSEUDO CODE ahead:
for each StreamId:
do H2D data tile transfer
launch kernel on data tile
do D2H result data tile transfer

hint: depth-first commands submission is usually better on Fermi. It's a no-issue for Kepler K20 with HyperQ technology

CUDA Memory Hierarchy

Memory	Location on/off chip	Cached	Access	Scope	Lifetime
Register	On	n/a	R/W	1 thread	Thread
Local	Off	†	R/W	1 thread	Thread
Shared	On	n/a	R/W	All threads in block	Block
Global	Off	†	R/W	All threads + host	Host allocation
Constant	Off	Yes	R	All threads + host	Host allocation
Texture	Off	Yes	R	All threads + host	Host allocation

Global Memory

- It is a memory area with the same purpose of the host's main memory;
- High(er) bandwidth, high(er) latency;
- In order to exploit its bandwidth at best, all accesses must be <u>coalesced</u>, i.e. memory accesses from different threads need to be grouped toghether and serviced in one memory transaction.
- beware: some threads memory access patterns can be coalesced, some others cannot (coalescence rules depends on GPU compute capability)
- FERMI architecture introduces caching mechanisms for GMEM accesses (constant and texture are cached since 1.0)
- L1: private to thread, virtual cache implemented into shared memory
- L2: 768KB, grid-coherent, 25% better latency than DRAM

// L1 = 48 KB
// SH = 16 KB
cudaFuncSetCacheConfig(kernel, cudaFuncCachePreferL1);
// L1 = 16 KB
// SH = 48 KB
cudaFuncSetCacheConfig(kernel, cudaFuncCachePreferShared);

Kepler architecture introduced some improvements: 32 KB + 32 KB partition option

SCA Global Memory (pre-Fermi)

Compute capability 1.0 and 1.1

- A global memory request for a warp is split into two memory requests, one for each half-warp, that are issued independently.
- In order to exploit its bandwidth at best, all accesses must be <u>coalesced</u> (*half-warp* accesses contiguous region of device memory).
- Threads must access the words in a strictly increasing sequence: the nth thread in the half-warp must access the nth word.
- All 16 words must lie in the same aligned segment
- A coalesced memory access results in:
 - in one 64-byte memory transaction, for 4-byte words
 - in one 128-byte memory transaction, for 8-byte words
 - in two 128-byte memory transactions, for 16-byte words

Coalescing (pre-Fermi)

Compute capability 1.0 and 1.1

- stricter access requirements
- memory accesses serviced on a half-warp (16 threads) basis
- not all threads need to participate but their memory accesses must be aligned and in order:
 - k-th thread must access k-th word in the segment

Coalescing (pre-Fermi)

Compute capability 1.2 and 1.3

The memory controller is much improved

Global Memory (Fermi)

FERMI (Compute Capability 2.x) GMEM Operations

- Two types of loads:
 - Caching
 - # default mode
 - attempts to hit in L1, then L2, then GMEM
 - load granularity is **128-byte** line
 - Non-caching
 - f compile with -Xptxas -dlcm=cg
 - attempts to hit in L2, then GMEM does not hit in L1.
 - Ioad granularity is 32-bytes
- Stores:
 - Invalidate L1, write-back for L2

Global Memory Load Operation (Fermi)

288

128 160

192 224 256

Memory addresses

320 352 384 416 448

- Memory operations are issued per warp (32 threads)
 - just like all other instructions
- Operation:

128

160

192 224 256 288

Memory addresses

- Threads in a warp provide memory addresses
- Determine which lines/segments are needed
- Request the needed lines/segments

320

352

416

Warp requests 32 aligned, consecutive 4-byte words (128 bytes)

Caching Load	Non-caching Load
Addresses fall within 1 cache-line	Addresses fall within 4 segments
128 bytes move across the bus	128 bytes move across the bus
Bus utilization: 100%	Bus utilization: 100%
addresses from a warp ↓↓↓↓ ··· ↓↓	addresses from a warp ↓↓↓↓ ··· ↓↓

Global Memory Load Operation (Fermi)

Warp requests 32 aligned, permuted 4-byte words (128 bytes)

Caching Load

Addresses fall within 1 cache-line

128 bytes move across the bus

Bus utilization: 100%

Non-caching Load Addresses fall within 4 segments

128 bytes move across the bus

Bus utilization: **100%**

Warp requests 32 misaligned, consecutive 4-byte words (128 bytes)

