
Federico Ficarelli, Introduction to C 

INTRODUCTION TO THE  

C  

PROGRAMMING LANGUAGE 

Federico Ficarelli 
CINECA (f.ficarelli@cineca.it) 



Federico Ficarelli, Introduction to C 

AGENDA 



Federico Ficarelli, Introduction to C 

Agenda 

• Overview 

• A C program 

• Basic Types and Operators 

• Control Structures 

• Derived Data Types 

• Pointers and Memory 

• Functions 

• Dynamic Memory Management 

• Strings 

• The Standard Library 

• I/O 

• Notes on mixing FORTRAN and C 

• Case Study: Linked Lists 

• A bit of “hands-on” 



Federico Ficarelli, Introduction to C 

OVERVIEW 



Federico Ficarelli, Introduction to C 

The beginning 

• Designed in 1972 

• Former design guidelines: 
– Allow straightforward compilation 

– Support for extremely tiny systems 

– Low level access to system resources 

– Allow efficient mapping to assembly 

language instructions 

– Portability 

 

 

The main goal was to build up a 

convenient and portable alternative 

to assembly code for system 

programming. 

The Early Days 



Federico Ficarelli, Introduction to C 

Description of C 

• General-purpose language 

• Procedural (= functions + data) 

• Relatively small, simple to learn, difficult to use 

• Error checks ONLY at compile time 

• NO error check at run time 

• Cross-platform language, single-platform compilers (unlike Java) 

 

The programmer knows exactly what he wants to do and how to use 

the language constructs to achieve that goal. The language lets the 

expert programmer express what they want in the minimum time. 

These lectures have been produced with an heavy-modification of the Stanford CS 

Education Library Course: http://cslibrary.stanford.edu 



Federico Ficarelli, Introduction to C 

Why C? 

• Prior to C, two broad types of languages: 

– Applications languages 

• High-level 

• COBOL, etc. 

• Portable but inefficient 

– Systems languages 

• Low-level 

• Assembly 

• Efficient but not portable 

• Goal of C: efficient and portable 

• How: abstract above hardware, but not far from it! 



Federico Ficarelli, Introduction to C 

C vs. Java and C++ 

• C is fast (in part) because there’s so little error-checking 

• No garbage collection 

• No boolean* or string types 

– Booleans “implemented” as numbers 

– Strings are “just” arrays of characters 

• Java is safe and elegant, but slow 

• C++ is unsafe and fast, but highly complex 

• C is unsafe, but succinct and fast 



Federico Ficarelli, Introduction to C 

C is alive and kicking 

• Due to its extreme minimalism, it gets older better than others. 

• Still widely used (UNIX, scientific codes, drivers, intermediate code for 

modern languages, embedded devices, etc…) 

• Still actively developed 

• Base language for the vast majority of novel paradigms/platforms 

(e.g.: accelerators, manycores) 

 Standard specifications: 

• K&R (1978) 

• ANSI C89 

• ANSI C90 (ISO/IEC 

9899:1990) 

• C99 (ISO/IEC 9899:1999) 

• C11 (ISO/IEC 9899:2011) 

 

 
Source: TIOBE Community Index 



Federico Ficarelli, Introduction to C 

A C PROGRAM 



Federico Ficarelli, Introduction to C 

C Syntax and Hello World 

#include <stdio.h> 

/* The simplest C Program */ 

int main(int argc, char **argv) 

{ 

  printf(“Hello World\n”); 

  return 0; 

} 

The main() function is always 

where your program starts 

running.   

#include inserts another file.  “.h” files are called 

“header” files.  They contain stuff needed to interface to 

libraries and code in other “.c” files.  

This is a comment.  The compiler ignores this. 

Blocks of code (“lexical 

scopes”) are marked by { … } 

Print out a message. ‘\n’ means “new line”. Return ‘0’ from this function  

Can your program have 

more than one .c file? 



Federico Ficarelli, Introduction to C 

Hello, World 

• In C, a program has >= 1 functions 

• main() is the entry point 

– Contains the instructions performed when program is run 

• The body of a function is demarcated by braces (“curly brackets”):  

 { } 

• Each instruction line ends with “;” 

• Inside, instructions to be performed when the function is called 

• main() called on program start-up 

 

• First program: Hello, World 
 

 #include <stdio.h> 

 main() { 

  printf(“Hello, world.\n”); 

 } 

 



Federico Ficarelli, Introduction to C 

main () 

• The execution of a C program begins with function named 

main().  

• All of the files and libraries for the C program are compiled 

together to build a single program file.  

• That file must contain exactly one main() function which the 

operating system uses as the starting point for the program.  

• Main() returns an int which, by convention, is 0 if the program 

completed successfully and non-zero if the program exited 

due to some error condition. 
success  == 0 

fault != 0 

Is a de-facto standard for error-related 

return values! 



Federico Ficarelli, Introduction to C 

Multiple files 

For a program of any size, it's convenient to separate the 

functions into several separate files. 

To allow the functions in separate files to cooperate, and yet 
allow the compiler to work on the files independently, C 

programs typically depend on two features: 

 

• Prototyping 

• Preprocessing 



Federico Ficarelli, Introduction to C 

Prototypes 

A "prototype" for a function gives its name and arguments but 

not its body. In order for a caller, in any file, to use a function, 

the caller must have seen the prototype for that function. 

 

 int Twice(int num); 

 void Swap(int* a, int* b); 

 

All fuctions requires a prototype, except “static” fuctions: 

 

 static int foo() 

 

a static function is visible only in the same file where it is defined, 

Do NOT confuse with static variables!!! 



Federico Ficarelli, Introduction to C 

Preprocessor 

The preprocessing step happens to the C source before it is fed 

to the compiler.  

 

# indicates command to C Preprocessor 

 

The preprocessor language consists in: 

• Directives to be executed 

• Macros to be expanded 

Primary functions: 

o Inclusion of header files 

o Macro expansion 

o Conditional compilation 

o Line control 

o Diagnostic 

It’s a stand-alone text processor!  

It’s widely used to preprocess other 

languages. 



Federico Ficarelli, Introduction to C 

#include 

The "#include" directive brings in (paste) text from different files 

during compilation.  

#include is very unintelligent and unstructured 

 

Usually a header file (.h) acts as an interface describing the publicly 

available functions in the .c file, It contains declarations and macro 

definitions  

 

#include "foo.h" // refers to a "user" foo.h file -- 

  // in the originating directory for the compile 

 

#include <foo.h> // refers to a "system" foo.h file -- 

  // in the compiler's directory somewhere or  

    specified by –I option 



Federico Ficarelli, Introduction to C 

foo.c vs foo.h 

for a file named "foo.c" containing a bunch of functions: 

• A separate file named foo.h will contain the prototypes for the 

functions in foo.c which clients may want to call. 

• Near the top of foo.c will be the following line which ensures 

that the function definitions in foo.c see the prototypes in 

foo.h which ensures the "prototype before definition" rule 

above. 
 

#include "foo.h" // show the contents of "foo.h" 

       // to the compiler at this point 
 

• Any xxx.c file which wishes to call a function defined in foo.c 

must include the following line to see the prototypes, ensuring 

the "clients must see prototypes" rule above. 
 

#include "foo.h" 



Federico Ficarelli, Introduction to C 

Macros and #define 

A macro is a fragment of code with a name. 

Whenever that name is used, it is replaced by the content of the 

macro. 

Macros are created with the “#define” directive 

Two classes of macros: 

1. Object-like macros, resembles data objects:  

#define BUFFER_SIZE 1024 

int myarray[BUFFER_SIZE]; 

Is replaced by: 

int myarray[1024]; 

2. Function-like macros, resemble function calls: 

#define min(X, Y) ((X)<(Y) ? (X):(Y)) 

x=min(a,b);  => x=((a)<(b) ? (a):(b)); 

z=min(a+28, *p);  => z=((a+28)<(*p) ? (a+28):(*p)); 



Federico Ficarelli, Introduction to C 

Once-Only headers 

The same header file could be included more than once 

The compiler process it more than once  COMPILING ERROR!!! 

Solution: Wrapper #ifndef 

 

/* File foo.h */ 

#ifndef FILE_FOO_SEEN 

#define FILE_FOO_SEEN 

 

Body of the file 

 

#endif /* !FILE_FOO_SEEN */ 

FILE_FOO_SEEN is called “header guard” 

For system header files guard, macro starts with “__” to avoid 

conflicts  



Federico Ficarelli, Introduction to C 

Predefined macros 

Some predifined macros are available 

__FILE__ : current source file name (string) 

__LINE__ : current line number (integer) 

__DATE__ : current date (string) 

__TIME__ : current time (string) 

  



Federico Ficarelli, Introduction to C 

Conditionals 

Conditionals are directive which make the preprocessor include 

or not chunks of code. This in order to: 

• Adapt the compiled code to the system. 

• Support different versions of the same code (e.g for 

production run or for debug). 

• Exclude some code at compiling time keeping it, as a 

comment, in the source. 

• Useful to avoid the compilation of unused code. 



