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Let’s Estimate π with MC sampling

Write a program to estimate the area C of the unit circle
using MC sampling.

C =
∫∫

x2+y2≤1 dxdy

• Let’s consider a quarter of the area
0 ≤ x ≤ 1, 0 ≤ y ≤ 1

• extract N points in there (N)
• count how many of them fall in (inside)
• 4 inside / N gives an estimate of π
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Let’s Estimate π with MC sampling

hints ...

• ask user for N
• Repeat the following steps N times:

1 assign x and y random numbers in the range [0,1)
2 If (x2 + y2 ≤ 1), increment inside

• print your estimate of π

• Try many different values of N and check MC error
• check range values for variable types to handle N

• Use rand() and RAND_MAX from stdlib.h
const double rand_norm = 1.0/(RAND_MAX + 1.0);
...
x = rand_norm * rand();
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Finding Roots With Bisection

Write a program that implements root finding with bisection
and apply it to a known function (E.g. one from math.h).

• Bisection method works if we are able to confine a root of
f (x) in an interval between a and b, so that f (a)f (b) < 0.

• Bisection follows an iterative search:
1 find the middle point c of a,b
2 evaluate p = f (a)f (c)
3 if p = 0, you are really lucky!

1 c is the root
4 if p > 0, root is in the interval c,b

1 set a = c
5 if p < 0, root is in the interval a, c

1 set b = c

6 repeat from 1 until |b − a| < ε, where ε is a threshold
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Finding Roots With Bisection

Use the following elements:
• while and if/else controls
• fabs()

Remember to make your program robust:
• choose appropriate ε to reflect the precision of the C types

in use
• handle errors and exit in a controlled way

Try it with:
• a known function from math.h

• the double mysteriousf(double x) function provided
in the libmysterious.a library, check intervals [0,10],
[10,0] and [0,5]
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Compute Prime Numbers

Write a simple program that:
• asks the user for an integer number N
• finds and prints out all prime numbers up to N

A prime number is a natural number which has exactly two
distinct natural number divisors: 1 and itself

program outline:
• get upper limit N from user
• for each number 2 < n < N

• check if an exact divisor b < n of n exists
• if no b is found, than n is prime
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Compute Prime Numbers (II)

• Use the following elements:
• printf() and scanf()
• for construct
• while construct on b < n and
• if construct on n

• Remember to make your program robust:
• check for proper input from the user (N < 0 ??)
• check type limits
• handle errors and exit in a controlled way
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Function Integration

Write a simple program that computes the integral from 0 to
1 of the function f (x) = 4

(1+x2)

Use the Riemann definition of an integral, that is∫ b

a
f (x)dx = lim

N→∞

N∑
i=1

f (xi)∆x , with ∆x =
b − a

N

Program outline:
• Split [a,b] into N subintervals of ∆x width
• compute the function f (x) in the middle point xi of each

interval and multiply for ∆x
• sum up all contributions
• print the result and find out if it is correct
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Let’s Build An Histogram

• Is rand as uniform as they say? Let’s test...
• Write a program that:

• Generates random numbers in the range 0,1
• Builds an histogram and computes their average

• Use rand() and RAND_MAX from stdlib.h
• Initialize to 0 an array of ninterv ints that holds the

histogram; then, at each iteration:
• Generate a random number
• Find out the bin it belongs to (i.e. its index in the array)
• Increment the corresponding array element and accumulate

a sum to compute the average
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Array Transformation

Write a program that computes the difference between
each element of an array and its successive element.

A[xi ]→ A[xi ]− A[xi+1]

• start with an array A[20] initialized as A[i] = i

• assume periodic boundary conditions
• use % operator in indexing expressions to implement

periodic boundary conditions



C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Outline

1 Consolidate your C basics

2 More C Basics

3 Working with Arrays

4 Arrays and Structures
Smoothing
Matrices

5 Working with pointers

6 Working with Strings and File I/O

7 I/O In Action

8 Working with Memory



C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Array Smoothing

Write a program that takes an array and applies N times a
moving average smoothing transformation.

A moving average smoothing is a substitution:

A[xi ]→
1

2k + 1

i+k∑
j=i−k

A[xj ]

• assume periodic boundary conditions on data
• iterate for N = 1,2,5,10 times
• check your program with k = 1,2,16

hints
• start with an array A[20] initialized as A[i] = i
• check results at each iteration printing smoothed array

elements
• Use % operator in indexing expressions to implement

periodic boundary conditions
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Working with Matrices

Write functions using VLA to compute:
• matrix-vector product
• matrix-matrix product

• collect your functions in the source file
linear_algebra_vla.c

• initialize matrix A[i][j]=i*j, B[i][j]=i+j, V[i]=i

• start with small squared 3x3 matrix to check results
• write printMatrix() and printVector() functions to

check results
• try with a non-square matrix input too
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Using Pointers to Functions

Use qsort, and comparedouble (from Module 7) to sort
an array of n double random numbers in the range 0,10