Caching Load	Non-caching Load
Addresses fall within 2 cache-lines	Addresses fall within at most 5 segments
256 bytes move across the bus	160 bytes move across the bus
Bus utilization: 50%	Bus utilization: at least 80%
addresses from a warp	addresses from a warp

Global Memory Load Operation (Fermi)

All threads in a warp request the same 4-byte word (4 bytes)

Caching Load

Addresses fall within 1 cache-line

128 bytes move across the bus

Bus utilization: 3.125%

Non-caching Load

Addresses fall within 1 segments

32 bytes move across the bus

Bus utilization: **12.5%**

Warp requests 32 scattered 4-byte words (128 bytes)

Caching LoadNon-caching LoadAddresses fall within N cache-linesAddresses fall within N segmentsN*128 bytes move across the busN*32 bytes move across the busBus utilization: 128 / (N*128)Bus utilization: 128 / (N*32)

Shared memory

A sort of *explicit* cache (i.e. under programmer control)

- Resides on the chip so it is much faster than the on-board memory
- Divided into equally-sized memory modules (banks) which can be accessed simultaneously (32 banks can be accessed simultaneously by the same warp)
- 48KB on Fermi by default*

***Kepler** architecture introduced some improvements:

- ability to switch from 4B to 8B banks
- (2x bandwidth for double precision codes)

▼ <u>Uses</u>:

- Inter-thread communication within a block
- Cache data to reduce redundant global memory accesses
- To improve global memory access patterns

Organization:

- 32 banks, 4-byte wide banks
- Successive 4-byte words belong to different banks
- Each bank has 32-bit per cycle bandwidth.

Shared Memory Bank Conflicts

- If at least two threads belonging to the same half-warp (whole warp for capability 1.0) access the same shared memory bank, there is a *bank conflict* and the accesses are serialized (groups transactions in conflictfree accesses);
- **•** If all the threads access the same address, a *broadcast* is performed;
- If part of the half-warp accesses the same address, a *multicast* is performed (capability >= 2.0);

Lunch break

The second part will start at 14:30. Please, try to be on time ©

Texture Memory

- Read only, must be set by the host;
- Load requests are cached (dedicated cache);
- specifically, texture memories and caches are designed for graphics applications where memory access patterns exhibit a great deal of spatial locality;
- Dedicated texture cache hardware provides:
 - Out-of-bounds index handling (clamp or wrap-around)
 - Optional interpolation (on-the-fly interpolation)
 - Optional format conversion
- could bring benefits if the threads within the same block access memory using regular 2D patterns, but you need appropriate binding;

For typical linear patterns, global memory (if coalesced) is faster.

Texture Memory

```
// allocate array and copy image data
cudaChannelFormatDesc channelDesc =
                    cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaArray* cu array;
cudaMallocArray( &cu array, &channelDesc, width, height );
cudaMemcpyToArray( cu array, 0, 0, h data, size, cudaMemcpyHostToDevice);
// set texture parameters
tex.addressMode[0] = cudaAddressModeWrap;
tex.addressMode[1] = cudaAddressModeWrap;
tex.filterMode = cudaFilterModeLinear;
tex.normalized = true; // access with normalized texture coordinates
// Bind the array to the texture
cudaBindTextureToArray( tex, cu array, channelDesc);
// declare texture reference for 2D float texture
texture<float, 2, cudaReadModeElementType> tex;
  global void transformKernel( float* g odata, int width, int height, float theta)
  // calculate normalized texture coordinates
  unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
  unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
  float u = x / (float) width;
  float v = y / (float) height;
  // transform coordinates
  u = 0.5f;
  v -= 0.5f;
  float tu = u^{*}cosf(theta) - v^{*}sinf(theta) + 0.5f;
  float tv = v*cosf(theta) + u*sinf(theta) + 0.5f;
  // read from texture and write to global memory
  g odata[y*width + x] = tex2D(tex, tu, tv);
```


Kepler global loads through texture

The compiler (LLVM) can detect texture-compliant loads and map them to the new *«global load through texture»* PTX instruction:

- global loads are going to pass through texture pipeline;
- dedicated cache (no L1 pressure) and memory pipe, relaxed coalescing;
- automatically generated by compiler (no texture map needed) for accesses through compliant pointers (constant and restricted);
- useful for bandwidth-limited kernels
 - global memory bandwidth and texture memory bandwidth stack up.