Federico Ficarelli, Introduction to C 

Conditionals directives 

# if expression (true/false 1/0), # if defined MACRO 

Expression can include integer constant, arithmetic and 

logical operators, macros. They can be combined 

(differently from ifdef).  

Examples: 

 #if defined (__SP5__) || defined (__CLX__) 

 #if defined BUFSIZE && BUFSIZE >= 1024 

 

#ifdef DEBUG_MODE //defined in the code or at compile time (-D option)) 

 // debug code 

#elif defined(HARDCORE_CODE) && defined(KEEP_PRINTS) 

// production code with log prints 

#else 

// naive code 

#endif 



Federico Ficarelli, Introduction to C 

Preprocessor: boolean value test 

 

The #if test can be used at compile-time to look at those symbols 

and turn on and off which lines the compiler uses 
 

 

 

 

#define NAIVE_DGEMM 1 

... 

#if NAIVE_DGEMM 

mydgemm(…); 

#else 

mkl_dgemm(…); 

#endif 

Warning: 

this test is about boolean value, 

not definition! 



Federico Ficarelli, Introduction to C 

Preprocessor: definition test 

A useful different version is ifdef/ifndef (old school) or 
defined/!defined (C99 preprocessor operators) 

 

 
#ifdef USE_FAST_DGEMM 

  #ifdef HAVE_MKL 

  mkl_dgemm(…); 

  #else 

  fast_dgemm(…); 

  #endif 

#elif FALLBACK_VANILLA_BLAS 

dgemm(…); 

#else 

my_kickass_dgemm(…); 

#endif 

#if defined(USE_FAST_DGEMM) && defined(HAVE_MKL) 

mkl_dgemm(…); 

#if defined(USE_FAST_DGEMM) && !defined(HAVE_MKL) 

fast_dgemm(…); 

#elif FALLBACK_VANILLA_BLAS 

dgemm(…); 

#else 

my_kickass_dgemm(…); 

#endif 



Federico Ficarelli, Introduction to C 

Errors and Warning 

The directive 

#error 

causes the preprocessor to report a fatal error and exit 

#ifdef __vax__ 

#error “This code does not work on Vax architectures” 

#endif 

 

The directive 

#warning 

makes the preprocessor report a warning without exiting 

 

 



Federico Ficarelli, Introduction to C 

Pragmas 

Pragmas provide to the compiler additional information. Three 

forms of pragmas are defined by the C standard. Other can 

be implemented specific to the compilers. 

1. #pragma GCC dependency 

Compares the dates of the current file and another file 

#pragma GCC dependency “parse.c” 

 

2. #pragma GCC poison 

Used to remove a certain identifier from the source. E.g. 

#pragma GCC poison printf 

printf(“Hello world\n”); 

Cause a error 
 

3. #pragma GCC system_header 

Cause the rest of the code in the current file to be treated as a system 

header (special treatment…) 



Federico Ficarelli, Introduction to C 

VARIABLES, BASIC TYPES AND 

OPERATORS 



Federico Ficarelli, Introduction to C 

What is “Memory”? 

Memory is like a big table of numbered 

slots where bytes can be stored. 

Addr Value 

0 

1 

2 

3 

4 ‘H’ (72) 

5 ‘e’ (101) 

6 ‘l’ (108) 

7 ‘l’ (108) 

8 ‘o’ (111) 

9 ‘\n’ (10) 

10 ‘\0’ (0) 

11 

12 

The number of a slot is its Address. 

One byte Value can be stored in each slot. 

Some “logical” data values span more than 

one slot, like the character string “Hello\n” 

A Type gives a logical meaning to a span of 

memory.  Some simple types are: 

char  
char [10] 
int 
float 

a single character (1 slot) 

an array of 10 characters 

signed 4 byte integer 

4 byte floating point 



Federico Ficarelli, Introduction to C 

Variables 

A variable corresponds to an area of memory which can store a 
value of the given type 

 

The variable must be declared and defined: a variable 
declaration names a resource letting the compiler know about 
its existence somewhere); a variable definition reserves all the 
needed resources (memory) to hold its value. 

 

Names in C are case sensitive so "x" and "X" refer to different 
variables. Names can contain digits and underscores (_), but 
cannot begin with a digit. 



Federico Ficarelli, Introduction to C 

Definitions and Declarations 

• Var definition+declaration pattern: 

data-type var-name; 

 

int low;  

int low, upr; // combined 

int step = 20;   // with init */ 

 

• Var declaration example: 

 

extern int low; 

 

• Var names: 

– Like all else, case-sensitive 

– Usually: all lower-case* 

– Can’t begin with a number 



Federico Ficarelli, Introduction to C 

What is a Variable? 

char x; 
char y=‘e’; 

A Variable defines a place in memory 

where you store a Value of a certain Type. 

Symbol Addr Value 

0 

1 

2 

3 

x 4 ? 

y 5 ‘e’ (101) 

6 

7 

8 

9 

10 

11 

12 

You first Define a variable by giving it a 

name and specifying the type, and 

optionally an initial value 

Type is single character (char) 

Name 

Initial value 

Initial value of x is undefined 

The compiler puts them 

somewhere in memory. 



Federico Ficarelli, Introduction to C 

Multi-byte Variables 

char x; 
char y=‘e’; 
int z = 0x01020304;  

Different types consume different amounts 

of memory.  Most architectures store data 

on “word boundaries”, or even multiples of 

the size of a primitive data type (int, char) 

Symbol Addr Value 

0 

1 

2 

3 

x 4 ? 

y 5 ‘e’ (101) 

6 

7 

z 8 4 

9 3 

10 2 

11 1 

12 

0x means the constant is 

written in hex 

An int consumes 4 bytes 

padding 



Federico Ficarelli, Introduction to C 

Primitive Data Types 

Type Meaning Example 

char Typographical symbol (replaced by 1-

byte integer, in ASCII). the "smallest 

addressable unit" for the machine: 

each byte in memory has its own 

address 

‘A’, 65 

int Integer 3 

float Non-whole number 12345.6700 

double Double-precision number 12345.678930499 



Federico Ficarelli, Introduction to C 

The char type 

A char constant is written with single quotes (') like 'A' or 'z'. The char 

constant 'A' is really just a synonym for the ordinary integer value 65 

which is the ASCII value for uppercase 'A'. There are special case 

char constants, such as '\t' for tab, for characters which are not 

convenient to type on a keyboard. 

• 'A' uppercase 'A' character 

• '\n' newline character 

• '\t' tab character 

• '\0' the "null" character -- integer value 0 (different from the char digit 

'0‘ -> 48) 



Federico Ficarelli, Introduction to C 

The Integer type 

• short int 

• long int 

– “int” usually omitted 

• Rule (in bits):  

             |char| = 8 <= |short| <= |int| <= |long| <= |long long| 

  usually:  16, 32, 32, 64 

  ancient: 16, 16, 32, 32 

Notice possible portability problems!!! 

 
• Integer can be signed: +/- 

• Or unsigned: non-negative 

• Unsigned char: 0…255, 8 bits  2^8 = 256 possible values 

• 1 bit can be used for sign (“sign bit”) 

– 7 bits left for magnitude 2^7 = 128 

• Non-neg vals: 128 poss vals 

– 0..2^7-1 = 0..127 



Federico Ficarelli, Introduction to C 

Floats and Doubles 

• float - Single precision floating point number typical size: 32 bits 

• double - Double precision floating point number typical size:  64 bits 

• long double - Possibly even bigger floating point number  

 

Constants in the source code such as 3.14 have a default double type 

unless they are suffixed with an 'f' (float – 3.14f) or 'l' (long double - 

3.14l).  

 

The choice between float and double should be driven by the precision 

needs of the algorithm. 



Federico Ficarelli, Introduction to C 

Floats representation (IEEE standard) 

Single precision numbers in a 32-bit machine 

The bit pattern b1b2b3...b9b10b11...b32  of a word in a 32-bit machine represents the real 

number 

(-1)s x 2e-127 x (0.f)2 

where s = b1,  e = (b2...b9)2, and f = b10b11...b32.   

 

 

 

Note that only the fraction from the normalized mantissa is stored and so there is a 

hidden bit and the mantissa is actually represented by 24 binary digits. 

 

Double precision numbers in a 32-bit machine 

The bit pattern b1b2b3...b12b13b14...b64  of two words in a 32-bit machine represents the 

real number 

(-1)s x 2e-1023 x (0.f)2 

where s = b1,  e = (b2...b12)2, and f = b13b14...b64.   

sign bit biased exponent fraction from normalized mantissa 

1 bit 8 bits 23 bit 

s e f 

sign bit biased exponent fraction from normalized mantissa 

1 bit 11 bits 52 bit 

s e f 



Federico Ficarelli, Introduction to C 

Little and Big Endian 

"Little Endian" means that the low-order byte of the number is stored in memory at the lowest 
address, and the high-order byte at the highest address. (The little end comes first.) For 
example, a 4 byte Long Int 

 

    Byte3 Byte2 Byte1 Byte0 

 

will be arranged in memory as follows: 

 

    Base Address+0   Byte0 

    Base Address+1   Byte1 

    Base Address+2   Byte2 

    Base Address+3   Byte3 

 

Intel processors (those used in PC's) use "Little Endian" byte order. 

