= SCAI

SuperComputing Applications and Innovation

Debugging

CINECA

o SCAl

SuperComputing Applicatio

Introduction

One of the most widely used methods to find out the reason of a strange
behavior in a program is the insertion of “printf” or “write” statements in
the supposed critical area.

However this kind of approach has a lot of limits and requires frequent code
recompiling and becomes hard to implement for complex programs, above
all if parallel. Moreover sometimes the error may not be obvious or
hidden.

Debuggers are very powerful tools able to provide, in a targeted manner, a
high number of information facilitating the work of the programmer in
research and in the solution of instability in the application.

For example, with three simple debugging commands you can have your
program run to a certain line and then pause. You can then see what value
CINECA
any variable has at that point in the code.

o SCAl

SuperComputing Applicatio

Debugging process

* The debugging process can be divided into four main steps:

1. Start your program, specifying anything that might affect its
behavior.

2. Make your program stop on specified conditions.
3. Examine what has happened, when your program has stopped.

4. Change things in your program, so you can experiment with

correcting the effects of one bug and go on to learn about another.
CINECA

o SCAl

SuperComputing Applicatio

Most popular debuggers

 Debuggers are generally distributed within the compiler suite.

« Commercial:
— Portland pgdbg
— Intel idb

* Free:
— GNU gdb

* Moreover there are companies specialized in the production of very
powerful debuggers , among them most popular are:

— Allinea DDT
— Totalview

CINECA

= SCAI

SuperComputing Applications and Innovation

Debugger capabilities

The purpose of a debugger is to allow you to see what is going on “inside”
another program while it executes or what another program was doing at
the moment it crashed.

Using specifics commands, debuggers allow real-time visualization of variable
values, static and dynamic memory state (stack, heap) and registers state.

Most common errors are:

1.

o U s WwWwN

pointer errors

erray indexing errors

allocation errors

routines dummy and actual arguments mismatch
infinite loops

|/O errors
CINECA

o SCAl

SuperComputing Applicatio

Compiling for debugging

* In order to debug a program effectively, the debugger needs debugging
information which is produced compiling the program with the “-g”

flag.
* This debugging information is stored in the object file; it describes the

data type of each variable or function and the correspondence between
source line numbers and addresses in the executable code.

— GNU compiler:

— gcc/g++/gfortran —g [other flags] source -0
executable

— PGI compiler:
— pgcc/pgCC/pgf90 —g [other flags] source —-o executable

— INTEL compiler: CINECA

— dcc/icpce/ifort —g [other flags] source -o executable

o SCAl

SuperComputing Applicatio

Execution

* The standard way to run the debugger is:

— debugger name executable

Otherwise it's possible to first run the debugger and then point to the
executable to debug:

— GNU gdb:
* gdb
> file executable

* |t’s also possible to debug an already-runnig program started outside the
debugger attaching to the process id of the program.

Syntax:
— GNU gdb:
e qgdb
> attach process 1id CINECA

* gdb attach process id

o SCAl

SuperComputing Applicatio

Command list

e run: startdebugged program

e list: list specified function or line. Two arguments with comma
between specify starting and ending lines to list.

list begin,end

* break <line> <function> : set breakpoint at specified line or
function, useful to stop execution before a critical point.

break filename:line

break filename:function

It’s possible to insert a boolean expression with the sintax:
break <line> <function> condition

With no <line> <function>, uses current execution address ORNECA
selected stack frame. This is useful for breaking on return to a stack frame.

o SCAl

SuperComputing Applicatio

Command list

e clear <line> <func> : Clear breakpoint at specified line or
function.

e delete breakpoints [num] : delete breakpoint number “num”.
With no argument delete all breakpoints.

e If : Setabreakpoint with condition; evaluate the condition each time
the breakpoint is reached, and stop only if the value is nonzero. Allowed
logical operators:
>, <, >= , <=, ==
Example :
break 31 1if 1 >= 12

e condition <num> < expression> : As the “if” command

associates a logical condition at breakpoint number “num”.

e next <count>: continue to the next source line in the currédtEcA

(innermost) stack frame, or count lines.

o SCAl

SuperComputing Applicatio

Command list

e continue: continue program being debugged, after signal or
breakpoint

e where : print backtrace of all stack frames, or innermost “count” frames.

e step : Step program until it reaches a different source line. If used
before a function call, allow to step into the function. The debugger stops
at the first executable statement of that function

e sStep count : executes count lines of code as the next command

e finish : execute until selected stack frame or function returns and
stops at the first statement after the function call. Upon return, the value
returned is printed and put in the value history.

e set args :setargument list to give program being debugged when it is
started. Follow this command with any number of args, to be passed to
the program.

e set var variable = <EXPR>: evaluate expression EXPR and
assign result to variable varialble, using assignment syntax approprié"t'@'ECA
for the current language.