Constant Memory

- Extremely fast on-board memory area
- Read only, must be set by the host
- 64 KB, cached reads in a dedicated L1 (register space)
- Coalesced access if all threads of a warp read the same address (serialized otherwise)
- __constant__ qualifier in declarations
- Useful:
 - To off-load long argument lists from shared memory (compute capability 1.x)
 - For coefficients and other data that is read uniformly by warps

Registers

- Just like CPU registers, access has no latency;
- used for scalar data local to a thread;
- taken by the compiler from the Streaming Multiprocessor (SM) pool and statically allocated to each thread;
 - each SM of a Fermi GPU has a 32KB register file, 64KB for a Kepler GPU
- register pressure one of the most dangerous occupancy limiting factors.

Registers

Some tips to reduce register pressure:

- try to offload data to shared memory;
- use launch bounds to force the number of resident blocks;

```
#define MAX_THREADS_PER_BLOCK 256
#define MIN_BLOCKS_PER_MP 2
___global___void
__launch_bounds__(MAX_THREADS_PER_BLOCK,
MIN_BLOCKS_PER_MP)
my_kernel(int* inArr, int* outArr ) { ... }
```

Iimit register usage via compiler option.

```
# nvcc -Xptas -v mykernel.cu
ptxas info : Compiling entry function '_Z12my_kernelP9domain_t_' for 'sm_20'
ptxas info : Used 13 registers, 8+16 bytes smem
# nvcc --maxrregcount 10 -Xptas -v mykernel.cu
ptxas info : Compiling entry function '_Z12my_kernelP9domain_t_' for 'sm_20'
ptxas info : Used 10 registers, 12+0 bytes lmem, 8+16 bytes smem
```


Local memory

- "Local" because it's private on a per-thread basis;
- it's actually a global memory area used to spill out data when the SM runs out of register resources;
- arrays declared inside a kernel go to LMEM;
- local memory accesses are cached (just like global memory).
- DISCLAIMER: local memory is not a GPU resource you want to use: It used by the compiler as needed. Its use can hardly hit your kernel performance too: variables that you think are in registers are instead stored in the device global memory.

Execution Optimization

Occupancy

The board's occupancy is the ratio of active warps to the maximum number of warps supported on a multiprocessor.

Keeping the hardware busy helps the warp scheduler to hide latencies.

Occupancy: constraints

Every board's resource can become an occupancy limiting factor:

- shared memory allocated per block,
- registers allocated per thread,
- block size
 - (max threads (warp) per SM/max blocks per SM)

Given an actual kernel configuration, is possible to predict the maximum *theoretical occupancy* allowed.

Occupancy: block sizing tips

Some experimentation is required.

However there are some heuristic rules:

- threads per block should be a multiple of warp size;
- a minimum of 64 threads per block should be used;
- 128-256 threads per block is universally known to be a good starting point for further experimentation;
- **r** prefer to split **very large** blocks into **smaller blocks**.

Kepler: dynamic parallelism

One of the biggest CUDA limitations is the need to fit a single grid configuration for the whole kernel.

If you need to reshape the grid, you have to resync back to host and split your code.

- Kepler K20 (in addition to CUDA 5.x) introduced Dynamic Parallelism
- It enables a global kernel to be called from within another kernel
- The child grid can be *dynamically sized* and *optionally synchronized*

Instructions throughput

Arithmetic ops:

- Prefer integer shift operators instead of division and modulo (would be less useful with LLVM);
- beware of (implicit) casts (very expensive);
- use intrinsics for trascendental functions where possible;
- try the fast math implementation.

