

Functionalization of Graphitic Carbon Materials and Control: Ab-inito Study

Velimir Meded

11 September 2013

Institute of Nanotechnology, Campus North, KIT

Team at KIT

Institute of Nanotechnology (INT)

Pascal Friederich

Paul Kleine

Franz Symalla

Tobias Neumann

Igor Beljakov

Simon Widmaier

- Denis Danilov
- Wolfgang Wenzel

OLED, Shredder Code Intercalation of twisted graphene bilayers Morphologies, DEPOSIT Code

Graphene based devices (e.g. Quantum Dots) OLED, Morphologies

Morphologies, Organic Interfaces

Steinbuch Centre for Computing (SCC)

Angela Poschlad
Stefan Bozic
Ivan Kondov

Polymer Wrapping of CNT, OLED Workflow Generation, Grid-Beans Workflow, UNICORE, HTC

2

OLED, Shredder Code

Introduction: Graphitic Carbon Materials

*sp*² carbon based structures can exist in 0 - 3 dimensions:

3

Velimir Meded - Functionalization of Graphitic Materials and Control

Outline: Design Possibilities

Velimir Meded - Functionalization of Graphitic Materials and Control

Institute of Nanotechnology KIT, Karlsruhe, Germany

Outline: Design Possibilities

Velimir Meded - Functionalization of Graphitic Materials and Control

KIT, Karlsruhe, Germany

Experimental evidence of nanoparticle *tunnel* etching in HOPG

7

Velimir Meded - Functionalization of Graphitic Materials and Control

Experimental evidence of nanoparticle *tunnel* etching in HOPG

8

Velimir Meded - Functionalization of Graphitic Materials and Control

Origin of the 'smooth' depression?

Semi-empirical quantum chemical calculations point in direction of geometry relaxation.

000000000000000000000000000000000000000			00000000000000000000000000000000000000			000000000000000000000000000000000000000		
00000:		000000	000000		000000	00000		1000000
000000	180 pm	:00000	0000000	110 pm	00000	000000	51 pm	-
000000		1000000	00000		1000000	00000		
000000000000000000000000000000000000000			000000000000000000000000000000000000000			*****		

11/09/2013

Origin of the 'smooth' depression?

Semi-empirical quantum chemical calculations point in direction of geometry relaxation.

000000000000000000000000000000000000000			000000000000000000000000000000000000000			00000000000000000000000000000000000000		
000001	190 pm	100000	000001	110 pm	000000	00000	51 pm	<000000
00000	roo pin	1000000	000000	r to più	(000000	000000	51 pm	1000000
10000000	0000000000	00000000	00000000		00000000	*****	000000000	

Agrees very well with the STM images

Subsurface etching of nanoscale channels in graphite The mechanism:

Nature Comm. 4,1379 (2013)

Bandgap Engeneering in twisted Graphene bilayers

(Intercalated) Twisted Gr bilayer

11/09/2013

Bandgap Engeneering in twisted Graphene bilayers

What happens if we epitaxially grow few Gr layer systems? – Azimuthal rotations create superlattice patterns

 Different twist angle – different size superlattices (moiré patterns)

Use moiré pattern (the superlattice) to control the functionalization of graphene (selective intercalation)

Varchon et al., Phys. Rev. B 77, 165415 (2008)

- Superlattice of a twisted bilayer creates intercalation landscape (breaking of the symmetry)
- Preferred intercalation sites at sites of matching carbon rings (AA)
 - Twist angle defines multitude of intercalation templates

The angle *and* the intercalant form the pattern (concentration too)

Example: Coulomb repulsion between alkali (earth) atoms forbids neighboring sites occupation (blue)

Iron atoms are weakly attracted, forming clusters (green)

Alkali (earth) intercalants open band gap (up to 180 meV) and shift EF due to electron donation (e.g. Li \rightarrow Li⁺)

- Inset: the donated charge removal restores E_F without closing of the gap
- System periodic \rightarrow the band structure preserved (the degenerate Dirac cones)
- Br adsorbtion shifts the E_F level back to the Dirac-point (flat Br band below E_F)

The gap proportional to the donated charge and concentration

No correlation between structural buckling and bandgap

Ionized intercalants are source of periodic inhomogeneous external potential Manuscript in preparation