= SCAI

SuperComputing Applications and Innovation

Command list

e search <expr>: search for an expression from last line listed

e reverse-search <expr> : search backward for an expression
from last line listed

e display <exp>: Print value of expression exp each time the
program stops.

* print <exp>: Print value of expression exp
— This command can be used to display arrays:
* print array[num el]displays element num el

e print *array@len displays the whole array

e watch <exp>: Seta watchpoint for an expression. A watchpoint stops
execution of your program whenever the value of an expression changes.

e info locals: printvariable declarations of current stack frame.

e show values <number> : shows number elements of value histdfy'E<A
around item number or last ten.

o SCAl

SuperComputing Applicatio

Command list

* backtrace <number, full> : shows one line per frame, for many
frames, starting with the currently executing frame (frame zero), followed
by its caller (frame one), and on up the stack. With the number
parameter print only the innermost number frames. With the full
parameter print the values of the local variables also.

— #0 squareArray (nelem in array=12,
array=0x601010) at variliable print.c:67
- #1 0x00000000004005f£5 in main () at

variable print.c:34
e frame <number> : selectand print a stack frame.
e up <number> : allowto go up number stack frames
e down <number> : allowtogo up number stack frames
e info frame : givesall informations about current stack frame
« detach: detach a process or file previously attached. oLl Sl

e quit: quitthe debugger

o SCAl

SuperComputing Applicatio

Debugging Serial Program

“pointer error” example

Program that:

1. constructs an array of 10 integers in the variable arrayl

2. gives the array to a function squareArray that executes the square
of each element of the array and stores the result in a second array
named array?2

3. After the function call, it’'s computed the difference between array?
and arrayl and stored in array del. The array del is then written
to standard output

4. Code execution ends without error messages but the elements of
array del printed on standard output are all zeros. CINECA

= SCAI

SuperComputing Applications and Innovation

Debugging Serial Program

#include <stdio.h>
#include <stdlib.h>
int indx;

void initArray(int nelem in array, 1nt *array)

4

volid printArray(int nelem in array, 1int *array);
int squareArray (int nelem in array, int *array)
int main(void) {

const int nelem = 12;

int *arrayl, *array2, *del;

arrayl = (int *)malloc (nelem*sizeof (1nt));
array2 = (int *)malloc (nelem*sizeof (1int));
del = (int *)malloc (nelem*sizeof (int));

initArray(nelem, arrayl);
printf ("arrayl = "); printArray(nelem, arrayl);
array2 = arrayl; CINECA

squareArray (nelem, array?2);

= SCAI

SuperComputing Applications and Innovation

Debugging Serial Program

for (indx = 0, i1ndx < nelem; indx++)
{
del[indx] = array2[indx] - arrayl[indx];
}
printf (“La fifferenza fra array?2 e arrayl e’': ");
printArray (nelem, del);
free(arrayl);
free(array?2);
free(del) ;
return 0;}

vold initArray(const int nelem in array, 1int *array)

{

for (indx = 0; indx < nelem in array; indx++)

{
array[indx] = indx + 2;} CINECA

= SCAI

SuperComputing Applications and Innovation

Debugging Serial Program

int squareArray (const int nelem in array, int *array)
{
int indx;
for (indx = 0; indx < nelem in array; indx++)
{
array[indx] *= array[indx];}
return *array;
}
vold printArray(const int nelem in array, int *array)
{
printf("["),
for (indx = 0; 1ndx < nelem in array; indx++)
{
printf("sd ", arrayl[indx]); }
printf ("]J\n\n");

CINECA

o SCAl

SuperComputing Applicatio

Debugging Serial Program

* Compiling: gcc —-g -o ar diff ar diff.c
* Execution: ./arr diff
* Expected result:
— del = [2 o0 12 20 30 42 56 72 90 110 132 156]

e Real result

—del = [00 O0O0O0O0O0O0OO0OOOO] CINECA

o SCAl

SuperComputing Applicatio

Debugging Serial Program

Debugging
* Runthe debuggergdb ->gdb ar diff

e Stepl: possible coding error in function squareArray ()

— Procedure: list the code with the 1ist command and insert a
breakpoint at line 16 “break 16” where there is the call to
squareArray () . Let’s start the code using the command run.
Execution stops at line 16.