SCAI Capability: instruction throughput SuperComputing Applications and Innovation

	Compute Capability						
	1.0 1.1 1.2	1.3	2.0	2.1	3.0	3.5	
32-bit floating-point add, multiply, multiply-add	8	8	32	48	192	192	
64-bit floating-point add, multiply, multiply-add	1	1	16(*)	4	8	64	M
32-bit integer add	10	10	32	48	160	160	
32-bit integer compare	10	10	32	48	160	160	
32-bit integer shift	8	8	16	16	32	64	Ъе Ч
Logical operations	8	8	32	48	160	160	N N
32-bit integer multiply, multiply-add, sum of absolute difference	ger multiply, dd, sum of ifference Multiple		16	16	32	32	×
24-bit integer multiply ([u]mul24)	8	8	Multiple instructions	Multiple instructions	Multiple instructions	Multiple instructions	lons
32-bit floating-point reciprocal, reciprocal square root, base-2 logarithm (log2f), base 2 exponential (exp2f), sine (sinf), cosine (cosf)	2	2	4	8	32	32	instructi
Type conversions from 8- bit and 16-bit integer to 32-bit types	8	8	16	16	128	128	
Type conversions from and to 64-bit types	Multiple instructions	1	16(*)	4	8	32	
All other type conversions	8	8	16	16	32	32	
(*) Throughput is lower for GeForce GPUs.							

20

Control Flow

Different execution paths inside the same warp are managed by the predication mechanism and lead to thread divergence.

if (threadIdx.x == 0) {...}

if (threadIdx.x == 0) {...} else {...} if (threadIdx.x == 0) {...} else if (threadIdx.x == 1) {...}

if (vec[threadIdx.x] > 1.0f) {...}

- Minimize/<u>avoid</u> the number of execution branches inside <u>a threads</u> warp;
- make the compiler's life easier by <u>unrolling</u> loops (hand-coded, pragma or option);
- use signed counters for loops (relaxed semantic in respect to the unsigned int: it allows more aggressive loop optimizations);

Exploiting Multi-GPUs

CUDA >= 4.0 introduced the N-to-N bound feature:

- 1. Every host thread can be bound to any board
- 2. Every board can be bound to an arbitrary number of **host** threads
- 3. Multi-GPU can be exploited through your favourite multi-threading paradigm (OpenMP, pthreads, etc...)

```
#pragma omp parallel
#pragma omp sections
{
    #pragma omp section
    {
        cutilSafeCall(cudaSetDevice(0));
        cudaMemcpy(device_data_1, host_data_1, size, cudaMemcpyHostToDevice);
        my_kernel<<< grid, block >>>(device_data_1);
        // ...
    }
    #pragma omp section
    {
        cutilSafeCall(cudaSetDevice(1));
        cudaMemcpy(device_data_2, host_data_2, size, cudaMemcpyHostToDevice);
        my_kernel<<< grid, block >>>(device_data_2);
        // ...
    }
}
```


Tools Overview

Development tools

Common

- Memory Checker
- Built-in profiler
- Visual Profiler
- Linux
 - CUDA GDB
 - Parallel Nsight for Eclipse

Windows

Parallel Nsight for VisualStudio

Profiling tools: built-in

The CUDA runtime provides a useful profiling facility without the need of external tools.

export CUDA_PROFILE=1
export CUDA_PROFILE_CONFIG=\$HOME/.config

// Contents of config
gld_coherent
gld_incoherent
gst_coherent
gst_incoherent

gld_incoherent: Number of non-coalesced global memory loads
gld_coherent: Number of coalesced global memory loads
gst_incoherent: Number of non-coalesced global memory stores
gst_coherent: Number of coalesced global memory stores
local_load: Number of local memory loads
local_store: Number of local memory stores
branch: Number of branch events taken by threads
divergent_branch: Number of divergent branches within a warp
instructions: instruction count
warp_serialize: Number of threads in a warp that serialize
based on address conflicts to shared or constant memory
cta_launched: executed thread blocks

```
method,gputime,cputime,occupancy,gld_incoherent,gld_coherent,gst_incoherent,gst_coherent
method=[ memcopy ] gputime=[ 438.432 ]
method=[ _Z17reverseArrayBlockPiS_ ] gputime=[ 267.520 ] cputime=[ 297.000 ] occupancy=[ 1.000 ]
gld_incoherent=[ 0 ] gld_coherent=[ 1952 ] gst_incoherent=[ 62464 ] gst_coherent=[ 0 ]
method=[ memcopy ] gputime=[ 349.344 ]
```


Profiling: Visual Profiler

- Traces execution at host, driver and kernel levels (unified timeline)
- Supports automated analysis (hardware counters)