 

"Big Endian" means that the high-order byte of the number is stored in memory at the lowest 
address, and the low-order byte at the highest address. (The big end comes first.) Our 
integer would then be stored as: 

 

    Base Address+0   Byte3 

    Base Address+1   Byte2 

    Base Address+2   Byte1 

    Base Address+3   Byte0 



Federico Ficarelli, Introduction to C 

Booleans 

 

The tipical implementation of booleans: int is used instead. The 

language treats integer 0 as false and all non-zero values as 
true. So the statement... 

 

i = 0; 

while (i - 10) { 

... 

 

will execute until the variable i takes on the value 10 at which 

time the expression (i -10) will become false (i.e. 0).  

The C99 standard introduced the bool 

type but it’s still a placeholder for int!   



Federico Ficarelli, Introduction to C 

Type combination and Promotion 

• The integral types may be mixed together in arithmetic expressions 

since they are all basically just integers with variation in their width. For 

example, char and int can be combined in arithmetic expressions 

such as ('b' + 5). 

• the compiler "promotes" the smaller type (char) to be the same size 

as the larger type (int) before combining the values. 

• Promotions do not lose information 

 

Int Overflow 

• try to compute the expression (k * 1024) where k is a 16 bits int. Since k 

and 1024 were both int, there is no promotion. For values of k >= 32, 

the product is too big to fit in the 16 bit int (max 32768) resulting in an 

overflow. The compiler can do whatever he wants in overflow 

situations -- typically the high order bits just vanish. One way to fix the 

code was to rewrite it as (k * 1024L) -- the long constant forced the 

promotion of the int. 



Federico Ficarelli, Introduction to C 

Truncation 

Truncation moves a value from a type to a smaller type. The compiler just 
drops the extra bits.  

It may or may not generate a compile time warning of the loss of 
information.  

Assigning from an integer to a smaller integer (e.g.. long to int, or int to 
char) drops the most significant bits.  

 

char ch; 

int i; 

i = 321; 

ch = i; // truncation of an int value to fit in a char 

// ch is now 65 

321 -> 101000001 trunc -> 01000001 -> 65  

 

The assignment will drop the upper bits of the int 321. The lower 8 bits of 
the number 321 represents the number 65 (321 – 256 or 101000001- 
100000000).  



Federico Ficarelli, Introduction to C 

Truncation (cont.ed) 

The assignment of a floating point type to an integer type will drop the 

fractional part of the number: 

 

double pi; 

int i; 

pi = 3.14159; 

i = pi; // truncation of a double to fit in an int 

// i is now 3 



Federico Ficarelli, Introduction to C 

Implicit Casting 

Implicit Casting (automatic transformation) works in a way that a variable (operand) of data type 

that is smaller in length than data type of second variable (operand), transforms internally to 

variable of data type with longer number length.  

For example: 

 

short int -> int -> unsigned int ->long int -> unsigned long int -> float -> double -> long double 

 

Example: 

int a; 

unsigned long b; 

float f, g; 

double d; 

g = a + f; // a transforms to float 

d = a + b;  

// a transform to unsigned long, adding 

// is produced in unsigned long domain and then 

// the result type unsigned long is transformed 

// to double 



Federico Ficarelli, Introduction to C 

Explicit Casting 

Says explicitly to convert types 

General form: put desired type name in parentheses, prepend to expr: 

– (new-type)expr; 

– (float)i; 

{ 

int score; 

...// suppose score gets set in the range 0..20 somehow 

 

score = (score / 20) * 100;  // NO -- score/20 truncates to 0 

... 

Score will almost always be set to 0 for this code because the integer division in the 

expression (score/20) will be 0 for every value of score less than 20. The fix is to force 

the quotient to be computed as a floating point number... 

 

score = ((double)score / 20) * 100; // OK -- floating point division from cast 

score = (score / 20.0) * 100; // OK -- floating point division from 20.0 

score = (int)(score / 20.0) * 100; // NO -- the (int) truncates the floating 

                                   // quotient back to 0 

 



Federico Ficarelli, Introduction to C 

Comments 

Comments in C are enclosed by as:  

 

   /* .. comments .. */  

 

The comment may cross multiple lines.  

 

C++ introduced a form of comment started by two slashes and 

extending to the end of the line:  

 

   // comment until the line end 

 

The // comment form is so handy that the ISO committee 
introduced it as standard in C99. 



Federico Ficarelli, Introduction to C 

Assignment Operator = 

The assignment operator is the single equals sign (=). 

 i = 6; 

 i = i + 1; 

The assignment operator copies the value from its right hand side to 
the variable on its left hand side. The assignment also acts as an 

expression which returns the newly assigned value.  

 

y = (x = 2 * x); // double x, and also put x's new value in y 



Federico Ficarelli, Introduction to C 

Binary arithmetic & bool operations 

• + 

• - 

• * 

• /  

• % - mod/remainder 5%3 == 2 

• && - boolean AND 

• || - boolean OR 

• ! - boolean NOT 



Federico Ficarelli, Introduction to C 

Unary Increment Operators 

var++ increment "post" variant 

++var increment "pre" variant 

var-- decrement "post" variant 

--var decrement "pre" variant 

 

int i = 42; 

i++; // increment on i 

// i is now 43 

i--; // decrement on i 

// i is now 42 

int i = 42; 

int j; 

j = (i++ + 10); 

// i is now 43 

// j is now 52 (NOT 53) 

j = (++i + 10) 

// i is now 44 

// j is now 54 



Federico Ficarelli, Introduction to C 

Other shortcut operations 

Generally, shortcut ops for all standard binary ops: 

 a += 2;  a = a + 2; 

 a *= 2; 

 a /= 2; 

etc. 



Federico Ficarelli, Introduction to C 

Relational Operators 

These operate on integer or floating point values and return a 0 

or 1 boolean value. 

 

• ==  Equal 

• !=  Not Equal 

• >  Greater Than 

• <  Less Than 

• >=  Greater or Equal 

• <=  Less or Equal 

 

To see if x equals 3, write: 

if (x == 3) ... 
 

Common error: 

if (x = 3) ... ALWAYS TRUE!!!!!!! 

does not test if x is 3. This sets x to the value 3… 



Federico Ficarelli, Introduction to C 

Pay attention to boolean expressions 

• During the evaluation of an usual arithmetic expression, operands are 
exhaustively evaluated in an unspecified order 

• All boolean operators use the short circuit evaluation: 
– The boolean operators  are SYNCHRONIZATION POINTS and follow the so called 

SHORT CIRCUIT SEMANTICS: 

– The evaluation moves from left to right and stops as soon as the result of 
the boolean expression is known 

 

 
int a(void), b(void), c(void); 

if( a() && b() && c() ) { 

  ... 

 } 

else{ 

 ... 

} 

 

 

 

• FORTRAN’s operators behaviour is eager only! 

The evaluation stops on the first false! 

Pay attention to boolean expressions! 



Federico Ficarelli, Introduction to C 

Bitwise operations 

Manipulate numbers as bitstrings, not as numbers.  Safe for 

unsigned integer types only! (unsigned int, unsigned char, 

etc.) 

~  complement 

|  bitwise or 

^  xor 

&  bitwise and 

<< shift left 

>> shift right 

 

 

 

 



Federico Ficarelli, Introduction to C 

NOT, OR, XOR, AND 

A bitwise NOT or complement, is a unary operation which performs logical 
negation on each bit, forming the complement. Digits which were 0 become 

1, and vice versa. For example:  

NOT 0111 = 1000  

 

 

 

 

A bitwise OR takes two bit patterns of equal length, and produces another one of 
the same length by matching up corresponding bits and performing the 

logical OR operation on each pair of corresponding bits. In each pair, the 

result is 1 if the first bit is 1 OR the second bit is 1 (or both), and otherwise the 
result is 0. For example: 

0101 OR 0011 = 0111  

A bitwise exclusive OR takes two bit patterns of equal length and performs the 

logical XOR operation on each pair of corresponding bits. The result in each 

position is 1 if the two bits are different, and 0 if they are the same. For 
example:  

0101 XOR 0011 = 0110 

A bitwise AND takes two binary representations of equal length and performs the 

logical AND operation on each pair of corresponding bits. In each pair, the 

result is 1 if the first bit is 1 AND the second bit is 1. Otherwise, the result is 0. For 
example: 

0101 AND 0011 = 0001 



Federico Ficarelli, Introduction to C 

Left and Right Shifts << , >> 

The bitwise shift operators move the bit values of a binary object. The left operand 

specifies the value to be shifted. The right operand specifies the number of 

positions that the bits in the value are to be shifted. 

 

The << (bitwise left shift) operator indicates the bits are to be shifted to the left. The 

>> (bitwise right shift) operator indicates the bits are to be shifted to the right. 

 

The << operator fills vacated bits with zeros.  

