Kinetic Monte Carlo simulation of organic photovoltaic and light emitting devices

Alison Walker Department of Physics University of Bath http://people.bath.ac.uk/pysabw/

Topics

- Kinetic Monte Carlo method
- Multiscale model of exciton transport
- Organic photovoltaic device characteristics
- Stacked Organic Light Emitting Devices
- Doped organic semiconductors

Kinetic Monte Carlo method

Typical events

Advantages of Kinetic MC

- MC allows examination of morphology dependence
- Can handle any morphology.
- Can handle interacting particles
- Can see how neighbouring charges in Coulomb bound pairs behave
- Recombination models can be tested

Organic Photovoltaic Devices

These are often made from blends of an electron and a hole conductor

Exciton motion in PV

Claudio Zannoni, Luca Muccioli (Bologna), David Beljonne (Mons)

h⁺

Exciton hopping between chromophores or molecules

S Athanasopoulos et al PRB **80** 195209 (2009) E Emilianova et al PRB (2010) T Papadopoulos et al Chem Sci **2** 1025 (2011)

IF3 packing in smectic phase

IF3 centre of mass

Ground state not planar: Intramolecular dihedral angle is 38°

31.5 Å

intermonomer distances in the smectic phase (Å)

Exciton Diffusion Length

In the smectic phase, excitons travel further normal to the layers of IF3 molecules so we predict anisotropy in the fluorescence initially with a decay time of 0.2 ps ie within a few hops

Energetic disorder

Organic blend PV

P K Watkins, A B Walker, G L B Verschoor Nano Letts 5, 1814 (2005)

Gyroids

R G E Kimber et al Phys Chem Chem Phys (2010) **12** 84 Continuous charge transport pathways, no disconnected or 'cul-de-sac' features **First Reaction Method** C Groves et al J. Chem. Phys.(2010) **133** 144110

Device characteristics

Why?

Angle	η _{gr}
0°	~22%
90°	~26%
180°	~83%

- Most time is spent 'tracking' at the interface.
- A polymer with a range of interface angles is far less efficient than a vertical structure.

Islands

- Reduce the composition purity by adding islands of material
- Repeat simulations and plot against previous feature sizes

Islands	IQE	Optimum feature size
0%	0.55	5.6 nm
1%	0.50	6.4 nm
5%	0.48	7.5 nm

Allowing for islands which would not be visible in experiment shifts the apparent optimum feature size.

R G E Kimber et al Phys. Chem Chem Phys **12** 844 (2009)

KMC vs experiment OPV blend device

R G E Kimber et al Phys Rev B (2012) 86, 235206

Display Devices

Fashion vibrating Bluetooth bracelet

OLED: Organic Light Emitting Device

Interlayers in OLEDs

Low LEP hole mobility μ_{LEP} contains 5% PFB Low iL electron mobility μ_{eiL} to prevent electrons reaching HIL High iL hole mobility μ_{hiL} to reduce hole build up and keep photon generation zone in IL

iL blocks excitons

M Roberts et al SPIE (2010) can be downloaded from CDT website L P Lu, D Kabra, R H Friend Adv Func Mat **22** 4165 (2012)

Exciton reactions

Excitons generated when holes and electrons are on adjacent sites

25% are singlets, 75% are triplets

- Triplet-triplet annihilation ${}^{3}D^{*} + {}^{3}A^{*} \rightarrow {}^{1}D + {}^{3}A^{*} \text{ or } {}^{1}D + {}^{1}A^{*} \text{ (ratio 75\%:25\%)}$
- Triplet-singlet annihilation ${}^{3}D^{*} + {}^{1}A^{*} \rightarrow {}^{1}D + {}^{3}A^{*}$
- Triplet-polaron quenching ${}^{3}D^{*} + A^{+} \rightarrow {}^{1}D + A^{+*}$

Singlets hop by Förster, Triplets hop by Dexter

Y Zhang, S Forrest PRL **108** 267404 (2012) S Reineke et al PRB **75** 125328 (2007)

Recombination profiles

Total Current Density

Fewer electron hopping sites in interlayer than in LEP

Optical Model

Solid line Photopic luminosity function (PLF) Dashed line predicted emission spectrum

- Find emission from an oscillating dipole in a stacked structure of micro-cavities.
- Luminance from product of overlap between the PLF and the emission spectrum and the rate of photon outcoupling

Luminance

Optical model accounts for microcavity effects Random exciton orientation Have compared normal with parallel orientation

Luminous efficiency

With interlayer Without interlayer Increase due to triplet-triplet interactions

Lines: experiment Symbols: KMC

Singlet yield change with bias voltage

- With interlayer
 - Without interlayer

EQE variation with interlayer length

As iL layer width increases, improvement in exciton formation efficiency is reduced by worse outcoupling efficiency.

Solid-state sensitized solar cells

<u>Left</u> a solar cell with a titanium dioxide electrode (where excitons travel through the titanium dioxide)

<u>Right</u> a solar cell with an alumina electrode (where excitons travel more quickly through the thin perovskite layer)

Doped organic semiconductors for solid state solar cells

Inert salts Et₄N-TFSI and Na-TFSI, Anion-cation pair generated by Li doping in the Spiro-OMeTAD (Spiro-OMeTAD⁺-TFSI⁻). C grey, N blue, F yellow, O red, S orange, Na black

2D slice of hopping sites in the plane of a dipole from an anion-cation pair, with electrostatic interaction energy

conductivities scaled by the conductivity of undoped spiro-OMeTAD

Solid lines: measured conductivities for spiro-OMeTAD doped with Li-TFSI (circles), and the inert dopants Na-TFSI (squares, short anion-cation distance, d_{AC}) and Et₄N-TFSI (triangles, large anion-cation distance, d_{AC}). Dashed line: expected increase in conductivity assuming that only 1% of the lithium salt added in the Spiro-OMeTAD will generate extra mobile charges

 $d_{AC} = 0.5\sqrt{3}$ nm (Na-TFSI, black squares), 0.6 $\sqrt{3}$ nm (Et₄N-TFSI, blue triangles) inset 0.7 $\sqrt{3}$ nm (pink crosses). Lines show fits to the simulated data

A Abate et al Phys. Chem Chem Phys submitted (2013)

Conclusions

- Multiscale modelling predicts exciton diffusion length changes with packing and hopping rates
- Dynamical Monte Carlo links morphology to device performance
- Building blocks approach to fitting data
- Can track singlet and triplet excitons
- Interlayer reduces electron leakage current and optimises recombination zone location
- Use the predictions for the recombination zones to look into degradation mechanisms.
- Useful tool to investigate reduction in mobility in doped organic semiconductors

Acknowledgements

Edward Wright Robin Kimber Pete Watkins Michael Cass

DyE SensiTIzed solar cells with eNhanced stabilitY

