
C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Outline

1 Consolidate your C basics
MC Sampling
Bisection

2 More C Basics

3 Working with Arrays

4 Arrays and Structures

5 Working with pointers

6 Working with Strings and File I/O

7 I/O In Action

8 Working with Memory

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Let’s Estimate π with MC sampling

Write a program to estimate the area C of the unit circle
using MC sampling.

C =
∫∫

x2+y2≤1 dxdy

• Let’s consider a quarter of the area
0 ≤ x ≤ 1, 0 ≤ y ≤ 1

• extract N points in there (N)
• count how many of them fall in (inside)
• 4 inside / N gives an estimate of π

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Let’s Estimate π with MC sampling

hints ...

• ask user for N
• Repeat the following steps N times:

1 assign x and y random numbers in the range [0,1)
2 If (x2 + y2 ≤ 1), increment inside

• print your estimate of π

• Try many different values of N and check MC error
• check range values for variable types to handle N

• Use rand() and RAND_MAX from stdlib.h
const double rand_norm = 1.0/(RAND_MAX + 1.0);
...
x = rand_norm * rand();

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Finding Roots With Bisection

Write a program that implements root finding with bisection
and apply it to a known function (E.g. one from math.h).

• Bisection method works if we are able to confine a root of
f (x) in an interval between a and b, so that f (a)f (b) < 0.

• Bisection follows an iterative search:
1 find the middle point c of a,b
2 evaluate p = f (a)f (c)
3 if p = 0, you are really lucky!

1 c is the root
4 if p > 0, root is in the interval c,b

1 set a = c
5 if p < 0, root is in the interval a, c

1 set b = c

6 repeat from 1 until |b − a| < ε, where ε is a threshold

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Finding Roots With Bisection

Use the following elements:
• while and if/else controls
• fabs()

Remember to make your program robust:
• choose appropriate ε to reflect the precision of the C types

in use
• handle errors and exit in a controlled way

Try it with:
• a known function from math.h

• the double mysteriousf(double x) function provided
in the libmysterious.a library, check intervals [0,10],
[10,0] and [0,5]

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Outline

1 Consolidate your C basics

2 More C Basics
Prime Numbers
Function Integration

3 Working with Arrays

4 Arrays and Structures

5 Working with pointers

6 Working with Strings and File I/O

7 I/O In Action

8 Working with Memory

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Compute Prime Numbers

Write a simple program that:
• asks the user for an integer number N
• finds and prints out all prime numbers up to N

A prime number is a natural number which has exactly two
distinct natural number divisors: 1 and itself

program outline:
• get upper limit N from user
• for each number 2 < n < N

• check if an exact divisor b < n of n exists
• if no b is found, than n is prime

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Compute Prime Numbers (II)

• Use the following elements:
• printf() and scanf()
• for construct
• while construct on b < n and
• if construct on n

• Remember to make your program robust:
• check for proper input from the user (N < 0 ??)
• check type limits
• handle errors and exit in a controlled way

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Function Integration

Write a simple program that computes the integral from 0 to
1 of the function f (x) = 4

(1+x2)

Use the Riemann definition of an integral, that is∫ b

a
f (x)dx = lim

N→∞

N∑
i=1

f (xi)∆x , with ∆x =
b − a

N

Program outline:
• Split [a,b] into N subintervals of ∆x width
• compute the function f (x) in the middle point xi of each

interval and multiply for ∆x
• sum up all contributions
• print the result and find out if it is correct

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Outline

1 Consolidate your C basics

2 More C Basics

3 Working with Arrays
Build An Histogram
Array Transformation

4 Arrays and Structures

5 Working with pointers

6 Working with Strings and File I/O

7 I/O In Action

8 Working with Memory

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Let’s Build An Histogram

• Is rand as uniform as they say? Let’s test...
• Write a program that:

• Generates random numbers in the range 0,1
• Builds an histogram and computes their average

• Use rand() and RAND_MAX from stdlib.h
• Initialize to 0 an array of ninterv ints that holds the

histogram; then, at each iteration:
• Generate a random number
• Find out the bin it belongs to (i.e. its index in the array)
• Increment the corresponding array element and accumulate

a sum to compute the average

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Array Transformation

Write a program that computes the difference between
each element of an array and its successive element.

