
Introduction to HPC Numerical 
libraries on FERMI and PLX

HPC Numerical Libraries

11-12-13 March 2013

a.marani@cineca.it



WELCOME!!

The goal of this course is to show you how to get advantage of some of 
the most important numerical libraries for improving the performance of 
your HPC applications. We will focus on:

FFTW, a subroutine library for computing the
discrete Fourier transform (DFT) in one or more 
dimensions, of arbitrary input size, and of both real 
and complex data (as well as of even/odd data, i.e. 
the discrete cosine/sine transforms or DCT/DST)

A good number of libraries for Linear Algebra 
operations, including BLAS, LAPACK, 
SCALAPACK and MAGMA

PETSc, a suite of data structures and 
routines for the scalable (parallel) solution 
of scientific applications modeled by partial 
differential equations



ABOUT THIS LECTURE

This first lecture won’t be about numerical libraries…

Its purpose is to teach you the very basics of how to interact 
with CINECA’s HPC clusters, where exercises will take 

place.

You will learn how to access to our system, how to 
compile, how to launch batch jobs, and everything 

you need in order to complete the exercises 
succesfully

…don’t worry, it won’t last long!! ;-)



WE APOLOGIZE…

Some weeks ago we asked you to complete our UserDb 
registration form in order to grant you access to FERMI, 
our main HPC cluster…

…however, within the last week some urgent massive jobs made the 
cluster really hard to be used for exercises. Your jobs may need to 
remain in idle (waiting) state for a lot of time before their actual start!!

So we decided to let you have access to PLX, a smaller but faster cluster in 
terms of waiting time. FFTW exercises must be conducted on FERMI, so 
we are going to learn how to use both clusters (maybe in two different 
lectures)

So let’s start with some concept that is common to both systems, and 
then we will move to more cluster specific informations!



WORK ENVIRONMENT

Once you’re logged on FERMI or PLX, you are on your home space.

It is best suited for programming environment (compilation, small 
debugging sessions…)

Space available: 50 GB (FERMI) – 4 GB (PLX)

Environment variable: $HOME

Another space you can access to is your scratch space.

It is best suited for production environment (launch your jobs from there)

Space available: UNLIMITED (FERMI) – 32 TB (PLX)

Environment variable: $CINECA_SCRATCH

WARNING: On PLX is active a cleaning procedure, that deletes your files older than 
30 days!

Use the command “cindata” for a quick briefing about your space occupancy



As an user, you have access to a limited number of CPU hours to 
spend. They are not assigned to users, but to projects and are shared 

between the users who are working on the same project (i.e. your 
research partners). Such projects are called accounts and are a 

different concept from your username.

ACCOUNTING

You can check the state of your account with the command “saldo –b”, 
which tells you how many CPU hours you have already consumed for 

each account you’re assigned at 

(a more detailed report is provided by “saldo –r”). 



Between PLX and FERMI there is a ratio of 1:5 CPU hours, 
which means that every hour you spend on PLX is equal to 

5 hours spent on FERMI (that’s because of the different 
architecture of the two systems)

ACCOUNTING

The account provided for this course is 
“train_cnl12013” (you have to specify it on your job 
scripts). It expires in one month and is shared 
between all the students; there are plenty of hours for 
everybody, but don’t waste them!



MODULES

CINECA’s work environment is organized with modules, a 
set of installed tools and applications available for all users.

“loading” a module means defining all the environment 
variables that point to the path of what you have loaded.

After  a module is loaded, an environment variable is set of 
the form “MODULENAME_HOME”



MODULE COMMANDS
>module available (or just “> module av”)
Shows the full list of the modules available in the profile you’re into, divided 
by: environment, libraries, compilers, tools, applications

> module load <module_name>

Loads a specific module

> module show <module_name> 
Shows the environment variables set by a specific module

> module help <module_name>
Gets all informations about how to use a specific module



The Numerical Libraries you will learn about and use during the course 
are also available via module system

LIBRARY MODULES

Once loaded, they set the environment variable LIBRARYNAME_LIB .

If needed, there is also LIBRARYNAME_INC for the header files.

