
Winning strategies

Introduction

• Since most of serial applications may have several parallel
solutions a methodological approach could be useful to
evaluate the range of available strategies, to provide
mechanisms for evaluating alternatives, and to reduce the
cost of backtracking from bad choices.

– The first step in developing parallel software is to understand the problem
that you wish to solve in parallel looking at all the phases that can exploit
parallelism.

– If you are starting with an existing serial program, this necessitates
understanding the existing code too.

– Before spending time in an attempt to develop a parallel solution, determine
whether or not the problem is one that can actually be parallelized.

Taxonomy

Order is from less to most expensive in terms of time and
parallelization complexity:

 Trivial parallelism (embarassing parallel)

 Automatic parallelization (compiler directives)

 community software (code reuse)

 community libraries (code reuse)

 custom code OpenMP (SMP exploitation)

 custom code MPI (perhaps with MPI I/O)

 custom code Hybrid (MPI & OpenMP)

 Accelerators: GPUs; languages: CUDA & OpenCL

 custom code Hybrid (MPI, OpenMP,CUDA,OpenCL)

Taxonomy

 Existing serial
code

Trivial Automatic Parallelizzation

Minor code
modification

Automatic parallelization
(compiler directives)

Parallel Application

Existing serial
code

Code Reuse

Community
software

Recompile and relink Parallel Application

Community
libraries

Non existing code

Custom Code Development

Major code
modification

Compile and link

Parallel
Application

Complete code
design

Existing serial
code

Parallelizzation
(OpenMP, MPI, Hybrid)

Development and
Parallelizzation

(OpenMP, MPI, Hybrid)

Recompile and
relink

Parallelization with
parameters sweepping

No code
modification

Methodological approach

• Ian Foster strategy:
 Partitioning:

 The computation that is to be performed and the data operated on by this computation are
decomposed into small tasks.

 Communication:
 The communication required to coordinate task execution is determined, and appropriate

communication structures and algorithms are defined.

 Agglomeration:
 The task and communication structures defined in the first two stages, if necessary, are

combined into larger tasks to improve performance or to reduce development costs.

 Mapping:
 Each task is assigned to a processor in a manner that attempts to satisfy the competing goals of

maximizing processor utilization and minimizing communication costs. Mapping can be
specified statically or determined at runtime by load-balancing algorithms.

Serial
problem

Partitioning Communication Agglomeration Mapping

Partitioning

There are two basic ways to partition computational work among parallel tasks: domain
decomposition and functional decomposition.

Domain decomposition:

 In this type of partitioning, the data associated with a problem (input, output, intermediate
values) is decomposed. Each parallel task then works on a portion of of the data.

 Good rules of thumb are to focus first on the largest data structure or on the data structure
that is accessed most frequently.

 Different phases of the computation may operate on different data structures or demand
different decompositions for the same data structures. In this case, we treat each phase
separately and then determine how the decompositions and parallel algorithms developed for
each phase fit together.

Fig. 1 Courtesy of Ning Li. Numerical
Algorithms Group (NAG)

Fig. 3 Courtesy of Jaun Alonso. Standford
University

Fig. 2 Courtesy of Todd Ringler.
Los Alamos National Laboratory

Partitioning
Functional decomposition

 In this approach, the initial focus is on the computation that is to be performed rather than on the
data manipulated by the computation.

 If we are successful in dividing this computation into disjoint tasks, we proceed to examine the data
requirements of these tasks.

Signal processing Atmospheric model
Fig. 4 Courtesy of Blaise Barney, Lawrence Livermore National Laboratory

Communication

• Some types of problems can be decomposed and executed in parallel with virtually
no need for tasks to communicate. These types of problems are often called
embarrassingly parallel

• Most of parallel applications are not quite so simple, and do require tasks to share
data with each other. There are a number of important factors to consider when
designing your program's inter-task communications:

 Inter-task communication virtually always implies overhead.

 Machine cycles and resources that could be used for computation are instead used
to package and transmit data.

 Communications frequently require some type of synchronization between tasks,
which can result in tasks spending time "waiting" instead of doing work.

 Sending many small messages can cause latency to dominate communication
overheads. Often it is more efficient to package small messages into a larger
message, thus increasing the effective communications bandwidth.

 Synchronous vs. asynchronous communications. Asyncronous communications are
generally better because interleaving computation with communication could be a
great benefit.

Agglomeration

• Domain and functional decomposition is a non trivial task which is exposed to the
communication limit beetween processes.

• Communication cost among processes is one of the major limits to functional and domain
decomposition.

• When communication exeeds computation time the parallel performance of the code is
compromised and agglomeration of subdomains could be useful.