But qsort can be more powerful!
Initialize an array of vec3d variables with random numbers,
and sort them by their first component
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Using Pointers to Functions II

Write a comparison function for module of vect3d data
types and use it to sort a big vector of vect3d

• group your vect3d definition and functions in vect3d.c
source

• write a test program to sort a vect3d A[1000] array
• initialize each vect3d element with random components

ranging from 0.0 to 10.0



C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

Working with Matrices (II)

Rewrite your linear_algebra functions for matrix-vector and
matrix-matrix product without VLA, using pointers to
double

• collect your functions in linear_algebra.c

• remember to cast function arguments appropriately
• check results against your previous version
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BLAS Library

The BLAS library (Basic Linear Algebra Subprograms)
contains routines for basic vector and matrix operations.

• Quick Reference:
http://www.netlib.org/blas/index.html

• BLAS are divided into 3 levels:
• Level 1: vector-vector operations
• Level 2: matrix-vector operations
• Level 3: matrix-matrix operations

• widely used in scientific software
• Often provided as a part of architecture optimized Math

Libraries:
ACML(AMD), ESSL(IBM), GotoBLAS, MKL(Intel), Sun
Performance Library, etc
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BLAS C Interface

• originally written for Fortran77
• BLAS provides a standard C interface

• ... but include file name is not!

• function names are all lowercase and of the form:
cblas_xname(...)

• x denotes the data type:
s for float,
d for double,
c for float complex,
z for double complex



C Basics
MC Sampling

Bisection

More C
Prime Numbers

Function Integration

Arrays
Histogram

Array Transformation

Arrays and
Structures
Smoothing

Matrices

Pointers
Functions Pointers

Matrix as Pointers

Using BLAS

Strings
Argument Parsing

File Parsing

I/O In Action
ASCII vs Binary

Dynamic
Memory
Memory Allocation

An Example Involving Vectors

BLAS Level 1: op : y ← αx + y
cblas_saxpy (n, α, x, incx, y, incy)

• the name says it all!
• n is the size of vectors x and y

• α is the vector x multiplyer
• incx, incy are increments to select vector elements
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An Example With Vectors And
Matrices

BLAS Level 2: op : y ← αAx + βy
cblas_dgemv (CblasRowMajor, CblasNoTrans,
m, n, α, A, lda, x, incx, β, y, incy)

• this is a general matrix vector multiply and add
• CblasRowMajor selects memory layout of data

enum CBLAS_ORDER {CblasRowMajor, CblasColMajor}

• CblasNoTrans is used to transpose matrix
enum CBLAS_TRANSPOSE {CblasNoTrans, CblasTrans,

CblasConjTrans}

• m, n are dimensions of matrix A
• lda is the leading dimension of array A
• incx, incy are increments to select vector elements
• Matrices and vectors are passed as pointers (cast as

appropriate!)
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Level 2 BLAS In Action

Multiply a matrix A[20][10] by a vector x[10] and put results
into vector y[10]

int i, m = 20, n = 10;
double A[m][n], x[n], y[n];
double alpha = 1.0, beta = 0.0;
int lda = n, incx = incy = 1;
double dx = 0.05;

for (i=1; i<=m; i++) {
for (j=1; j<=n; j++) {

A[i][j] = (double) i * j + 0.5;
}

}
for (i=0; i<n; i++) {
x[i] = cos((double) i*dx);

}

cblas_dgemv (CblasRowMajor, CblasNoTrans,
m, n, alpha, (double *) A, lda,
x, incx, beta, y, incy);
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Selecting Elements

From matrix A[20][10], Let’s extract a submatrix subA[8][5],
And let’s multiply it by even elements of vector x[10]
int i, m = 20, n = 10;
int subm = 8, subn = 5;
double A[m][n], x[n], y[subm];
double alpha = 1.0, beta = 0.0;
int lda = n, incx = 2, incy = 1;
double dx = 0.05;

for (i=1; i<=m; i++) {
for (j=1; j<=n; j++) {

A[i][j] = (double) i * j + 0.5;
}

}
for (i=0; i<n; i++) {
x[i] = cos((double) i*dx);

}

cblas_dgemv (CblasRowMajor, CblasNoTrans,
subm, subn, alpha, (double *) A, lda,
x, incx, beta, y, incy);
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Yet Another BLAS Example:
Matrices

BLAS Level 3: op : C ← αAB + βC
cblas_zhemm (CblasRight, CblasUpper,
m, n, α, A, lda, B, ldb, β, C, ldc)

• this is an hermitian matrix matrix multiply and add
• CblasRight and CblasUpper select matrix

representation in memory (half the elements is enough for
hermitian ones)

• m, n are sizes of matrix A, B, C
• lda, ldb, ldc are leading dimensions of array A, B,

and C

• Matrices and vectors are passed as pointers (cast as
appropriate!)
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Using BLAS library