More on that during the course…



Architecture: BlueGene/Q
Processor: IBM PowerA2, 1.6 GHz
Number of processors (cores): 163840
Number of nodes: 10240 (16 cores per node)
RAM: 160 TB (16 GB/core)
Interconnection network: Internal (5D torus)
Disk space: 2 PB
Power consumption: ~1 MW
Operative system: Linux (on surface)
Peak performance: 2 PFlop/s
Compilers: Fortran, C, C++
Parallel libraries: MPI,OpenMP

FERMI

Login:   ssh <username>@login.fermi.cineca.it



FERMI IN TOP500

Top500 is a ranking of the most powerful HPC

clusters of the World, updated twice a year

www.top500.org

…

FERMI is the 9° most powerful supercomputer in the 
World! (3° in Europe)



FERMI ARCHITECTURE
This is how FERMI is hierarchically organized:



 Front-end nodes and Compute nodes are basically of a different 
architecture, they even have different OS

SOME CONSEQUENCES…

 You can ssh only on front-end nodes, it’s impossible to access 
directly to compute nodes

 Applications have to be compiled differently depending on which type 
of nodes you want to execute your program (cross-compiling)

 When you want to launch an application on compiling nodes, you 
have to allocate some resources via batch submission

 Since there is 1 I/O node each 64 or 128 compute nodes, there is a 
minimum number of nodes you can allocate at a time



COMPILING ON FERMI

In order to compile parallel programs (as in our case) we need to use 
compiler developed for back-end (compute) nodes.

You can get advantage of those compilers by loading the proper module:

module load bgq-xl       or        module load bgq-gnu

XL compilers family is recommended on FERMI, since it is developed 
specifically for IBM architectures, like BG/Q



Serial compiling: use the compilers prefixed with “bg” 

(bgxlf, bgxlc, bgxlc++)

COMPILING ON FERMI

Parallel compiling: use the compilers prefixed with “mp” 

(mpixlf77, mpixlc, mpixlcxx)

OpenMP compiling: use the thread-safe compilers suffixed with “_r” 
(mpixlf77_r, bgxlc_r, …) and the optimization flag 

–qsmp=omp:noauto

Get a full list of the compiler flags (optimization, debugging,

profiling,…) by typing:

 man <compiler name>

With the compiler in serial version (es: man bgxlc)



Once you have loaded the proper library module, specify its linking by 
adding a reference in the compiling command.

COMPILING WITH LIBRARIES

For some libraries, it may be necessary to include the header path

 -I$LIBRARY_INC



UNDEFINED REFERENCES
Sometimes your compilation goes wrong because of a similar error:

test.o:(.text+0xb8): undefined reference to `H5Z_xform_copy‘

It means that you are not linking the correct library. Luckily, there is a 
“magic formula” for finding it:

Now you know what is the library to link!

> for i in `ls $HDF5_LIB/*.a` ; do echo $i & nm $i | grep H5Z_xform_copy ; done



LAUNCHING JOBS

So let’s say you have compiled your executable and you
want to launch it…

The question is…HOW TO DO THAT????

Since we want to execute parallel programs, we have to
learn how to get access to back-end nodes

This can be done by writing a small batch script that will be
Submitted to a scheduler called LoadLeveler



LOADLEVELER BATCH SCRIPT
A LoadLeveler batch script is composed by four parts:

1) Bash interpreter

#!/bin/bash

2) LoadLeveler keywords (more on that later)

# @ …

# @ …

3) Variables initialization

export WORK_DIR=…

module load somelibrary

4) Execution line (more on that later)

runjob <runjob_options> : <executable> <arguments>



LL KEYWORDS
# @ job_name = check
# @ output = $(job_name).$(jobid).out
# @ error = $(job_name).$(jobid).err
# @ environment = COPY_ALL  #export all variables from your submission shell
# @ job_type = bluegene
# @ wall_clock_limit = 10:00:00       #execution time h:m:s, up to 24h
# @ bg_size =  64       # compute nodes number 
# @ notification = always|never|start|complete|error
# @ notify_user = <email_address>
# @ account_no = <budget_name>       #saldo –b 
# @ queue

Highlighted are the mandatory keywords, the others are highly suggested



LL KEYWORDS SPECIFIC FOR THE 
COURSE

# @ wall_clock_limit = 00:10:00       #exercises are short, and the lower 
time you ask, the sooner your job starts

# @ bg_size =  128       # no less (it won’t start), no  more (waste of nodes)! 
# @ account_no = train_cnl12013       #your account for the course
# @ class = training      #special high priority class reserved for you 
# @ queue

With great power comes great 
responsability!!!