If l_op is: 

00000000000000000000111110110011 

The expression l_op << 3 yields: 

00000000000000000111110110011000 

The >> operator fills vacated bits with the sign bit of the unshifted value:  

l_op (= negative number): 

11111111111111111111111111100111  

Vacated bits are filled with ones, and the expression l_op >> 3 yields: 

11111111111111111111111111111100  



Federico Ficarelli, Introduction to C 

Operator precedence and associativity 

Operators Associativity 

() [] -> . -> left to right 

! ~ ++ -- +(unary) –(unary) & *(deref) (cast) sizeof <- right to left 

* / % -> left to right 

+ - -> left to right 

<< >> -> left to right 

< <= > >= -> left to right 

== != -> left to right 

& -> left to right 

^ -> left to right 

| -> left to right 

&& -> left to right 

|| -> left to right 

?: <- right to left 

= += -= *= /= %= &= ^= |= <<= >>= <- right to left 

, -> left to right 

P
re

c
e

d
e

n
c

e
 

If you want to chill out and avoid mistakes, remember: 

1. Arithmetic operators behave naturally; 

2. Don’t be afraid to put extra parantheses to make associativity 

explicit 

for(int i='-'-'-'; i < 5; i += '/'/'/') 

Avoid obfuscated statements! 



Federico Ficarelli, Introduction to C 

CONTROL STRUCTURES 



Federico Ficarelli, Introduction to C 

If Statement 

Both an if and an if-else are available in C. The <expression> can 
be any valid expression. The parentheses around the 
expression are required, even if it is just a single variable. 

 

if (<expression>) <statement>  

 

if (<expression>) {  

<statement> 

<statement> 

} 

 

if (<expression>) { 

<statement> 

} 

else if (<expression>) { 

<statement> 

}  

else { 

<statement> 

} 

 



Federico Ficarelli, Introduction to C 

This is an expression, not a statement, so it represents a value: 

 

if (x < y) { 

min = x; 

} 

else { 

min = y; 

} 

Conditional Expression (Ternary Operator) 

min = (x < y) ? x : y; 



Federico Ficarelli, Introduction to C 

The switch statement is a sort of specialized form of if used to efficiently separate 
different blocks of code based on the value of an integer. 

 

switch (<expression>) { 

case <const-expression-1>: 

<statement> 

break; 

 

case <const-expression-2>: 

<statement> 

break; 

 

case <const-expression-3>: // here we combine case 3 and 4 

case <const-expression-4>: 

<statement> 

break; 

 

default: // optional 

<statement> 

} 

Switch Statement 



Federico Ficarelli, Introduction to C 

Once execution has jumped to a 

particular case, the program 

will keep running through all 
the cases from that point down 

 

The explicit break statements are 

necessary to exit the switch. 

Omitting the break statements 

is a common error 

Switch Statement (cont.ed) 

int main() 

{ 

  const char c = '2'; 

  int n; 

  switch(c) 

   { 

    case '0': n=0; break; 

    case '1': n=1; break; 

    case '2': n=2; break; 

    case '3': n=3; break; 

    case '4': n=4; break; 

    case '5': n=5; break; 

    case '6': n=6; break; 

    case '7': n=7; break; 

    case '8': n=8; break; 

    case '9': n=9; break; 

    default: error(); 

   } 

} 



Federico Ficarelli, Introduction to C 

The while loop evaluates the test expression before every loop, 

so it can execute zero times if the condition is initially false. It 

requires the parenthesis like the if. 

 

while (<expression>) { 

<statement> 

} 

 

Like a while, but with the test condition at the bottom of the 

loop. The loop body will always execute at least once. 

 

do { 

<statement> 

} while (<expression>) 

 

While Statements 



Federico Ficarelli, Introduction to C 

The for loop in C is the most general looping construct. The loop 

header contains three parts: an initialization, a continuation 

condition, and an action. 

 

for (<initialization>; <continuation>; <action>) { 

<statement> 

} 

 

for (i = 0; i < 10; i++) { 

<statement> 

} 

 

Each of the three parts of the for loop can be made up of 

multiple expressions separated by commas. Expressions 
separated by commas are executed in order, left to right 

For Loop 



Federico Ficarelli, Introduction to C 

The break statement will move control outside a loop or switch 
statement 

while (<expression>) { 

<statement> 

<statement> 

if (<condition which can only be evaluated here>) 

break; 

<statement> 

<statement> 

} 

// control jumps down here on the break 

 

Break Statement 



Federico Ficarelli, Introduction to C 

The continue statement causes control to jump to the bottom of the 
loop (not outside), effectively skipping over any code below the 
continue 

while (<expression>) { 

... 

if (<condition>) 

continue; 

... 

... 

// control jumps here on the continue 

} 

Continue Statement 



Federico Ficarelli, Introduction to C 

DERIVED DATA TYPES 



Federico Ficarelli, Introduction to C 

One-dimensional arrays are declared  and accessed as: 

 

int scores[100]; 

scores[0] = 13; // set first element 

scores[99] = 42; // set last element 

 

It's a very common error to try to refer to non-existent scores[100] 

element. C does not do any run time or compile time bounds 

checking in arrays. At run time the code will just access or 

corrupt whatever memory it happens to hit and crash or 
misbehave in some unpredictable way thereafter 

 

NOTICE NUMBERING FROM 0 TO N-1 

Arrays 



Federico Ficarelli, Introduction to C 

Two (N)-dimensional arrays are declared  and accessed as: 

 

int board [10][10]; 

board[0][0] = 13; 

board[9][9] = 13; 

 

The implementation of the array stores all the elements in a single 

contiguous block of memory. In memory, the array is 

arranged with the elements of the rightmost index next to 

each other. In other words, board[1][8] comes right before 

board[1][9] in memory. 

Multidimensional Arrays 

ROW MAJOR ORDERING 



Federico Ficarelli, Introduction to C 

struct fraction { 

int numerator; 

int denominator; 

}; // Don't forget this semicolon! 

 

This declaration introduces the type struct fraction (both words 

are required) as a new type. C uses the period (.) to access 

the fields in a record. You can copy two records of the same 

type using a single assignment statement, however == does 

not work on structs (error at compiling time). 

 

struct fraction f1, f2; // defines two fractions 

f1.numerator = 22; 

f1.denominator = 7; 

f2 = f1;   // this copies the whole struct 

Struct 



Federico Ficarelli, Introduction to C 

struct fraction { 

int numerator; 

int denominator; 

};  

 

struct fraction numbers[1000]; 

numbers[0].numerator = 22; /*set the 0 struct fraction */ 

numbers[0].denominator = 7; 

Arrays of Structs 



Federico Ficarelli, Introduction to C 

A typedef statement introduces a shorthand name for a type. 

The syntax is: 

 typedef <type> <name>; 

  

typedef struct fraction Fraction; // From now on the type 

// identifier “Fraction” refers to “struct fraction” 

 

 

typedef struct treenode* Tree; 

struct treenode { 

int data; 

Tree smaller, larger; // equivalently, this line could say 

};    // "struct treenode *smaller, *larger" 

TypeDef 



Federico Ficarelli, Introduction to C 

POINTERS 



Federico Ficarelli, Introduction to C 

• A pointer is a variable which stores the address of another 

variable 

• a pointer stores a reference to another value. The variable 
the pointer refers to is sometimes known as its "pointee“ 

 

A pointer type in C is just the pointee type followed by a asterisk 

(*)... 

 

int*    // type: pointer to int 

float*   // type: pointer to float 

float**             // type: pointer to pointer to float 

struct foo*     // type: pointer to struct foo 

struct foo**         // type: pointer to pointer to 

                    //    struct foo 

float***            // type: just let the rule scale! 

Pointers 



Federico Ficarelli, Introduction to C 

The “&” operator is one of the ways that pointers are set to point 

to things. 

The & operator computes a pointer to the argument to its right. 

 

void foo() { 

int* p;  // p is a pointer to an integer 

int i;  // i is an integer 

p = &i;  // Set p to point to i 

*p = 13;  // Change what p points to -- in this case i 

       -- to 13 

// At this point i is 13. So is *p. In fact *p is i. 

} 

Make a pointer point a variable 

ALIASING 



Federico Ficarelli, Introduction to C 

The assignment operation (=) between two pointers makes them 

point to the same pointee. 

 

 

 

 

 

 

 

 

 

After assignment, the == test comparing the two pointers will 

return true 

Pointer Assignment 



Federico Ficarelli, Introduction to C 

Declaring a pointer allocates space for the pointer itself, but it does not 

allocate space for the pointee. The pointer must be set to point to 

something before you can use it. 

every pointer starts out with a bad value!!! 

There are three things which must be done for a pointer/pointee 

relationship to work... 

1. The pointer must be defined 

2. The pointee must be defined 

3. The pointer (1) must be initialized so that it points to the pointee (2) 

The most common pointer related error of all time is the following: define  

the pointer (step 1). Forget step 2 and/or 3. Start using the pointer as 

if it has been setup to point to something. Code with this error 

frequently compiles fine, but the runtime results are disastrous. 