A[xi]→ A[xi]− A[xi+1]

• start with an array A[20] initialized as A[i] = i

• assume periodic boundary conditions
• use % operator in indexing expressions to implement

periodic boundary conditions

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Outline

1 Consolidate your C basics

2 More C Basics

3 Working with Arrays

4 Arrays and Structures
Smoothing
Matrices

5 Working with pointers

6 Working with Strings and File I/O

7 I/O In Action

8 Working with Memory

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Array Smoothing

Write a program that takes an array and applies N times a
moving average smoothing transformation.

A moving average smoothing is a substitution:

A[xi]→
1

2k + 1

i+k∑
j=i−k

A[xj]

• assume periodic boundary conditions on data
• iterate for N = 1,2,5,10 times
• check your program with k = 1,2,16

hints
• start with an array A[20] initialized as A[i] = i
• check results at each iteration printing smoothed array

elements
• Use % operator in indexing expressions to implement

periodic boundary conditions

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Working with Matrices

Write functions using VLA to compute:
• matrix-vector product
• matrix-matrix product

• collect your functions in the source file
linear_algebra_vla.c

• initialize matrix A[i][j]=i*j, B[i][j]=i+j, V[i]=i

• start with small squared 3x3 matrix to check results
• write printMatrix() and printVector() functions to

check results
• try with a non-square matrix input too

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Outline

1 Consolidate your C basics

2 More C Basics

3 Working with Arrays

4 Arrays and Structures

5 Working with pointers
Functions Pointers
Matrix as Pointers
Using BLAS

6 Working with Strings and File I/O

7 I/O In Action

8 Working with Memory

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Using Pointers to Functions

Use qsort, and comparedouble (from Module 7) to sort
an array of n double random numbers in the range 0,10

But qsort can be more powerful!
Initialize an array of vec3d variables with random numbers,
and sort them by their first component

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Using Pointers to Functions II

Write a comparison function for module of vect3d data
types and use it to sort a big vector of vect3d

• group your vect3d definition and functions in vect3d.c
source

• write a test program to sort a vect3d A[1000] array
• initialize each vect3d element with random components

ranging from 0.0 to 10.0

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Working with Matrices (II)

Rewrite your linear_algebra functions for matrix-vector and
matrix-matrix product without VLA, using pointers to
double

• collect your functions in linear_algebra.c

• remember to cast function arguments appropriately
• check results against your previous version

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

BLAS Library

The BLAS library (Basic Linear Algebra Subprograms)
contains routines for basic vector and matrix operations.

• Quick Reference:
http://www.netlib.org/blas/index.html

• BLAS are divided into 3 levels:
• Level 1: vector-vector operations
• Level 2: matrix-vector operations
• Level 3: matrix-matrix operations

• widely used in scientific software
• Often provided as a part of architecture optimized Math

Libraries:
ACML(AMD), ESSL(IBM), GotoBLAS, MKL(Intel), Sun
Performance Library, etc

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

BLAS C Interface

• originally written for Fortran77
• BLAS provides a standard C interface

• ... but include file name is not!

• function names are all lowercase and of the form:
cblas_xname(...)

• x denotes the data type:
s for float,
d for double,
c for float complex,
z for double complex

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

An Example Involving Vectors

BLAS Level 1: op : y ← αx + y
cblas_saxpy (n, α, x, incx, y, incy)

• the name says it all!
• n is the size of vectors x and y

• α is the vector x multiplyer
• incx, incy are increments to select vector elements

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

An Example With Vectors And
Matrices

BLAS Level 2: op : y ← αAx + βy
cblas_dgemv (CblasRowMajor, CblasNoTrans,
m, n, α, A, lda, x, incx, β, y, incy)

• this is a general matrix vector multiply and add
• CblasRowMajor selects memory layout of data

enum CBLAS_ORDER {CblasRowMajor, CblasColMajor}

• CblasNoTrans is used to transpose matrix
enum CBLAS_TRANSPOSE {CblasNoTrans, CblasTrans,

CblasConjTrans}

• m, n are dimensions of matrix A
• lda is the leading dimension of array A
• incx, incy are increments to select vector elements
• Matrices and vectors are passed as pointers (cast as

appropriate!)