FERMI is overbooked at the moment…please use 
the training class only for jobs related to 

exercises!!!



EXECUTION LINE

Your executable is launched on the compute nodes via the 
command “runjob”, that you can set in two ways:

1) Use “:” and provide executable infos how you’re used to
     runjob : ./exe_name  arg_1  arg_2

2) Use specific runjob flags

       --exe Path name for the executable to run 

runjob --exe ./exe_name 

--args Arguments for the executable specified by --exe

 runjob --exe ./exe_name --args arg_1 --args arg_2 
       



EXECUTION LINE: MPI TASKS 
SETTING

    --ranks-per-node  (-p) Number of ranks (MPI task) per compute node. Valid 

    values are 1, 2, 4, 8, 16, 32 and 64 (default=depending on the tasks requested)

bg_size = 64

runjob --ranks-per-node 1 : ./exe <options>  #64 nodes used, 1 task per node

runjob --ranks-per-node 4 : ./exe <options>  #64 nodes used, 4 tasks per node

--np (-n) Number of ranks (MPI task) in the entire job (default=max)

bg_size = 64

runjob --np 64 -- ranks-per-node 1: ./exe <options>  #64 tasks, 1 per node

runjob --np 256 -- ranks-per-node 4: ./exe <options> #256 tasks, 4 per node

runjob --np 200 -- ranks-per-node 4: ./exe <options> #200 tasks, 4 per node 

until all tasks are allocated

runjob --np 1 --ranks-per-node 1: ./exe <options> # serial job

Formula: np <= bg_size*ranks-per-node



EXECUTION LINE: ENVIRONMENT 
VARIABLES

--envs  Sets the environment variables for exporting them on the compute    

            nodes 

#MPI/OpenMP job (16 threads for each MPI task)

runjob -n 64 --ranks-per-node 1 --envs OMP_NUM_THREADS = 16 : ./exe

--exp-env Exports an environment variable from the current environment to the 
          job

     export OMP_NUM_THREADS = 16 

     runjob -n 64 --ranks-per-node 1  --exp-env OMP_NUM_THREADS : ./exe



FERMI JOB SCRIPT EXAMPLE

#!/bin/bash
# @ job_type = bluegene
# @ job_name = example
# @ comment = "BGQ Example Job"
# @ output = $(job_name).$(jobid).out
# @ error = $(job_name).$(jobid).out
# @ environment = COPY_ALL
# @ wall_clock_limit = 00:10:00
# @ bg_size = 128
# @ account_no = train_cnl12013
# @ class = training
# @ queue

export EXE=$CINECA_SCRATCH/.../my_program 

runjob --np 512 --ranks-per-node 16 --exe $EXE --args input.inp 



LOADLEVELER COMMANDS

Your job script is ready! How to launch it?
llsubmit
   llsubmit <job_script>
Your job will be submitted to the LL scheduler and executed
when there will be nodes availble (according to your priority)

llq 

   llq -u $USER

Shows the list of all your scheduled jobs, along with their status (idle,

running, closing,…)

Also, shows you the job id required for other llq options

    llq -s <job_id>

Provides information on why a selected list of jobs remain in 
the

NotQueued, Idle, or Deferred state.



llq -l <job_id>
Provides a long list of informations for the job requested.
In particular you'll be notified about the bgsize you requested and the 

real bgsize allocated:
     ………………………………

         ………………………………
     

BG Size Requested: 1024
BG Size Allocated: 1024
BG Shape Requested: 
BG Shape Allocated: 1x1x1x2
BG Connectivity Requested: Mesh
BG Connectivity Allocated: Torus Torus Torus Torus
………………………………
………………………………

LOADLEVELER COMMANDS

llcancel

  llcancel <job_id>

  Removes the job from the scheduler, killing it



JOB CLASSES

After the end of the course, class training will be disabled: how can you 
launch jobs then?