Unfortunately the pointer does not point anywhere good unless 

(2)and (3) are done, 

Uninitialized Pointers 



Federico Ficarelli, Introduction to C 

The constant NULL is a special pointer value which encodes the 

idea of "points to nothing“. 

 

It is a runtime error to dereference a NULL pointer. 

 

The C language uses the symbol NULL for this purpose. NULL is 

equal to the integer constant 0, so NULL can play the role of a 

boolean false.  

The NULL pointer 



Federico Ficarelli, Introduction to C 

the unary * to the left of a pointer dereferences it to retrieve the 
value it points to: 

 
int var; 

int * var_pointer; 

 

var = 385; 

var_pointer = &var; 

 

printf(“---- %d\n”, *var_pointer);  

 

It will print: 

 
---- 385 

Dereferencing a pointer 

*ptr_a == *ptr_b   compare pointee values 

  ptr_a ==  ptr_b      compare addresses 



Federico Ficarelli, Introduction to C 

struct fraction* f1 

 

Expression   Type 

f1     struct fraction* 

*f1    struct fraction 

(*f1).numerator  int 

 

There's an alternate, more readable syntax available for 

dereferencing a pointer to a struct. A "->" at the right of the 

pointer can access any of the fields in the struct. So the 

reference to the numerator field could be written  

f1->numerator equals to (*f1).numerator 

Dereferencing a pointer to a struct 



Federico Ficarelli, Introduction to C 

Pointers vs Arrays 

int intArray[6] 

 

intArray (with no brackets) is the address of the first byte of the array 

The expression (intArray + 3) is a pointer to the integer intArray[3] 

 

intArray[3] IS A NUMBER 

(intArray + 3) IS AN ADDRESS 

*(intArray + 3) is the same as intArray[3] 



Federico Ficarelli, Introduction to C 

Example 



Federico Ficarelli, Introduction to C 

Example 



Federico Ficarelli, Introduction to C 

Example 



Federico Ficarelli, Introduction to C 

Bad Pointer Example 



Federico Ficarelli, Introduction to C 

Can we point a pointer? 

Let’s see what happens using another pointer 

 

int ipointed = 3; 

int *ip; 

int *ipp; 

ip = &ipointed; 

ipp = &ip; 

 

ip = address of ipointed 

*ip = value of ipointed 

ipp = address of ip 

*ipp = address of ipointed BUT this would be interpreted as and 

integer value and NOT as an address!!!!!!!!! 

 

We need something special… 

Pointing a pointer 



Federico Ficarelli, Introduction to C 

We need a pointer-to-pointer, whose declaration looks like  

 

int **ipp;  

 

Example: 

int **ipp; 

int i = 5, j = 6; k = 7;  

int *ip1 = &i, *ip2 = &j;  

ipp = &ip1;  

 

*ipp = ip2;  

 

 
*ipp = &k;  

Pointers to pointers 



Federico Ficarelli, Introduction to C 

• A pointer stores a reference to its pointee. The pointee, in turn, 

stores something useful. 

 

• The dereference (*) operation on a pointer accesses its 

pointee. A pointer may only be dereferenced after it has 

been assigned to refer to a pointee. Most pointer bugs involve 

violating this rule. 

 

• Allocating a pointer does not automatically assign it to refer 

to a pointee. Assigning the pointer to refer to a specific 

pointee is a separate operation which is easy to forget. 

• Assignment between two pointers makes them refer to the 

same pointee: introduces the concept of memory sharing 

(extremely important!!!) 

Pointers Summary 



Federico Ficarelli, Introduction to C 

• One of the key advantages of pointers is memory sharing: 

two pointers can refer to the same pointee 

 

This can be particularly useful for functions that access the same values 

(Shallow Copying). The alternative is Deep Copying  

Memory Sharing 



Federico Ficarelli, Introduction to C 

FUNCTIONS 



Federico Ficarelli, Introduction to C 

• All languages have a construct to separate and package blocks of 

code.  

• C uses the"function" to package blocks of code.  

• A function has a name, a type, a list of arguments which it takes when 

called, and the block of code it executes when called.  

• C functions are defined in a text file and the names of all the functions in 

a C program are lumped together in a single, flat namespace.  

• The special function called "main" is where program execution begins. 

• The keyword "static" defines that the function will only be available to 
callers in the file where it is declared. 

 

   

Functions 

static int Twice(int num) { 

   int result = num * 3; 

   result = result - num; 

   return result; 

  } 

qualifiers 

return type 

name arguments 

body 



Federico Ficarelli, Introduction to C 

• The expression passed to a function by its caller is called the "actual 

parameter"  

• The parameter storage local to the function is called the "formal 

parameter“ 

• Parameters are passed "by value" that means there is a single 

copying assignment. The actual parameter is evaluated in the 

caller's context, and then the value is copied into the function's 

formal parameter just before the function begins executing. The 

alternative parameter mechanism is "by reference" which C does 

not implement directly 

• The variables local to Twice(), num and result, only exist temporarily 

while Twice() is executing. This is the standard definition for "local" 

storage for functions. 

• The return at the end of Twice() computes the return value and exits 

the function. 

Functions (cont.ed) 



Federico Ficarelli, Introduction to C 

void is a type formalized in ANSI C which means "nothing". To 

indicate that a function does not return anything, use void as 

the return type. 

 

void function(int a);       // returns nothing 

float function(void);      // takes no parameters 

void function(void);      // returns nothing and takes no params 

float function();             // Pay attention to ancient oddities! 

void type 



Federico Ficarelli, Introduction to C 

Lexical Scoping 

Every Variable is Defined within some scope.  A 

Variable cannot be referenced by name from 

outside of that scope. 

The scope of Function Arguments is the 

complete body of the function. 

The scope of Variables defined inside a 

function starts at the definition and ends at 

the closing brace of the containing block 

Lexical scopes are defined with curly braces { }. 

The scope of Variables defined outside a 

function starts at the definition and ends at 

the end of the file. Called “Global” Vars. 



Federico Ficarelli, Introduction to C 

The “Stack” 

Recall lexical scoping.  If a variable is valid 

“within the scope of a function”, what 

happens when you call that function 

recursively? Is there more than one “exp”? 

#include <stdio.h> 
#include <inttypes.h> 
 
float pow(float x, int exp) 
{ 
  /* base case */ 
  if (exp == 0) { 
    return 1.0; 
  } 
 
  /* “recursive” case */ 
  return x*pow(x, exp – 1); 
} 
 
int main(int argc, char **argv) 
{ 
  float p; 
  p = pow(5.0, 1); 
  printf(“p = %f\n”, p); 
  return 0; 
} 

Yes. Each function call allocates a “stack 

frame” where Variables within that function’s 

scope will reside. 

float x 5.0 

int exp 1 

float x 5.0 

int exp 0 

int argc 1 

char **argv 0x2342 

float p undefined 

Return 1.0 

Return 5.0 

int argc 1 

char **argv 0x2342 

float p 5.0 



Federico Ficarelli, Introduction to C 

• C passes parameters "by value" which means that the actual 

parameter values are copied into local storage.  

• The caller and callee functions do not share any memory -- they 

each have their own copy.  

• Two main disadvantages: 

1.  Because the callee has its own copy, modifications to that memory are not 

communicated back to the caller (return is often not enough…) 

2. Sometimes it is undesirable to copy the value from the caller to the callee 

because the value is large and so copying it is expensive, or because at a 

conceptual level copying the value is undesirable. 

 

The alternative is to pass the arguments "by reference". Instead of 

passing a copy of a value from the caller to the callee, pass a 

pointer to the value. 

Call by value and by reference 



Federico Ficarelli, Introduction to C 

• Have a single copy of the value of interest. The single "master" copy. 

• Pass pointers to that value to any function which wants to see or 

change the value. 

• Functions can dereference their pointer to see or change the value of 

interest. 

• Functions must remember that they do not have their own local 

copies. If they dereference their pointer and change the value, they 

really are changing the master value. If a function wants a local 

copy to change safely, the function must explicitly allocate and 

initialize such a local copy. 

Passing by reference 



Federico Ficarelli, Introduction to C 

Example 1 



Federico Ficarelli, Introduction to C 

Example 2 



Federico Ficarelli, Introduction to C 

Example 3 



Federico Ficarelli, Introduction to C 

Example 4 



Federico Ficarelli, Introduction to C 

The qualifier const can be added to the left of a variable or parameter 

type to declare that the code using the variable will not change its 

value.  

 

 

void foo(const struct fraction* fract); 

Const variable 

Note that using qualifiers is not mandatory nor optional. 

• They clarify the code (why not to use them?) 