Debugging: CUDA-GDB

- Well-known tool enhanced with CUDA extensions
- Works well on single-gpu systems (OS graphics disabled)
- Can be run under GDB-targeted tools and GUIs (multigpu systems)

```
(cuda-gdb) info cuda threads
BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line
Kernel 0* (0,0,0) (0,0,0) (0,0,0) (255,0,0) 256 0x00000000866400 bitreverse.cu 9
(cuda-gdb) thread
[Current thread is 1 (process 16738)]
(cuda-gdb) thread 1
[Switching to thread 1 (process 16738)]
#0 0x000019d5 in main () at bitreverse.cu:34
34 bitreverse<<<1, N, N*sizeof(int)>>>(d);
(cuda-gdb) backtrace
#0 0x000019d5 in main () at bitreverse.cu:34
(cuda-gdb) info cuda kernels
Kernel Dev Grid SMs Mask GridDim BlockDim Name Args
0 0 1 0x0000001 (1,1,1) (256,1,1) bitreverse data=0x110000
```


Debugging: CUDA-MEMCHECK

- It's able to detect buffer overflows, misaligned global memory accesses and leaks
- Device-side allocations are supported
- Standalone or fully integrated in CUDA-GDB

```
$ cuda-memcheck --continue ./memcheck demo
====== CUDA-MEMCHECK
Mallocing memory
Running unaligned kernel
Ran unaligned kernel: no error
Sync: no error
Running out of bounds kernel
Ran out of bounds kernel: no error
Sync: no error
======= Invalid global write of size 4
======= at 0x00000038 in memcheck demo.cu:5:unaligned kernel
======= by thread (0,0,0) in block (0,0,0)
====== Address 0x200200001 is misaligned
_____
======= Invalid global write of size 4
====== at 0x00000030 in memcheck demo.cu:10:out of bounds kernel
======= by thread (0,0,0) in block (0,0,0)
======= Address 0x87654320 is out of bounds
_____
_____
====== ERROR SUMMARY: 2 errors
```


Parallel NSight

- Plug-in for major IDEs (Eclipse and VisualStudio)
- Aggregates all external functionalities:
 - Debugger (fully integrated)
 - Visual Profiler
 - Memory correctness checker
- As a plug-in, it extends all the convenience of IDEs to CUDA
- On Windows systems:
- Now works on a single GPU
- Supports remote debugging and profiling
- Latest version (2.2) introduced live PTX assembly view, warp inspector and expression lamination