You have to modify your jobscript by removing the “class = training” 
keyword: you will be able to submit your jobs, but as a regular user (so 

expect long waiting times)

The class you’re going into depends on the resources you asked:

debug: bg_size=64, wall_clock_time <= 00:30:00

longdebug: bg_size=64, wall_clock_time > 00:30:00 (up to 24h)

parallel: bg_size>64  (valid values: 128,256,512,1024,2048. The          
bigger the number, the longer the waiting time)



Architecture: Linux Infiniband Cluster
Processor: Intel Xeon (Esa-Core Westmere) 
                   E5645 2.4 GHz 
Number of processors (cores): 3288
Number of nodes: 274 (12 cores per node)
RAM: 14 TB (4 GB/core)
Interconnection network: Infiniband
Number of GPUs: 548 (2 per node)
Operative system: Linux 
Peak performance: 32 TFlop/s (CPU); 
                                 565 TFlop/s (GPU)
Compilers: Fortran, C, C++
Parallel libraries: MPI,OpenMP

PLX

Login:   ssh <username>@login.plx.cineca.it



PLX vs. FERMI

The architecture of PLX is pretty different from FERMI because it is designed

for commercial users with not-so-scalable applications that need a better

performance of the single CPU and a bigger RAM memory.

Accessing on PLX compute nodes is less restrictive and not as complicated as 
FERMI, but it still has to be scheduled by a batch script. However, there is no 
need for cross-compiling (applications can be run both interactively and via 

batch job)

Being an older cluster, it has a larger number of modules installed, thus 
providing a more complete (but more confusing) work environment



COMPILING ON PLX
In PLX there are no XL compilers, but you can choose between 
three different compiler families: gnu, intel and pgi

You can take a look at the versions available with “module av” and then load 
the module you want. Defaults are: gnu 4.1.2, intel 11.1, pgi 11.1

module load intel    # loads default intel compilers suite

module load intel/co-2011.6.233--binary  #loads specific compilers suite

Compiler’s 
name

GNU INTEL PGI

Fortran gfortran ifortran pgf77

C gcc icc pgcc

C++ g++ icpc pgCC

Get a list of the

compilers flags with

the command man



PARALLEL COMPILING ON PLX
For parallel programming, two families of compilers are available: 

openmpi (recommended) and intelMPI .

There are different versions of openmpi, depending on which compiler has been used 
for creating them. Default is openmpi/1.4.4--gnu--4.5.2

module load openmpi    # loads default openmpi compilers suite

module load openmpi/1.4.5--intel--11.1--binary # loads specific compilers suite

Warning: openmpi needs to be loaded after the corresponding basic compiler suite. 
You can load both compilers at the same time with “autoload”

If another type of compiler was previously loaded, you may get a

“conflict error”. Unload the previous module with “module unload”



PARALLEL COMPILING ON PLX
Compiler’s name OPENMPI

INTELMPI

Fortran mpif90

C mpicc

C++ mpiCC

Compiler flags are the same as the basic compiler (since they are 
basically MPI wrappers of those compilers)

OpenMP is provided with the thread-safe suffix “_r” (ex: mpif90_r) and 
the following compiler flags:

gnu: -fopenmp
intel : -openmp

pgi: -mp



COMPILING WITH LIBRARIES

Linking libraries on PLX works exactly as on FERMI (load the library 
module, use –I and –L, watch out for undefined references…). 
However, where FERMI allowed only static linking, PLX lets you 
choose between static and dynamic linking, with the latter one as a 
default.

Static linking means that the library references are resolved at 
compile time, so the necessary functions and variables are already 
contained in the executable produced. It means a bigger executable 
but no need for linking the library paths at runtime. 

Dynamic linking means that the library references are resolved at run 
time, so the executable searches for them in the paths provided. It 
means a lighter executable and no need to recompile the program after 
every library update, but a lot of environment variables to define at 
runtime. 