Let’s check the correctness of the function squareArray ()
displaying the elements of the array array2 using the command
disp, For example (disp array2[1l] = 9) produces the
expected value. CINECA

= SCAI

SuperComputing Applications and Innovation

Debugging Serial Program

e Step2: check of the difference between the element values in the two
arrays

— For loop analysis:

#35: for (indx = 0; indx < nelem; indx++)

(gdb) next

37 del[indx] = array2[indx] - arrayl[indx];
(gdb) next

35 for (indx = 0; indx < nelem; indx++)

— Visualize array after two steps in the for loop:
(gdb) disp array2[1l]
9

array2[1]

(gdb) disp arrayl([1l]

arrayl[1]=9 CINECA

o SCAl

SuperComputing Applicatio

Debugging Serial Program

As highlighted in the previous slide the values of the elements of arrayl
and array2 are the same. But this is not correct because array,
arrayl, was never passed to the function squareArray (). Only

array2 was passed in line 38 of our code. If we think about it a bit, this
sounds very much like a “pointer error”.

To confirm our suspicion, we compare the memory address of both arrays:
(gdb) disp arrayl
1: arrayl = (int *) 0x607460
(gdb) disp array?
2: array2 = (int *) 0x607460

We find that the two addresses are identical. CINECA

= SCAI

SuperComputing Applications and Innovation

Debugging Serial Program

The error occurs in the statement: array?2 = arrayl because in this

way the first element in array2 points to the address of the first
elementinarrayl.

Solution:

To solve the problem we just have to change the statement

arrayZ2 = arrayl;
in
for (indx = 0; index < nelem; indx++)
{
array2|[k] = arrayl[k]

CINECA

o SCAl

SuperComputing Applicatio

Parallel debugging

Normally debuggers can be applied to multi-threaded parallel codes,
containing OpenMP or MPI directives, or even OpenMP and MPI hybrid
solutions.

In general the threads of a single program are akin to multiple processes
except that they share one address space (that is, they can all examine
and modify the same variables). On the other hand, each thread has its
own registers and execution stack, and perhaps private memory.

GDB provides some facilities for debugging multi-thread programs.

Although specific commands are not provided, gdb still allows a very powerful
approach for codes parallelized using MPI directives. For this reason |éc“s\lECA
widely used by programmers also for these kind of codes.

= SCAI

SuperComputing Applications and Innovation

Debug OpenMP Applications

 GDB facilities for debugging multi-thread programs :

— automatic notification of new threads
— thread <thread number>command to switch among threads
— 1info threads command to inquire about existing threads

(gdb) info threads

* 2 Thread 0x40200940 (LWP 5454) MAIN .omp fn.0
(.omp data 1i=0x7fffffffd280) at serial order bug.f90:27
1 Thread O0x2aaaaaf7d8b0 (LWP 1553) MAIN .omp fn.0

(.omp data i=0x7fffffffd280) at serial order bug.f90:27

* thread apply <thread number> <all> args allow to apply a command to apply
a command to a list of threads.

« When any thread in your program stops, for example, at a breakpoint, all other threads in
the program are also stopped by GDB.

e GDB cannot single-step all threads in lockstep. Since thread scheduling is up to your
debugging target’s operating system (not controlled by GDB), other threads may execute
more than one statement while the current thread completes a single step unless you use
the command :set scheduler-locking on.

INECA
e GDB is not able to show the values of private and shared variables in OpenMP paracf.le'Tl <

regions.

= SCAI

SuperComputing Applications and Innovation

Debug OpenMP Applications

 Example of “hung process”

— In the following ORenMP code, using the SECTIONS directive, two
threads initialize threir own array and than sum it to the other.