In (Fig. 5), a computation on an 8x8 grid is partitioned into 64 tasks, each responsible for a single point, while in (Fig. 6) the same
computation is partitioned on a 2x2 grid into 4 tasks, each responsible for 16 points.
In (Fig. 5), 256 communications are required, 4 per task; these transfer a total of 256 data values. In (Fig. 6), only 16 communications
are required, and only 64 data values are transferred.

Fig. 5 Courtesy of Ian Foster. Argonne National Laboratory Fig. 6 Courtesy of Ian Foster. Argonne National Laboratory

Mapping

 The goal of mapping techniques is normally to minimize total execution
time. We use two strategies to achieve this goal:

 We place tasks that are able to execute concurrently on different processors, so as to
enhance concurrency.

 We place tasks that communicate frequently on the same processor or node, so as to
increase locality.

 Most common mapping techniques

 Static mapping: many algorithms developed using domain decomposition techniques
feature a fixed number of equal-sized tasks and structured local and global
communication. In such cases, an efficient mapping is straightforward.

 Dynamic mapping: in more complex domain decomposition-based algorithms with
variable amounts of work per task and/or unstructured communication patterns,
efficient agglomeration and mapping strategies may not be obvious. Hence, we may
employ load balancing algorithms that seek to identify efficient agglomeration and
mapping strategies, typically by using heuristic techniques. The time required to execute
these algorithms must be weighed against the benefits of reduced execution time. The
most complex problems are those in which either the number of tasks or the amount of
computation or communication per task changes dynamically during program execution.

Methodological approach
• Identify the program's hotspots

– Know where most of the real work is being done. The majority of scientific and technical
programs usually accomplish most of their work in a few places.

– Profilers and performance analysis tools can help here

– Focus on parallelizing the hotspots and ignore those sections of the program that

account for little CPU usage

• Identify bottlenecks in the program
– Are there areas that are disproportionately slow, or cause parallelizable work to halt or

be deferred? For example, I/O is usually something that slows a program down.

– May be possible to restructure the program or use a different algorithm to reduce or

eliminate unnecessary slow areas

• Identify inhibitors to parallelism

– One common class of inhibitor is data dependence.

• Investigate other algorithms if possible
– This may be the single most important consideration when designing a parallel

application

Methodological approach

• Respect/be aware of standards

 Programming: ANSI C, ISO C90/99, FORTRAN ISO 90 etc

 Numerical: IEEE-754, IEEE 754-2008

 System: POSIX compliance

• Respect/be aware of scientific data formats

 HDF5 & BioHDF (this can help in Visualization, too)

 NetCDF

 GRIB, FITS, CERNLIB, XMDF et al

• Do Fault Tolerance and Verification & Validation

• Do checkpointing

 Save the intermediate application states

• Documentation

 Very important to ensure software quality

Bibliography

• Bibliography

 Designing and Building parallel programs, Ian Foster.

An Online Publishing Project of Addison-Wesley Inc., Argonne National Laboratory, and the NSF

Center for Research on Parallel Computation.
http://www.mcs.anl.gov/~itf/dbpp/

 Introduction to Parallel Computing, Blaise Barney, Lawrence Livermore National Laboratory
https://computing.llnl.gov/tutorials/parallel_comp/

 Spherical Geodesic Grids: A New Approach to Modeling the Climate, Todd Ringler, Los Alamos
National Laboratory
http://kiwi.atmos.colostate.edu/BUGS/geodesic/

 2DECOMP&FFT – A highly scalable 2D decomposition library and FFT interface, Ning Li, Numerical
Algorithms Group (NAG)
http://www.2decomp.org/pdf/17B-CUG2010-paper-Ning_Li.pdf

 Computational Methods in Aircraft Design, Juan Alonso, Standford University
http://adg.stanford.edu/aa241/design/compaero.html

http://www.aw.com/
http://www.aw.com/
http://www.aw.com/
http://www.anl.gov/
http://softlib.rice.edu/CRPC.html
http://softlib.rice.edu/CRPC.html
https://computing.llnl.gov/tutorials/parallel_comp/
http://kiwi.atmos.colostate.edu/BUGS/geodesic/
http://www.2decomp.org/pdf/17B-CUG2010-paper-Ning_Li.pdf
http://www.2decomp.org/pdf/17B-CUG2010-paper-Ning_Li.pdf
http://www.2decomp.org/pdf/17B-CUG2010-paper-Ning_Li.pdf
http://www.2decomp.org/pdf/17B-CUG2010-paper-Ning_Li.pdf
http://www.2decomp.org/pdf/17B-CUG2010-paper-Ning_Li.pdf
http://www.2decomp.org/pdf/17B-CUG2010-paper-Ning_Li.pdf
http://www.2decomp.org/pdf/17B-CUG2010-paper-Ning_Li.pdf
http://adg.stanford.edu/aa241/design/compaero.html