For enabling static linking:  -static (gnu), -intel-static (intel), -Bstatic (pgi)



Now that we have our PLX program, it’s time to learn how 
to prepare a job for its execution

LAUNCHING JOBS

PLX uses a completely different scheduler with its own syntax, called 
PBS. The job script scheme remains the same:

- #!/bin/bash
- PBS keywords

- variables environment

- execution line



PBS KEYWORDS
#PBS –N jobname   # name of the job
#PBS -o job.out    # output file
#PBS -e job.err    # error file
#PBS -l select=1:ncpus=8:mpiprocs=1   #resources requested* 
#PBS -l walltime=1:00:00       #max 24h, depending on the queue
#PBS -q parallel         #queue desired
#PBS -A <my_account>      #name of the account

*: select = number of nodes requested

   ncpus = number of cpus per node requested

   mpiprocs = number of mpi tasks per node 

   for pure MPI jobs, ncpus  = mpiprocs. For OpenMP jobs, mpiprocs < ncpus



#PBS -A train_cnl12013    # your account name

#PBS -q private     # special queue reserved for you

#PBS -W group_list=train_cnl12013   # needed for entering in private queue

LL KEYWORDS SPECIFIC FOR THE 
COURSE

“private” queue is a particular queue composed by 4 nodes 
reserved for internal staff and course students

In order to grant fast runs to all the students, we ask you to 
not launch too big jobs (you won’t need them, anyways). 
Please don’t request more than 1 node at a time!



ENVIRONMENT SETUP AND
EXECUTION LINE

The command runjob is here replaced by mpirun:
mpirun –n 14 ./myexe arg_1 arg_2
–n is the number of cores you want to use.
It is way easier to setup than runjob! The “difficult part” here is setting 
the environment…

In order to use mpirun, openmpi (or IntelMPI) has to be loaded. Also, if 
you linked dynamically, you have to remember to load every library 
module you need.

The environment setting usually start with “cd $PBS_O_WORKDIR”. 
That’s because by default you are launching on your home space and 
may not find the executable you want to launch.

$PBS_O_WORKDIR points at the folder you’re submitting the job from.



#!/bin/bash
#PBS -l walltime=1:00:00
#PBS -l select=1:ncpus=12:mpiprocs=12 
#PBS -o job.out
#PBS -e job.err
#PBS -q private
#PBS -A train_cnl12013
#PBS –W group_list=train_cnl12013

cd $PBS_O_WORKDIR 
module load autoload openmpi 
module load somelibrary

mpirun ./myprogram < myinput

PLX JOB SCRIPT EXAMPLE



PBS COMMANDS
Being a different scheduler, of course the commands for operating with 
PBS are different than LL…

qsub
   qsub <job_script>
Your job will be submitted to the PBS scheduler and executed
when there will be nodes available (according to your priority and the
queue you requested)

qstat

   qstat

Shows the list of all your scheduled jobs, along with their status (idle,

running, closing,…)

Also, shows you the job id required for other qstat options



PBS COMMANDS

qstat -f <job_id>
Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, you made an error on the job script, you will
learn that the job won’t ever start

qdel

  qdel <job_id>

  Removes the job from the scheduler, killing it



JOB CLASSES

After the end of the course, you won’t be able to use the private queue 
anymore: how can you launch jobs then?

You have to modify your jobscript by changing the “PBS –q private” 
keyword with something else: you will be able to submit your jobs, but 

as a regular user (so expect long waiting times)

The queue you’re going into is the one you ask (it has to be specified!):

debug: max nodes= 2, wall_clock_time <= 00:30:00

parallel: max nodes=44, wall_clock_time <= 06:00:00

longpar: max nodes=22,  wall_clock_time <=24:00:00

You don’t need the PBS –W keyword anymore



USEFUL DOCUMENTATION

Check out the User Guides on our website www.hpc.cineca.it

FERMI:

http://www.hpc.cineca.it/content/ibm-fermi-user-guide

http://www.hpc.cineca.it/content/batch-scheduler-loadleveler-0

PLX:

http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0

http://www.hpc.cineca.it/content/batch-scheduler-pbs-0

http://www.hpc.cineca.it/content/ibm-fermi-user-guide
http://www.hpc.cineca.it/content/batch-scheduler-loadleveler-0
http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0
http://www.hpc.cineca.it/content/batch-scheduler-pbs-0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