• Enforce correctness 

• All qualifiers are a huge help to the compiler 



Federico Ficarelli, Introduction to C 

Static variables have a lifetime over the entire program, however 

the scope is limited. Static variables continue to exist even 

after the block in which they are defined terminates. Thus, the 

value of a static variable in a function is retained between 

repeated function calls to the same function.  

static float sum; 

 

External variables have global scope across the entire program 

(provided extern declarations are used in files other than 

where the variable is defined), and a lifetime over the the 

entire program run. 

extern int index; 

Static and External variables 



Federico Ficarelli, Introduction to C 

#include <stdio.h> 

#define MAXLINE 1000 /* maximum input line size */ 

int max;     /* maximum length seen so far */ 

char line[MAXLINE];     /* current input line */ 

char longest[MAXLINE];  /* longest line saved here */ 

int getline(void); 

void copy(void); 

 

/* print longest input line */ 

int main(void) 

  { 

    int len;     /* current line length */ 

    extern int max; 

    extern char longest[]; // NOT necessary 

 

    copy(); 

 

    if (max > 0) /* there was a line */ 

      printf("%s", longest); 

    return 0; 

  } 

Extern variables example 

/*getline: specialized version */ 

int getline(void) 

  { 

    int c,i; 

    extern char line[]; 

    …. 

} 

/* copy: specialized version */ 

void copy(void) 

  { 

    int i; 

    extern char line[], 

longest[]; 

    … 

  } 

Notice that: 

array size is not needed because 

no storage is being allocated  



Federico Ficarelli, Introduction to C 

DYNAMIC MEMORY 

MANAGEMENT 



Federico Ficarelli, Introduction to C 

• Variables represent storage space in the computer's memory. 

• C can assign memory to a variable only when this is necessary 

• a variable is allocated when it is given an area of memory to store its 

 value.  

• A variable is deallocated when the system reclaims the memory from 

the variable, so it no longer has an area to store its value.  

• For a variable, the period of time from its allocation until its 

deallocation is called its lifetime 

Allocation and Deallocation 



Federico Ficarelli, Introduction to C 

The variables are called "local" to capture the idea that their lifetime is 

tied to the function where they are declared.  

Whenever the function runs, its local variables are allocated. When the 

function exits, its locals are deallocated. 

In any case, Once the flow of control leaves that body, there is no way 

to refer to the locals even if they were allocated. That locals are 

available ("scoped") only within their owning function is known as 

"lexical scoping" and pretty much all languages do it that way now. 

Local Memory 



Federico Ficarelli, Introduction to C 

Example 



Federico Ficarelli, Introduction to C 

• Convenient. Local (automatic-stack) variables provide temporary, 

independent memory. 

• Efficient. Allocating and deallocating them is time efficient (fast) and 

they are space efficient in the way they use and recycle memory. 

• Secure. Local parameters are basically local copies of the 

information from the caller. This has the advantage that the callee 

can change its local copy without affecting the caller. 

Local Variables Advantages & Disadvantages 

• Short Lifetime. Their allocation and deallocation schedule (their 

"lifetime") is very strict. Sometimes a program needs memory which 

continues to be allocated even after the function which originally 

allocated it, has exited. 

• Restricted Communication. Since locals are copies of the caller 

parameters, they do not provide a means of communication from 

the callee back to the caller. 



Federico Ficarelli, Introduction to C 

• "Heap" (Dynamic) memory is an alternative to local stack memory.  

• The programmer explicitly requests the allocation of a memory 

"block" of a particular size, and the block continues to be allocated 

until the programmer explicitly requests that it is deallocated.  

• Nothing happens automatically. So the programmer has much 

greater control of memory, but with greater responsibility 

Heap Memory 



Federico Ficarelli, Introduction to C 

• Lifetime. Because the programmer now controls exactly when 

memory is allocated and deallocated, it is possible to build a data 

structure in memory, and return that data structure to the caller. 

• Size. The size of allocated memory can be controlled with more 

detail 

Heap Variables Advantages & Disadvantages 

• More Work. Heap allocation needs to arranged explicitly in the code 

which is just more work. 

• More Bugs. Because it's now done explicitly in the code, realistically 

on occasion the allocation will be done incorrectly leading to 

memory bugs. Local memory is constrained but it’s less bug-prone 

since it’s managed by the runtime. 



Federico Ficarelli, Introduction to C 

void* malloc(size_t size);  

The malloc() function takes an unsigned integer which is the requested size of the 

block measured in bytes.  

Malloc() returns a pointer to a new heap block if the allocation is successful, and 

NULL if the request cannot be satisfied because the heap is full.  

The C operator  

sizeof()  

is a convenient way to compute the size in bytes of a type —sizeof(int) for an int 

pointee, sizeof(struct fraction) for a struct fraction pointee 

Sintax (include stdlib.h) 

void free(void* heapBlockPointer);  

The free() function takes a pointer to a heap block and returns it to the free pool 

for later reuse. The pointer passed to free() must be the pointer returned 

earlier by malloc() 

void *realloc(void * heapBlockPointer, unsigned long 

size);  

changes (increase or decrease) the size of the memory block pointed to by 
heapBlockPointer to size bytes.  



Federico Ficarelli, Introduction to C 

Example 



Federico Ficarelli, Introduction to C 

A program which forgets to deallocate a block is said to have a 

"memory leak" which is a really perfidious problem. The result will be 

that the heap gradually fill up as there continue to be allocation 

requests, but no deallocation requests to return blocks for re-use. 

 

C does not have any garbage collector, a form of automatic memory 

management which attempts to reclaim memory used by objects 

that will never again be accessed or mutated by the application.  

Memory Leaks 

We need external tools! 



Federico Ficarelli, Introduction to C 

STRINGS 



Federico Ficarelli, Introduction to C 

• C has minimal support of character strings.  

• For the most part, strings operate as ordinary arrays of characters. 

• Their maintenance is up to the programmer using the standard 

facilities available for arrays and pointers. 

• The "null“ character ('\0') is stored after the last real character in the 

array to mark the end of the string 

• A “string” library is available to manipulate strings (see later) 

C Strings 



Federico Ficarelli, Introduction to C 

Copying strings 

How to copy strings? 

 

s = t;? 

 

No: simply makes s and t point to same chars 

Want: copy actual chars from source t to dest s 

For now: assume s points to enough free space 

Copy strings as arrays: 

 

void strcpy(char s[], char t[]) { 

  int i = 0; 

  while ((s[i] = t[i]) != ‘\0’) 

   i++; 

 } 

 

Each time around, 1) Assign s char to t char; 2) check for \0 



Federico Ficarelli, Introduction to C 

Copying strings 

Copy strings as pointers: 
 

void strcpy(char *s, char *t) { 

  while ((*s = *t) != ‘\0’) { 

   s++; 

   t++; 

  } 

 } 

 

Essentially the same as previous 

No index needed, but now increment both pointers 



Federico Ficarelli, Introduction to C 

Copying strings 

Mix & match: 

 
void strcpy(char s[], char *t) { 

    /* s arr, t ptr */ 

  int i = 0; 

  while ((*s = t[i]) != ‘\0’) { 

   s++;  /* s ptr */ 

   i++;  /* t arr */ 

  } 

 } 

 



Federico Ficarelli, Introduction to C 

Copying strings 

Shorter versions: 

 
void strcpy(char *s, char *t) { 

  while ((*s++ = *t++) != ‘\0’); 

 } 

 

 

Since the value of the null char ‘\0 is 0 (FALSE): 
 

void strcpy(char *s, char *t) { 

  while ((*s++ = *t++)); 

 } 

 



Federico Ficarelli, Introduction to C 

Dynamic Strings 

The convention with C strings is that the owner of the string is responsible 

for allocating array space which is "large enough" to store whatever 

the string will need to store. 

Two problems: 

1. Strings could be larger than expected 

2. Space could be wasted 
 

The dynamic allocation of arrays works very well for allocating strings in 

the heap. The advantage of heap allocating a string is that the heap 

block can be just big enough to store the actual number of 

characters in the string. 

 



Federico Ficarelli, Introduction to C 

THE STANDARD LIBRARY 



Federico Ficarelli, Introduction to C 

C Standard Library Functions 

Many basic housekeeping functions are available to a C program in form of 

standard library functions. To call these, a program must #include the 

appropriate .h file. Most compilers link in the standard library code by 

default. Most common libraries:  

• stdio.h  file input and output 

• ctype.h  character tests 

• string.h  string operations 

• math.h  mathematical functions such as sin() and cos() 

• stdlib.h  utility functions such as malloc() and rand() 

• assert.h  the assert() debugging macro 

• stdarg.h  support for functions with variable numbers of arguments 

• setjmp.h  support for non-local flow control jumps 

• signal.h  support for exceptional condition signals 

• time.h  date and time 

• limits.h, float.h constants which define type range values such as INT_MAX 
 

SEE http://www.cppreference.com/ 



Federico Ficarelli, Introduction to C 

I/O 



Federico Ficarelli, Introduction to C 

Arguments to Main 

Arguments to main provide a useful way to give parameters to 

programs.  

 

int main(int argc, char *argv[]);  

int main(int argc, char **argv);  

 

When a program starts, the arguments to main will have been initialized 

to meet the following conditions: 

• argc is larger than zero.  

• argv[argc] is a null pointer.  

• argv[0] through to argv[argc-1] are pointers to strings whose meaning 

will be determined by the program.  

• argv[0] will be a string containing the program's name or a null string if 

that is not available. Remaining elements of argv represent the 

arguments supplied to the program.  