Parallel NSight

	ina dama w	-10 (Dobu	aging) Mic	rocoft Visual St	udio (Administ	rator)											~		
Eilo Edit	View D	ningt P	uild Dobug	Toom Nei	ualo (Administ	rator)	a Window	Hala											
<u>rie c</u> au		oject <u>b</u>		rea <u>m</u> <u>iv</u> sig	gni D <u>a</u> ta <u>i</u> t	iois re <u>s</u> t A <u>n</u> aiy	ze <u>w</u> indow	Telb		-		• - • •	· · · · · · · · · · · · · · · · · · ·			in curr			_
		😁 õ		- (° - 4	* 🖳 🕨 🖸	ebug 🔪 🔀		· ·	Sul	bFrame		T 🕼 🕺 🤉	K 🔁 📑 L] . [±] : @ 📷 🕸		COD	A (1,0,0), (21,0,0)	-	
Process	[1840] vox	elpipe_de	mo.exe	 Thread: 	[2874912] <no< td=""><td>Name></td><td>- 🌾 🆗</td><td>Stack Frame:</td><td>CUmodu</td><td>le 05508fe0 - [2]</td><td>trace - Line 148 🔹 🛫</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></no<>	Name>	- 🌾 🆗	Stack Frame:	CUmodu	le 05508fe0 - [2]	trace - Line 148 🔹 🛫								
: 🖳 Con	nnections:	ocalhost		•	Ŧ														
CUDA Inf	o 1													- ₽ ×	CUD	A Warp	Watch 1		• 4 ×
	Warps	•	III 🔯 🧷	Y Filter:										Viewing 128/128					
	(·····	>	Name	🛛 🔗 ray_inv.x	ray_inv.y	🥥 ray
Current	blockIdx		Warp Index	PC	Active Mask	Status	Exception	File Name	Source	Lin Lanes						Туре	_local_ float	_local_ float	_loca
	(0,	0, 0)	0	0x003e1ad8	0xffffff80	Breakpoint	None	rt_render.cu	1	.63						0	-1.4444908	-1.7955524	-2.17
	(0,	0, 0)	1	0x003e1ad8	0xffffff00	🥥 Breakpoint	None	rt_render.cu	1	.63						1	-1.44425	-1.7967783	-2.17
	(0,	0, 0)	2	0x003e1ad8	0xfffffc00	🥚 Breakpoint	None	rt_render.cu	1	.63						2	-1.4440092	-1.7980076	-2.17
	(0,	0, 0)	3	0x003e1ad8	0xfffff800	None	None	rt_render.cu	1	.63						3	-1.4437686	-1.7992405	-2.17
	(1,	0, 0)	0	0x003e1298	0x03e00000	🥚 Breakpoint	None	rt_render.cu	1	.48						4	-1.4435281	-1.800477	-2.17
	(1,	0, 0)	1	0x003e1298	0x07c00000	🥚 Breakpoint	None	rt_render.cu	1	.48						5	-1.4432876	-1.8017174	-2.17
	(1,	0, 0)	2	0x003ede70	0xffffffff	None	None	ci_include.h	4	23				-		6	-1.4430474	-1.8029615	-2.17
· •						<u> </u>								•		7	-1.4428074	-1.8042094	-2.16
																8	-1.4425675	-1.8054608	-2.16
CUDA In	nfo 1 💌 M	odules														9	-1.4423276	-1.8067161	-2.16
rt render	.cu ×									Disassembly				- ₽ ×		10	-1.4420878	-1.8079749	-2.16
-	()									Address						11	-1.4418485	-1.8092378	-2.16
(Unknow	vn Scope)				-				· ·							12	-1.4416089	-1.8105046	-2.16
143		, n	ode_index	= node.get_	index(); //	jump to child			÷	 Viewing Opt 	ions					13	-1.4413697	-1.8117749	-2.16
144	·	}							^	148:	const ui	int32 leaf	_index = n	ode.get_index(*		14	-1.4411306	-1.8130492	-2.16
145		{							(0x003e1298	2800400010019de	e4 MOV R	16, c[0x0][0x4];		15	-1.4408917	-1.8143274	-2.15
140		۰,	/ leaf int	ersection						0x003e12a0	28000000Tc01dd	24 MOV H	(/, KZ;			16	-1.4406527	-1.8156093	-2.15
148		c	onst uint3	2 leaf inde	x = node.ge	t index();				0x003e12do	28000000100100	24 MOV R	(7, KZ;			17	-1.4404141	-1.8168953	-2.15
149		c	onst Bvh_l	eaf leaf	= geometr	y.m_bvh_leaves	[leaf_ind	ex];		0x003e12b8	4801000018411c	3 IADD	R4.CC, R4.	R6:		18	-1.4401754	-1.818185	-2.15
150		c	onst uint3	2 leaf_end	= leaf.ge	t_index() + le	af.get_siz	e();		0x003e12c0	480000001c515c4	13 IADD.	X R5, R5,	R7;		19	-1.439937	-1.8194786	-2.15
151		c	onst uint3	2 leaf_begi	n = leaf.ge	t_index();				0x003e12c8	2800000010011de	4 MOV R	4, R4;			20	-1.4396986	-1.820776	-2.15
152										0x003e12d0	2800000014015de	e4 MOV R	15, R5;			21	-1.4394605	-1.8220775	-2.15
153		T	or (uint32	tri_index	= leat_begi	n; tri_index <	leat_end;	++tr1_inde	x) *	0x003e12d8	2800000014015de	e4 MOV R	85, R5;	Ψ.		22	-1.4392225	-1.8233831	-2.14
100 %	• •									•						23	-1.4389844	-1.8246926	-2.14
Locals								× Call Stack						- ₽ ×		24	-1.4387469	-1.8260059	-2.14
Name				Value			Type	 Name 						Language 🔺		25	-1.4385092	-1.8273233	-2.14
· · ·	eaf			{m size = 671	06176. m index	= 0}	local	CUmo	dule 05508	3fe0 - [2] trace - [ine 148			CUDA		26	-1.4382718	-1.828645	-2.14
	eaf_index			'leaf_index' ha	is no value at th	e target location.		CUmo	dule 05508	3fe0 - [1] render	pixel - Line 409			CUDA		27	-1.4380344	-1.8299706	-2.14
🧼 le	eaf_end			'leaf_end' has	no value at the	target location.		CUmo	dule 05508	3fe0 - [0] rt_trace	primary_kernel - Line 4	193		CUDA		28	-1.4377974	-1.8313001	-2.14
🥥 le	eaf_begin			'leaf_begin' h	as no value at t	he target location.		E								29	-1.4375603	-1.832634	-2.13
🗄 🧳 n	node			{m_packed_d	ata = 214748487	7, m_skip_node =	248 _local_									30	-1.4373236	-1.8339716	-2.13
🗄 🧳 _	T21669			{x = -1.439460	5, y = -1.82207	75, z = -2.150774}	_local_									31	-1.4370868	-1.8353136	-2.13
🗄 🧳 r	ay_inv			{x = -1.439460	5, y = -1.82207	75, z = -2.150774}	_local_								•				
🧼 n	ode_index			'node_index' l	nas no value at	the target location		-						-	CU	DA War	rpWatch 1 🔲 Out	tput	
						0.0710077										0000000000			
Ready																			.:i