Sorting CNT by selective polymer wrapping

Selective Polymer Wrapping of CNT's

Institute of Nanotechnology KIT, Karlsruhe, Germany

Sorting CNT by selective polymer wrapping

Institute of Nanotechnology KIT, Karlsruhe, Germany

Velimir Meded - Functionalization of Graphitic Materials and Control

11/09/2013

Coarse-grained model for conformational search

- MD inefficient
- Construct a geometrical coarse-grained model
 - Disk-joint model
 - Parametrisation of shapes and chemically constrained angles δ and γ to polymer specific values by DFT

Polymer specific model for the internal energy (DFT): use dihedrals α and β as free parameters.

Construction of conformational ensemble by recursive exhaustive sampling

Construct all conformations of polymers with length n=12 links, such that all polymer units (red discs) are in contact with the tube of a given diameter D

For many diameters/polymer combinations no solutions exist!

Optimise the total internal energy: compute fraction of conformations with lowest internal energy

Normalised relative intensity, exp.

Fraction of low energy solutions, theo.

Fraction of low energy solutions, theo.

	γ [°]	δ [°]	disc radius [nm]	sticks [nm]
P1	160.1	177.6	0.352	0.288
P2	160.1	121.8	0.352	0.288
Р3	160.6 🔶 🔶	115.0	0.352	0.285
P4	156.2	115.1	0.352	0.286

P3 has greatest γ fixed angle and smallest δ which seems to result in selection of widest CNTs

Magnetic Anisotropy of Ru Adatom Decorated Gr

Velimir Meded - Functionalization of Graphitic Materials and Control

Institute of Nanotechnology KIT, Karlsruhe, Germany

11/09/2013

0D

Triangulines (simplest form with unique edge type) The flake magnetic with arm-chair manetism strongest at zig-zag the edge. Couples antiferromagnetically to

The studied systems are either graphene, graphene ribbon, or benzene ring based. H. Zhang, et al. PRL (2012)

Introducing something finite but larger than a benzene ring!

Magnetic Anisotropy of Ru Adatom Decorated Gr

Only Ru is magnetic.

Ru adatom.

L. Chen, *et al.*

Angew. Chem. Int. Ed. (2012)

Magnetic Anisotropy (MAE), Ru on Gr Flake

In-out-of plane In plane $E_{\rm IP} = E_{\parallel,\rm max} - E_{\parallel,\rm min}.$ $E_{\rm IO} = E_{\perp} - E_{\parallel,\rm min}$, 0.16 3.6 0.15 3.4 Out- vs In-plane MAE [meV] 0.14 3.2 0.13 3.0 0.12 n-plane MAE [meV] 2.8 0.11 0.10 2.6 0.09 2.4 0.08 2.2 0.07 2.0 0.06 0.05 1.8 0.04 1.6 0.03 1.4 0.02 Rather small! 1.2 0.01 0.00 5d much larger, in preparation

In-out-plane MAE as function of the Ru mag. moment Out-of-plane MAE [meV ZGQD AGQD Center Armchair C36 5 Armchair C90 Zigzag C33 Zigzag C97 2.5 Apex Beilstein J. Nanotechnol. 4, Dex 441 (2013) S 1.5 n-plane Center ..5 Adatom Magnetic Moment [µ_{Bohr}] Arm-chair (zig-zag) edge leads to incresead (decreased) magnetic moment, as well as, increased (decreased) E_{IO} . The zig-zag is magnetic and couples antiferromagnetically to Ru.

Conclusions and Outlook

- Graphitic materials open great possibility for fine-tuning the properties and, thus, broad application field in nanotechnology.
 - Understanding the often non-trivial underlying mechanisms which govern the physical properties is crucial for device deployment.
- Continue to identify interesting problems together with our experimentalist colleagues.

For more realistic simulations in future, combinations of techniques established on various scales must be interconnected in scale-bridging models.

Where applicable the corresponding multiscale workflows are already in development.

THANK YOU!

Industrial partners:

PHILIPS sense and simplicity

The Chemical Company

Funding from EC:

Partner projects, supporting infrastructures and software

31

11/09/2013

Velimir Meded - Functionalization of Graphitic Materials and Control

Institute of Nanotechnology KIT, Karlsruhe, Germany