PROGRAM lock
INTEGER*8 LOCKA, LOCKB
INTEGER NTHREADS, TID, I,OMP GET NUM THREADS, OMP GET THREAD NUM
PARAMETER (N=1000000)
REAL A(N), B(N), PI, DELTA
PARAMETER (PI=3.1415926535)
PARAMETER (DELTA=.01415926535)

CALL OMP INIT LOCK (LOCKA)
CALL OMP INIT LOCK (LOCKB)

!SOMP PARALLEL SHARED (A, B, NTHREADS, LOCKA, LOCKB) PRIVATE (TID)
TID = OMP_GET THREAD NUM ()

!'SOMP MASTER
NTHREADS = OMP GET NUM THREADS ()

PRINT *, 'Number of threads = ', NTHREADS
!SOMP END MASTER
PRINT *, 'Thread', TID, 'starting...' CINECA

!SOMP BARRIER

= SCAI

SuperComputing Applications and Innovation

Debug OpenMP Applications

! SOMP SECTIONS
ISOMP SECTION
PRINT *, 'Thread',K TID,' initializing A()'
CALL OMP_SET LOCK (LOCKA)
DO I =1, N
A(I) = I * DELTA
ENDDO
CALL OMP SET LOCK (LOCKB)
PRINT *, 'Thread',K TID,' adding A() to B{()'
DO I =1, N
B(I) = B(I) + A(I)
ENDDO
CALL OMP UNSET LOCK (LOCKB)
CALL OMP UNSET LOCK (LOCKA)

'SOMP SECTION

PRINT *, 'Thread',K TID,' initializing B()'
CALL OMP SET LOCK (LOCKB)
DO I =1, N
B(I) = I * PI
ENDDO
CALL OMP SET LOCK (LOCKA)
PRINT *, 'Thread',K TID,' adding B() toA()'
DO I =1, N
A(I) = A(I) + B(I)
ENDDO
CALL OMP_UNSET_LOCK(LOCKA)
CALL OMP_UNSET_LOCK(LOCKB)

!SOMP END SECTIONS NOWAIT
PRINT *, 'Thread',6K TID,' done.'
ISOMP END PARALLEL

END

CINECA

o SCAl

SuperComputing Applicatio

Debug OpenMP Applications

 Compiling:

gfortran —-fopenmp -g —-o omp debug omp debug.f90
e Esecution:

— export OMP NUM THREADS=2

— ./omp debug

— The program produces the following output before hanging:
Number of threads = 2

Thread 0 starting...

Thread 1 starting...

Thread 0O initializing A()

Thread 1 initializing B{() CINECA

= SCAI

SuperComputing Applications and Innovation

Debug OpenMP Applications

 Debugging

e List the source code from line 10 to 50 using the command: 1ist 10, 50

* Insert a breakpoint at the beginning of the parallel regionlb 20 and run
the executable with the command: run

* Check the threads are at the breakpoint : info threads

* 2 Thread 0x40200940 (LWP 8533) MAIN .omp fn.0
(.omp data 1=0x7fffffffd2b0) at openmp bug2 nofix.f90:20

1 Thread Ox2aaaaaf’7d8b0 (LWP 8530) MAIN .omp fn.0
(.omp data 1=0x7fffffffd2b0) at openmp bug2 nofix.f£90:20

Looking at the source it’s clear that in the SECTION region the threads
don’t execute the statements:

PRINT *, 'Thread',bKTID,' adding A() to B()'
PRINT *, 'Thread',KTID,' adding B() to A()"‘

* Insert a breakpoint in the two sections:
CINECA
thread apply 2 b 35

thread apply 1 b 49

= SCAI

SuperComputing Applications and Innovation

Debug OpenMP Applications

* Restart the execution: thread apply all cont

Continuing.
Thread 1 starting...
Number of threads = 2
Thread 0 starting...
Thread 1 initializing A()
Thread 0 dinitializing B()

 The execution hangs without reaching the breakpoints!

* Stop execution with “ctrl c¢” andcheck where threads are: thread apply all
where

Thread 2 (Thread 0x40200940 (LWP 8533)):

0x00000000004010b5 in MAIN .omp fn.0
(.omp data i=0x7fffffffd2b0) at openmp bug2 nofix.f£90:29

Thread 1 (Thread 0xZ2aaaaaf’7d8b0 (LWP 8530)) : CINECA

0x0000000000400e6d in MAIN .omp fn.0
(.omp data i=0x7fffffffd2b0) at openmp bug2 nofix.f£90:43

o SCAl

SuperComputing Applicatio

Debug OpenMP Applications

* Thread number 2 is stopped at line 29 on the statement:
CALL OMP SET LOCK (LOCKB)

 Thread number 1 is stopped at line 43 on the statement :
CALL OMP SET LOCK (LOCKA)

* Soit’s clear that the bug is in the calls to routines OMP SET LOCK that
cause execution stopping

* Looking at the order of the routine calls to OMP_SET LOCK and
OMP UNSET LOCK itraise up the there is an error.