Use BLAS library to compute matrix-matrix and
matrix-vector product

The BLAS functions you need:
• DGEMV: Double precision GEneral Matrix-Vector product

(BLAS lev2)
• DGEMM: Double precision GEneral Matrix-Matrix product

(BLAS lev3)

• Use GSL (GNU Scientific Library) library libgslcblas.a
in lib/

• include header file include/gsl_cblas.h

• do cast your arrays to proper BLAS function parameters
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Timing Your Function

Use clock() function from time.h for timing your version
of matrix-matrix product function against BLAS GEMM for
square matrices of sizes 100,200,500,1000

• clock_t clock(void); returns the processor clock time
used since the beginning of the program

• divide the returned value by CLOCKS_PER_SEC to get the
number of seconds

• adapt the following code to measure your functions
#include <time.h>
clock_t start, stop;
double t = 0.0;

// Start timer
start = clock();
// call your function
// Stop timer
stop = clock();
t = (double) (stop-start)/CLOCKS_PER_SEC;
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Command Line Parsing

Write a program that parses command line and:
• accepts stand alone options (on/off switch)
• accepts option with a single argument (int, double and

string)
• outputs a report of what it parsed

• use int argc, char *argv[] parameters of main()
• use switch control
• use strto...(), strcmp()
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Parsing a file

Write a function that accepts a string containing a file name
as its argument, and parses the file, storing retrieved values
into global variables; the file has the format:

• keyword value

• empty lines or starting with a # should be ignored

Use main program in simpleparsermain.c and the input
file param.dat to test your function.
Recognized parameters:
• nx (int) number of points in the x direction;
• ny (int) number of points in the y direction;
• tol (double) some kind of tolerance or threshold;

Of course feel free to add more keys if you want! Hints:
• Use fgets() to retrieve input lines, and test its return

value;
• Parse input lines with sscanf();
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Parsing a file II

After implementing and testing a very simple version:
• Find a way to check that values found in the file have the

expected type and correct domain range (nx < 0 is
nonsense)

• check for multiple parameter definitions
• Return an error message and exit if you find an

unrecognized key;
• What if a line starts with white spaces? Did you already

handle this?

Consider using strtok() or similar to implement more
flexible and complicated parsing.
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Parse a structured ASCII file

Write a program that reads protein coordinates from a .pdb
file format

• .pdb file format files are wide used in bioinformatic
• coordinates begins with ATOM tag

ATOM 1 N PRO A 1 8.316 21.206 21.530 1.00 17.44 N ATOM 2 CA PRO A 1 7.608 20.729 20.336
1.00 17.44 C ATOM 3 C PRO A 1 8.487 20.707 19.092 1.00 17.44 C ATOM 4 O PRO A 1 9.466
21.457 19.005 1.00 17.44 O
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Seek in your file

Use seek I/O functionality to collect elements from a binary
file

• open the binaryfile.dat file from course package
• read elements using the following steps

• 8 bytes 128 bytes bakward from end of file, set bookmark A
here

• 8 bytes 32 bytes from the beginnig, set bookmark B here
• 4 bytes 32 bytes from bookmark A
• 16 bytes 64 bytes from bookmark B

• convert read elements to chars and print them
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Let’s Make Comparisons

• Write a program that:
• Initializes an array of 900000 doubles with random numbers

in the range 0,1
• Writes the array 10 times to an ASCII file.
• Uses time and difftime from time.h to time the writing

operation

• Remember to print enough decimal digits, to recover exact
binary form of your data

• Try writing array elements on one line with no white spaces
in between

• Try writing one element per line
• How big is your output file?
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Let’s Make Comparisons

• Modify your program so that it writes to a binary file with
fwrite

• Try different solutions:
• Write one element at a time: pointer arithmetic will help;
• Write the array in chunks of 1000 elements;
• Write the whole array with a single call to fwrite.
• In any case, check the value returned by fwrite.

• What about output file dimensions?
• And what about time?
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Walking Around In Our File

• Our output file now contains 10 copies of our array
• Let’s read the first element of each copy in the file
• Let’s print it together with its position

• Let’s use fseek to reach the right position
• And ftell to have the current position returned
• Remember to fopen the file with all the necessary modes
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Big Array Transformation

Rewrite your Array Transformation program so that the
transformation is performed by a function which takes the
array to be processed as an argument.

• use VLA array in your first version
• check you program with size = 1000,10000,100000
• does this work with automatic array declarations?
• after you checked, use malloc to dynamically allocate the

array
• remember to use free on dynamically allocated variables
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Array Transformation With
Unknown Dimensions

Rewrite your array transformation program so that it reads
input data from the file

• write a file containing a floating point number on each line
• let the first line contains the number of subsequent lines in

the file (int)
• Once you read the first line, you can call calloc to allocate

enough space to hold data
• Don’t forget to check if calloc succeeded
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Working with Matrices

Rewrite your linear algebra functions so to allocate your
matrices with malloc.

• remove printing functions
• use BLAS library to check results
• cast your argument appropriately
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