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Level 2 BLAS In Action

Multiply a matrix A[20][10] by a vector x[10] and put results
into vector y[10]

int i, m = 20, n = 10;
double A[m][n], x[n], y[n];
double alpha = 1.0, beta = 0.0;
int lda = n, incx = incy = 1;
double dx = 0.05;

for (i=1; i<=m; i++) {
for (j=1; j<=n; j++) {

A[i][j] = (double) i * j + 0.5;
}

}
for (i=0; i<n; i++) {
x[i] = cos((double) i*dx);

}

cblas_dgemv (CblasRowMajor, CblasNoTrans,
m, n, alpha, (double *) A, lda,
x, incx, beta, y, incy);

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Selecting Elements

From matrix A[20][10], Let’s extract a submatrix subA[8][5],
And let’s multiply it by even elements of vector x[10]
int i, m = 20, n = 10;
int subm = 8, subn = 5;
double A[m][n], x[n], y[subm];
double alpha = 1.0, beta = 0.0;
int lda = n, incx = 2, incy = 1;
double dx = 0.05;

for (i=1; i<=m; i++) {
for (j=1; j<=n; j++) {

A[i][j] = (double) i * j + 0.5;
}

}
for (i=0; i<n; i++) {
x[i] = cos((double) i*dx);

}

cblas_dgemv (CblasRowMajor, CblasNoTrans,
subm, subn, alpha, (double *) A, lda,
x, incx, beta, y, incy);

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Yet Another BLAS Example:
Matrices

BLAS Level 3: op : C ← αAB + βC
cblas_zhemm (CblasRight, CblasUpper,
m, n, α, A, lda, B, ldb, β, C, ldc)

• this is an hermitian matrix matrix multiply and add
• CblasRight and CblasUpper select matrix

representation in memory (half the elements is enough for
hermitian ones)

• m, n are sizes of matrix A, B, C
• lda, ldb, ldc are leading dimensions of array A, B,

and C

• Matrices and vectors are passed as pointers (cast as
appropriate!)

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Using BLAS library

Use BLAS library to compute matrix-matrix and
matrix-vector product

The BLAS functions you need:
• DGEMV: Double precision GEneral Matrix-Vector product

(BLAS lev2)
• DGEMM: Double precision GEneral Matrix-Matrix product

(BLAS lev3)

• Use GSL (GNU Scientific Library) library libgslcblas.a
in lib/

• include header file include/gsl_cblas.h

• do cast your arrays to proper BLAS function parameters

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Timing Your Function

Use clock() function from time.h for timing your version
of matrix-matrix product function against BLAS GEMM for
square matrices of sizes 100,200,500,1000

• clock_t clock(void); returns the processor clock time
used since the beginning of the program

• divide the returned value by CLOCKS_PER_SEC to get the
number of seconds

• adapt the following code to measure your functions
#include <time.h>
clock_t start, stop;
double t = 0.0;

// Start timer
start = clock();
// call your function
// Stop timer
stop = clock();
t = (double) (stop-start)/CLOCKS_PER_SEC;

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Outline

1 Consolidate your C basics

2 More C Basics

3 Working with Arrays

4 Arrays and Structures

5 Working with pointers

6 Working with Strings and File I/O
Command Line Parsing
Parse ASCII file

7 I/O In Action

8 Working with Memory

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Command Line Parsing

Write a program that parses command line and:
• accepts stand alone options (on/off switch)
• accepts option with a single argument (int, double and

string)
• outputs a report of what it parsed

• use int argc, char *argv[] parameters of main()
• use switch control
• use strto...(), strcmp()

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Parsing a file

Write a function that accepts a string containing a file name
as its argument, and parses the file, storing retrieved values
into global variables; the file has the format:

• keyword value

• empty lines or starting with a # should be ignored

Use main program in simpleparsermain.c and the input
file param.dat to test your function.
Recognized parameters:
• nx (int) number of points in the x direction;
• ny (int) number of points in the y direction;
• tol (double) some kind of tolerance or threshold;

Of course feel free to add more keys if you want! Hints:
• Use fgets() to retrieve input lines, and test its return

value;
• Parse input lines with sscanf();

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Parsing a file II

After implementing and testing a very simple version:
• Find a way to check that values found in the file have the

expected type and correct domain range (nx < 0 is
nonsense)

• check for multiple parameter definitions
• Return an error message and exit if you find an

unrecognized key;
• What if a line starts with white spaces? Did you already

handle this?