* The correct order provides that the call to OMP SET LOCK must be
followed by the correspective OMP UNSET LOCK

* Arranging the order the code finishes succesfully
CINECA

o SCAl

SuperComputing Applicatio

Debug MPI Applications

 There are two common ways to use serial debuggers such GDB to debug
MPI applications

— Attach to individual MPI processes after they are running using the
“attach” method available for serial codes launching some

instances of the debugger to attach to the different MPI processes.

— Open a debugging session for each MPI process trough the command
“mpirun”.

CINECA

= SCAI

SuperComputing Applications and Innovation

Debug MPI Applications

e Attach method procedure.

— Run the MPI application in the standard way
* mplrun —-np 4 executable

* From another shell, using the “t op” command look at the MPI

processes which are bind to the executable.

top - 15:06:40 up 91 days, 4:00, 1 user, load average: 5.31, 3.34, Z.66
Tasks: 198 total, 9 running, 188 sleeping, 0 stopped, 1 zombie
Cpu{s): 97.4%us, 2.3%sy, 0.0%ni, 0.2%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st

Mem: 16438664k total, 3375504k used, 13063160k free, 72232k buffers
Swap: 16779884k total, 48328k used, 16731556k free, 1488208k cached
TIME+ COMMAND
25 0 208m 10m 4320 R 99.8 0.1 0:10.23 Isola MPI Z inp
PID executable MPI 25 0 208m 10m 4312 R 99.8 0.1 0:10.23 Isola MPI 2 inp
processes 25 0 208m 10m 4320 R 99.5 0.1 0:10.15 Isola MPI Z inp
25 0 235m 18m 4656 R 97.5 0.1 0:09.97 Isola MPI 2 inp
15 0 82108 2660 1%04 5 0.0 0.0 0:00.08 bash
15 0 10lm 2472 1296 5 0.0 0.0 0:00.06 sshd ClNECA
15 0 82108 2668 1908 5 0.0 0.0 0:00.08 bash
15 0 74500 3396 2420 5 0.0 0.0 0:00.03 mpirun
15 0 28792 2184 1492 R 0.0 0.0 0:00.01 top

o SCAl

SuperComputing Applicatio

Debug MPI Applications

e Attach method procedure.

o7

— Run up to “n” instances of the debugger in “attach” mode, where
“n” is the number of the MPI processes of the application. Using this
method you should have to open up to “n” shells. For this reason, if
not necessary, is advisable to use a little number of MPI processes.

— Referring to the previous slide we have to run four instances of GDB:
e gdb attach 12513 (shell1)
e gdb attach 12514 (shell 2)
e gdb attach 12515 (shell 3)
e gdb attach 12516 (shell4)

— Use debugger commands for each shell as in the serial case
CINECA

= SCAI

SuperComputing Applications and Innovation

Debug MPI Applications

e Attach method procedure.

— The method described in the previous slides is unusable if the application
crashes after few seconds.
— An inelegant-but-functional technique commonly used with this method is to

insert the following code in the application where you want to attach. This
code will then spin on the sleep() function forever waiting for you to attach

with a debugger.

{ C/C++ Fortran

int i = 0; integer :: i = 0

printf ("PID %d ready for write (*,*) "PID", getpid()," ready
attach\n", getpid()):; for attach"

fflush (stdout) ; DO WHILE (i == 0)

while (0 == i) sleep(5); call sleep(5)
} ENDDO

— Recompile and re-launch the code attaching with the debugger to the process
returned by the function “getpid () ”

ow:7
|

— With the next command go to the while or DO instruction and change
withavalue#0:set var 1 = 7 CINECA

— Then set a breakpoint after this block of code and continue execution until the
breakpoint is hit.

CINECA 5 CAI

SuperComputing Applications and Innovation

Debug MPI Applications

* Procedure with the “mpirun” command.

— This technique launches a separate window for each MPI process in
MPI_COMM_WORLD, each one running a serial instance of GDB that will
launch and run your MPI application.