Parallel NSight

supersonicsled - Microsoft \	/isual Studio (Administrato	or)			Reality, Nager, 21, 3	Augent Married	(Analyse)						- 0 ×
<u>File Edit View Project B</u>	uild <u>D</u> ebug Tea <u>m N</u> s	sight D <u>a</u>	ta <u>T</u> ools 1	Fe <u>s</u> t A <u>n</u> alyze <u>W</u> indo	w <u>H</u> elp								
🖥 • 🔤 • 📂 🔙 🥥 🐰	自己 り・ペ・	- 5	Debug	▼ Win32	👻 🛛 🖉 Ru	ntimeApiTrace_t	- 🗟) 🕾 🚮 🐼 🛠	• 🖻 🏭 🗧	- 🗄 📾 🚽 👗	Ŧ		
SupersonicSled1111pture	e_000.nvreport × Activity	ty1.nvact*											- (
Š 🕒 🕒 🖕 🚺 🕨	Timeline												
Row Filters													
		Time		0 0.1 0.2 0.3 0.4 0	5 0.6 0.7 0.8 0.9 1.1008	348322 13 14 19	16 17 18 19	2 21 22 23	2.4 2.5 2.6	2.7 2.8 2.9 3	3.1 3.2 3.3 3.4	3.5 3.6 3.7 3.8 3.9	94 🔺
0.0 % [71]	fluid advectVelocitv k		Y	 			<u></u>			<u> </u>	1		
0.0 % [70]	fluid_diffuseProject_k		Y										
요.0 % [70]	fluid_updateVelocity_k		Y										
9 0.0 % [70]	fluid_updateParticles_k		7										
0.0 % [71]	fluid_offsetVelocities_k		Υ										
0.0 % [284]] fluid_setVelocity_k		Y						11111111111				
E Streams													
Counters													
			CPI	ul	725								
Frames			0x3C2BCC	0	725								
 Device Context 	t 0x3C2BCC0		Y Level	0									
Device 0x200)		7		DENDER AL ALLER DE DE LA ALLER DE DE DE LA ALLER DE		N DE DE LE COMPANY DE LE C	O DOLL OF DOLL WIDE DID TO DI		NONDINA DI DOMINI DI	DIN DO NI DI DI DI DI DI DI DI DI DI	D DO ININ' D'ANN DO DO I I DO DOAN DA D	<u>an inni</u>
Draw Calls			7										
System													
CPU Usage													
Core 0						date (Bab to			Malahali		MINAM J		<u></u>
Core 1													
Core 2										halls a sk-			
 Row Information 		📥 Time	e Range										
Draw Calls [DirectX]	Draw Calls Row]	Sta	rt	Before Capture									
Cursor Information		End	I	After Capture									
		= Dur	ration										
Ibi491 [DirectX Dra	w Call Workloadj	Syst	em										=
- 8850 [DirectX Co	ommand Buffer Workload]	Pro	cess	supersonicsled.exe [5	812]								
DrawIndexed [D	irectX Draw Function Call]	#T	hreads	32	CL (0.0%)		r	1. I. B.I.1.3					
► 0x3C2BCC0	[DirectX Device Context]	- Exit	mmand Line Status	259	<pre>\c\program files (x86)\nvi </pre>	dia corporation\nvi	aia demos\supers	onic sled\bin\sup	ersonicsled.exe				*
🗐 Output 🖳 Find Resul	ts 1												

Ready