Federico Ficarelli, Introduction to C 

Example 

#include <stdio.h>  

#include <stdlib.h>  

int main(int argc, char **argv)  

{  

 while(argc--) printf("%s\n", *argv++);  

 exit(EXIT_SUCCESS);  

}  

>./show_args abcde text hello 

show_args 

abcde 

text 

hello 

 

 



Federico Ficarelli, Introduction to C 

Read/Write Data 

Typical I/O functions are available in the stdio library. 

Require inclusion of stdio.h 

Predefined Types and Values: 

• FILE is a datatype which holds information about an open file.  

• EOF is a value returned to indicate end-of-file and is required 

by ANSI C to be a negative constant integer expression and is 

traditionally set to -1.  

• size_t is an unsigned integer type which is large enough to hold 

any value returned by sizeof  



Federico Ficarelli, Introduction to C 

Stdio: stdin, stdout, stderr 

Three file streams are predefined and preopened: 

 

• FILE *stdin  

– stdin is associated with a user's standard input stream.  

• FILE *stdout  

– stdin is associated with an output stream used for normal program 

output.  

• FILE *stderr  

– stdin is associated with an output stream used for error messages.  

 

Useful functions 

• printf 

• scanf 



Federico Ficarelli, Introduction to C 

Stdio: Read/Write Data from/in Files 

File stream must by specified, opened and closed 

• fopen 

• fclose 

• fread 

• fwrite 

• fprintf 

• fscanf  

• fflush 



Federico Ficarelli, Introduction to C 

The format string 

Every I/O function that requires a “format” string (*print*, *scan*) 

expects a description of the formatted stream: 

 

 

 

The placeholder characters contained in the format string will be 

replaced with the actual values of parameters. 

printf(“I’m iteration %5d, my value is %.4lf \n”, i, val); 

> I’m iteration      1, my value is 3.1002 



Federico Ficarelli, Introduction to C 

%[flags][min field width][precision][length]conversion specifier 

  -----  ---------------  ---------  ------ ------------------- 

   \             #,*        .#, .*     /             \ 

    \                                 /               \ 

   #,0,-,+, ,',I                 hh,h,l,ll,j,z,L    c,d,u,x,X,e,f,g,s,p,% 

   -------------                 ---------------    ----------------------- 

   # | Alternate,                 hh | char,           c | unsigned char, 

   0 | zero pad,                   h | short,          d | signed int, 

   - | left align,                 l | long,           u | unsigned int, 

   + | explicit + - sign,         ll | long long,      x | unsigned hex int, 

     | space for + sign,           j | [u]intmax_t,    X | unsigned HEX int, 

   ' | locale thousands grouping,  z | size_t,         e | [-]d.ddde±dd double, 

   I | Use locale's alt digits     t | ptrdiff_t,      E | [-]d.dddE±dd double, 

                                   L | long double,  ---------===== 

   if no precision   => 6 decimal places            /  f | [-]d.ddd double, 

   if precision = 0  => 0 decimal places      _____/   g | e|f as appropriate, 

   if precision = #  => # decimal places               G | E|F as appropriate, 

   if flag = #       => always show decimal point      s | string, 

                                             ..............------ 

                                            /          p | pointer, 

   if precision      => max field width    /           % | % 

The format string: placeholders 



Federico Ficarelli, Introduction to C 

Example 

#include <stdio.h>  

main()  

{  

 int i1;  

 int i2;  

 printf("Enter two integers: ");  

 scanf("%d %d",&i1,&i2);  

 printf("\nThe product of %d and %d is %d.\n",i1,i2,i1*i2);  

 return 0; /* no error */  

}  



Federico Ficarelli, Introduction to C 

Example 

#include <stdio.h>  

int main(int argc, char **argv) {  

 char * input_filename = “data_input”;  

 FILE * input_file;  

 char * output_filename = data_output”;  

 FILE * output_file;  

 int number; 

 

   input_file = fopen(input_filename, "r");  

 if(input_file == NULL) { 

     fprintf(stderr,"Can't open %s.\n", input_filename); 

     return 1; 

   }  
 

 output_file = fopen(output_filename,"w");  

 if (output_file == NULL) { 

      fprintf(stderr,"Can't open %s.\n", output_filename); 

      return 1; 

    }  

 fscanf(input_file,"%d",&number);  
 

 fprintf(output_file, "The square of %d is %d.\n", number, number*number); 

 fclose(input_file);  

 fclose(output_file);  

 return 0; 

}  



Federico Ficarelli, Introduction to C 

Notes about mixing FORTRAN 

and C 



Federico Ficarelli, Introduction to C 

Overview 

• Total absence of standard coverage 

• Extremely unportable (dependent on compilers, operating 

systems, libraries, etc…) 

• No facilities provided, needs to be totally hand-coded 

NO MAN’S LAND 



Federico Ficarelli, Introduction to C 

Problems arising everywhere Problems arising everywhere 

void foo_c_function(int a, char *s) 

{ 

  struct coords c; 

  ... 

} 

 

subroutine foo_fort_subroutine(a, b) 

  integer*4, intent(inout) :: a 

  real*8, intent(inout) :: b 

  integer*4, dimension(10) :: v 

  ... 

end subroutine foo_fort_subroutine 

 

 

Base types associations 

Strings 

Array bounds 

Array memory ordering 

Symbols decoration 

Objects alignment 



Federico Ficarelli, Introduction to C 

Problems arising everywhere 

• Every implementation 

(compiler+operating 

system+machine) has its own 

association. 

 

 

• There is no straightforward 

solution. 

 

 

• You should take total control of 

portability: define your own 

types for interfaces! 

Base types 

FORTRAN (x86_64 linux, GCC 
4.1) 

C/C++ (x86_64 linux, GCC 4.1) 

byte unsigned char 

integer*2 short int 

integer int 

integer matrix(2,3) int matrix[3][2]; 

logical int 

logical*1 unsigned char (C), bool (C++) 

  

real*4 float 

real*8 double 

real*16 long double 

complex struct{float r; float i;} 

double complex struct{double r; double i;} 

character*6 string char string[6]; 

character*6 strings(4) char strings[4][6]; 

parameter #define PARAMETER value 



Federico Ficarelli, Introduction to C 

• Some compilers “decorate” the symbols of FORTRAN routines 

to avoid clashes. 

• A generic subroutine named test becomes: 

– test_ on Linux (Intel/GCC/PGI) 

– test on AIX (VisualAge/GCC) 

– test__ on some exotic systems 

• If you want to invoke that subroutine from C (or vice-versa!), 

you need to know how the symbols are internally modified by 
the compiler. 

 

• Compiler flags exist, but the only reliable solution is to take 

total control of the situation (exploit the preprocessor). 
 

Linkage 



Federico Ficarelli, Introduction to C 

• Regardless of the specified INTENT, every FORTRAN subroutine 

takes reference only parameters. 

• Remember this rules: 

 

 

 

 

 

 

 

 

 

 

 

 

• Pay extreme attention or you’ll end up with a corrupted stack 

Function/routine parameters 

subroutine foo(a, b) 

  integer*4, intent(in) :: a 

  real*8, intent(out) :: b 

... 

int c_a = 100; 

double c_b; 

 

foo_(&c_a, &c_b); 

void foo_(int *a, double *b) 

{ 

  ... 

integer*4 :: f_a 

real*8 :: f_b 

 

call foo(f_a, f_b) 

C calling FORTRAN: pass pointers as actual parameters 

FORTRAN calling C: the C function must accept pointers only 



Federico Ficarelli, Introduction to C 

• C strings are just arrays of integers. 

• In FORTRAN, they are opaque objects managed by the 

runtime. 

• For example, how can we retrieve a string len()? 

 

 

 

 

 

 

 

 

Strings 

subroutine foo(s) 

  character, dimension(:), intent(in), :: s 

   

  write(*,*) len(s) 

  ... 

subroutine foo(s, _s_len) 

  character, dimension(:), intent(in), :: s 

  integer, intent(in), :: _s_len 

   

  write(*,*) len(s) ! write(*,*) _s_len 

  ... 

The compiler manages 
internally the 

opaque object’s 

properties 



Federico Ficarelli, Introduction to C 

• The fortran string internal implementation is unspecified 

 

 

 

 

 

 

 

 

 

 

 

• Investigate your system’s implementation and port your 

interfaces from scratch! 

 

Strings 

void foo(char *a, char *b, int _a_len, int _b_len); 

void foo_(char *a, int _a_len, char *b, int _b_len); 
Linux (GNU/Intel) 

AIX (VisualAge) 

SUN (SunStudio) 

typedef struct 

{ 

  char *string; 

  int length; 

} fort_string; 

 

void foo_(fort_string a, fort_string b); 

Passed by value!!! 



Federico Ficarelli, Introduction to C 

• Remember that C strings are null terminated! 

 

 

 

 

 

• Convert your FORTRAN strings prior the invocation of a C 
function! 

• When reading back, remember the extra character CHAR(0)! 