Consider using strtok() or similar to implement more
flexible and complicated parsing.

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Parse a structured ASCII file

Write a program that reads protein coordinates from a .pdb
file format

• .pdb file format files are wide used in bioinformatic
• coordinates begins with ATOM tag

ATOM 1 N PRO A 1 8.316 21.206 21.530 1.00 17.44 N ATOM 2 CA PRO A 1 7.608 20.729 20.336
1.00 17.44 C ATOM 3 C PRO A 1 8.487 20.707 19.092 1.00 17.44 C ATOM 4 O PRO A 1 9.466
21.457 19.005 1.00 17.44 O

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Seek in your file

Use seek I/O functionality to collect elements from a binary
file

• open the binaryfile.dat file from course package
• read elements using the following steps

• 8 bytes 128 bytes bakward from end of file, set bookmark A
here

• 8 bytes 32 bytes from the beginnig, set bookmark B here
• 4 bytes 32 bytes from bookmark A
• 16 bytes 64 bytes from bookmark B

• convert read elements to chars and print them

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Outline

1 Consolidate your C basics

2 More C Basics

3 Working with Arrays

4 Arrays and Structures

5 Working with pointers

6 Working with Strings and File I/O

7 I/O In Action
ASCII vs Binary

8 Working with Memory

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Let’s Make Comparisons

• Write a program that:
• Initializes an array of 900000 doubles with random numbers

in the range 0,1
• Writes the array 10 times to an ASCII file.
• Uses time and difftime from time.h to time the writing

operation

• Remember to print enough decimal digits, to recover exact
binary form of your data

• Try writing array elements on one line with no white spaces
in between

• Try writing one element per line
• How big is your output file?

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Let’s Make Comparisons

• Modify your program so that it writes to a binary file with
fwrite

• Try different solutions:
• Write one element at a time: pointer arithmetic will help;
• Write the array in chunks of 1000 elements;
• Write the whole array with a single call to fwrite.
• In any case, check the value returned by fwrite.

• What about output file dimensions?
• And what about time?

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Walking Around In Our File

• Our output file now contains 10 copies of our array
• Let’s read the first element of each copy in the file
• Let’s print it together with its position

• Let’s use fseek to reach the right position
• And ftell to have the current position returned
• Remember to fopen the file with all the necessary modes

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Outline

1 Consolidate your C basics

2 More C Basics

3 Working with Arrays

4 Arrays and Structures

5 Working with pointers

6 Working with Strings and File I/O

7 I/O In Action

8 Working with Memory
Memory Allocation

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Big Array Transformation

Rewrite your Array Transformation program so that the
transformation is performed by a function which takes the
array to be processed as an argument.

• use VLA array in your first version
• check you program with size = 1000,10000,100000
• does this work with automatic array declarations?
• after you checked, use malloc to dynamically allocate the

array
• remember to use free on dynamically allocated variables

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Array Transformation With
Unknown Dimensions

Rewrite your array transformation program so that it reads
input data from the file

• write a file containing a floating point number on each line
• let the first line contains the number of subsequent lines in

the file (int)
• Once you read the first line, you can call calloc to allocate

enough space to hold data
• Don’t forget to check if calloc succeeded

C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Working with Matrices

Rewrite your linear algebra functions so to allocate your
matrices with malloc.

• remove printing functions
• use BLAS library to check results
• cast your argument appropriately

	Consolidate your C basics
	MC Sampling
	Bisection

	More C Basics
	Prime Numbers
	Function Integration

	Working with Arrays
	Build An Histogram
	Array Transformation

	Arrays and Structures
	Smoothing
	Matrices

	Working with pointers
	Functions Pointers
	Matrix as Pointers
	Using BLAS

	Working with Strings and File I/O
	Command Line Parsing
	Parse ASCII file

	I/O In Action
	ASCII vs Binary

	Working with Memory
	Memory Allocation