 

Strings 

character, dimension(32) :: f_string = “I am FORT”//CHAR(0) 

 

call c_function(f_string) 



Federico Ficarelli, Introduction to C 

• For single dimension arrays, the only thing to remember is the 
bounds difference (0,N-1 for C and 1,N for FORTRAN) 

• For multi-dimensional arrays, the things get tricky: 
 

 

 

 

 

 

 

 

 

 

 

 

• Pay extreme attention (reorder loops) or use tricks (transpose 
in C, FORTRAN90 RESHAPE) 

Arrays 

integer, dimension(2,3), f 

 

! Memory snapshot: 

! f(1,1) f(2,1) f(1,2) f(2,2) f(1,3) f(2,3) 

int c[2][3]; 

 

// Memory snapshot: 

// c[0,0] c[0,1] c[0,2] c[1,0] c[1,1] c[1,2] 

COLUMN MAJOR 

ROW MAJOR 



Federico Ficarelli, Introduction to C 

• Mapping FORTRAN common blocks to C structures (and vice-

versa) is possible but extremely dangerous and unsafe 

 

 

 

 

 

 

 

 

 

 

 

 

• You can control the situation using compiler flags and 

pragmas only! 

Common blocks/Extern structures 

real*8 r 

integer*4 i_a, i_b, i_c 

common/fortdata/ r, i_a, i_b, i_c 

extern struct { 

  double r; 

  int i_a, i_b, i_c; 

} fortdata_; 

Pay attention to: 

• Fields alignment 

• First access (FORTRAN side must access first!) 

• Use named commons only 

USE THIS TECHNIQUE AT YOUR OWN RISK 



Federico Ficarelli, Introduction to C 

CASE STUDY: LINKED LISTS 



Federico Ficarelli, Introduction to C 

Linked Lists 

A method of organizing stored data in a computer’s memory or 

on a storage medium based on the logical order of the data 

and not the physical order.  

 

It is a list in which each data element has information for locating 

the next. The data elements may be in noncontiguous storage 

locations.  

 
Concepts involved: 

• Pointers 

• Structures 

• Dynamic memory management 



Federico Ficarelli, Introduction to C 

Arrays Reminder 

An array is a collection of elements organized such that they 

have contiguous storage locations 

 

Array access is always implemented using fast address arithmetic: 

the address of an element is computed as an offset from the 

start of the array which only requires one multiplication and 

one addition. 

int scores[100];  



Federico Ficarelli, Introduction to C 

Arrays Disadvantages 

1. The size is fixed. Needs reallocation of memory to change 

2. Often waste of space (oversized arrays) 

3. Difficult to add new elements in front of or between elements 

 

Linked Lists are strong where Arrays are weak (and vice-versa…) 



Federico Ficarelli, Introduction to C 

Linked Lists Basics 

• An array allocates memory for all its elements as a contguous 

block of memory. 

• In contrast, a linked list allocates space for each element 

separately in its own block of memory called a "linked list 

element" or "node".  

• The list gets its overall structure by using pointers to connect all 

its nodes together like the links in a chain. 

• Each node contains two fields: a "data" field and a "next" field 

which is a pointer used to link one node to the next node. 

• Each node is allocated in the heap with a call to malloc(), so 

the node memory continues to exist until it is explicitly 

deallocated with a call to free().  

• The front of the list is a pointer to the first node. 



Federico Ficarelli, Introduction to C 

A Simple Linked List 



Federico Ficarelli, Introduction to C 

The “node” Data Type 

• Define the type for the nodes which will make up the body of 

the list. 

• These are allocated in the heap. Each node contains a single 

client data 

• element and a pointer to the next node in the list: 

 

 struct node { 

  int data; 

  struct node* next; 

 }; 

 

Extremely IMPORTANT: next is a pointer, its value is the ADDRESS of 

next node. All the linked list will be based on this feature!!!! 

 



Federico Ficarelli, Introduction to C 

The BuildOneTwoThree() function 

This is an address!!! 

NULL is the NEXT one!!! 



Federico Ficarelli, Introduction to C 

The Length() function 

This is an address!!! 



Federico Ficarelli, Introduction to C 

Put Together 

This is a pointer 



Federico Ficarelli, Introduction to C 

Generalization 

• The linked list can be expanded “indefinitely” 

• However the access to an element requires going through the list. 

Slower and slower for “last elements”. Fast for first elements 

• Deleting a list means deleting all the single nodes 

• Adding a node is generally done at the beginning of the list. It is a 

three steps procedure: 

 

1. Allocate the new node in the heap 

2. Set the next pointer of the new node to point to the current first 

node of the list 

3. Change the head pointer to point to the new node 



Federico Ficarelli, Introduction to C 

3 Steps Link Code 

Now we can think of writing a general function which adds a 

single node to head end of any list. Historically, this function is 

called "Push()" since we're adding the link to the head end 



Federico Ficarelli, Introduction to C 

The Wrong “Push” function 

• head IS A POINTER 

• We are passing it by VALUE (don’t be confused by the * in the 

argument. * IS PART of the head type) 

• head inside Push is a LOCAL variable. Its value is modified but this 

has NO feedback OUTSIDE 



Federico Ficarelli, Introduction to C 

The Right “Push” function 



Federico Ficarelli, Introduction to C 

A BIT OF “HANDS-ON” 



Federico Ficarelli, Introduction to C 

Writing and Running Programs 

#include <stdio.h> 

/* The simplest C Program */ 

int main(int argc, char **argv) 

{ 

  printf(“Hello World\n”); 

  return 0; 

} 

1. Write text of program (source code) using an editor 

such as emacs, save as file e.g. my_program.c 

2. Run the compiler to convert program from source to 

an “executable” or “binary”:   

       $ gcc –Wall –g my_program.c –o my_program 

my_program 

$ gcc -Wall –g my_program.c –o my_program 

tt.c: In function `main': 

tt.c:6: parse error before `x' 

tt.c:5: parm types given both in parmlist and separately 

tt.c:8: `x' undeclared (first use in this function) 

tt.c:8: (Each undeclared identifier is reported only once 

tt.c:8: for each function it appears in.) 

tt.c:10: warning: control reaches end of non-void function 

tt.c: At top level: 

tt.c:11: parse error before `return' 

3-N. Compiler gives errors and warnings; edit source 

file, fix it, and re-compile 

N. Run it and see if it works  

      $ ./my_program 

      Hello World 

      $ ▌ 

. / ?  

What if it doesn’t work? 

2. Precompile the code 



Federico Ficarelli, Introduction to C 

A Quick Digression About the Compiler 

#include <stdio.h> 

/* The simplest C Program */ 

int main(int argc, char **argv) 

{ 

  printf(“Hello World\n”); 

  return 0; 

} 

my_program 

__extension__ typedef  unsigned long long int   __dev_t; 

__extension__ typedef  unsigned int   __uid_t; 

__extension__ typedef  unsigned int   __gid_t; 

__extension__ typedef  unsigned long int   __ino_t; 

__extension__ typedef  unsigned long long int   __ino64_t; 

__extension__ typedef  unsigned int   __nlink_t; 

__extension__ typedef  long int   __off_t; 

__extension__ typedef  long long int   __off64_t; 

extern void flockfile (FILE *__stream)  ; 

extern int ftrylockfile (FILE *__stream)  ; 

extern void funlockfile (FILE *__stream)  ; 

int main(int argc, char **argv) 

{ 

  printf(“Hello World\n”); 

  return 0; 

} 

Compilation occurs in two steps: 

“Preprocessing” and “Compiling” 

In Preprocessing, source code is “expanded” into 

a larger form that is simpler for the compiler to 

understand.  Any line that starts with ‘#’ is a line 

that is interpreted by the Preprocessor. 

 

• Include files are “pasted in” (#include) 

• Macros are “expanded” (#define) 

• Comments are stripped out ( /*  */ , // ) 

• Continued lines are joined 

Preprocess 

Compile 

The compiler then converts the resulting text into 

binary code the CPU can run directly 

Why ? 



Federico Ficarelli, Introduction to C 

Final step: the loader (linker) 

• The loader merge together all the different functions that compose 

the final program: 

 

gcc –o my_exec.out –L/usr/local/lib –l lib1 –L/my_local_lib/lib -l lib2 



Federico Ficarelli, Introduction to C 

The makefile utility 

If a code is large and/or it shares subroutines with other codes, it is useful 

to split the source in many files that could be placed in different 

directories. 

 

To avoid compiling by hands the sources in the proper order, the make 

command could be used 

 

The make command can be programmed to do the job for you using a 

file containing instructions and directives.   

 

By default the make command looks in the present directory for a file 

called Makefile or makefile 

 

 



Federico Ficarelli, Introduction to C 

A simple makefile 

# this is a comment within the makefile 

 

myprog.x : main.o 

 gcc –o myprog.x main.o 

 

 

main.o : main.c 

 gcc –c main.c 

  

this tell to the make command 
that myprog.x depend from 
main.o 

make execute the command only 
when main.o 
have been built 

to compile the code, from the console the programmer issue 
the command: 
> make 