* mpilirun -np 2 xterm -e gdb nome eseguibile

[corsolcorsill0 Isolal$ mpirun -np 2 xterm -e gdb ./Isola MPI 2 input gdb

NU gdb (GDB) Red Hat Enterprise Linux (7,0,1-23,e15_5,2)
opyright (C) 2009 Free Software Foundation, Inc,

icense GPLv3+: GNU GPL version 3 or later <http://gnu,org/licenses/gpl.html>
his is free software: you are free to change and redistribute it,

here is NO WARRANTY, to the extent permitted by law, Type "show copying"

nd "show warranty" for details,

his GDB was configured as "x86_B4-redhat-linux-gnu",

or bug reporting instructions, please see:
http://www, gnu, org/sof tware/gdb/bugs/>, . .

eading symbols from /home/corso/corso_debugging/IsolasIsola_MPI_2_input_gdb,,.d

GNU gdb {GDB) Red Hat Enterprise Linux (7,0,1-23,e15_5,2)
Copyright (C) 2003 Free Software Foundation, Inc,

License GPLw3+: GNU GPL version 3 or later <http://gnu,org/licenses/gpl.html>
This is free software: you are free to change and redistribute it,

There is NO WARRANTY, to the extent permitted by law, Type "show copying"

and "show warranty" for details,

This GDB was configured as "xB86_64-redhat-linux-gnu",

For bug reporting instructions, please see:
<https/Awww, gnu, orgdsof tware/gdb/bugs/>., .,

Reading symbols from /home/corso/corso_debugging/Isolas/Isola_MPI_2_input_gdb,,.d

CINECA
— Now we can debug our MPI application using for each shell all the

functionalities of GDB.

o SCAl

SuperComputing Applicatio

Debug MPI Applications

Debug MPI hung process

* In parallel codes using message passing, processes are typically
performing independent tasks simultaneously. When the time comes to
send and receive messages, certain conditions must be met in order to
successfully transfer the data. One of these conditions involves blocking
vs. nonblocking sends and receives.

* In a blocking send, the function or subroutine does not return until the
"buffer" (the message being sent) is reusable. This means that the
message either has been safely stored in another buffer or has been
successfully received by another process.

e There is generally a maximum allowable buffer size. If the message
exceeds this size, it must be received by the complimentary call (e.gs;
MPI_RECV) before the send function returns. This has the potentialctI
cause processes to hang if the message passing is not handled carefully.

ECA

= SCAI

SuperComputing Applications and Innovation

Debug MPI Applications

The following code is designed to run on exactly two processors. An array is
filled with process numbers. The first half of the array is filled with the local
process number, and the second half of the array is filled with the other
process number. The second halves of the local arrays are filled by message
passing.

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

void main (int argc, char *argv([]) {

int nvals, *array, myid, 1i;

MPI Status status;

MPI Init(&argc, é&argv);

MPI Comm rank (MPI COMM WORLD, é&myid);

nvals = atoi(argvI[l]); CINECA

array = (int *) malloc(nvals*sizeof (int));

= SCAI

SuperComputing Applications and Innovation

Debug MPI Applications

for (1i=0; i<nvals/2; i++);

array[i] = myid;

if (myid==0) {

MPI_Send(array,nvals/Z,MPI_INT,l,l,MPI_COMM_WORLD);

MPI Recv(array+nvals/2,nvals/2,MPI INT,1,1,MPI COMM WORLD, &status
)7}

else

{

MPI Send(array,nvals/2,MPI INT,0,1,MPI COMM WORLD) ;
MPI Recv(array+nvals/2,nvals/2,MPI INT,0,1,MPI COMM WORLD, &stat

us) ; }
printf ("myid=%d:array[nvals-1]=%dn",myid, array[nvals-1]);
MPI Finalize();

}
CINECA

o SCAl

SuperComputing Applicatio

Debug MPI Applications

* Compile: mpicc -g -o hung comm hung comm.c
* Run:
— Array dimension: 100
* mpirun —np 2 ./hung comm 100
 myid = 0: array[nvals-1] =
 myid = 1: array[nvals-1] =
— Array dimension: 1000
* mpirun —np 2 ./hung comm 1000
* myid =0: array[nvals-1] =
* myid =1:array[nvals-1] =
— Array dimension: 10000
* mpirun -np 2 ./hung comm 10000
e With array dimension equal to 10000 the program hangs!

CINECA

o SCAl

SuperComputing Applicatio

Debug MPI Applications

Debugging
* Run GDB with mpirun:

— mpilrun -np 2 xterm -e gdb hung proc

* When the two separate windows, containing the “GDB” instances, are
ready, visualize the source with 1ist and insert a breakpoint at line 19
with break 19 where there is the first MPI_Send call.

* Let’s give the message dimension with set args 1000000

e Run the code with the comand run on the two shells, which
continues until line 19 is hit.

e Step line by line on the two shells using next

(gdb) next
20 MPI Send(array,nvals/2,MPI INT,1,1,MPI COMM WORLD) ;
(gdb) next CINECA

23 MPI_ Send(array,nvals/2,MPI_INT,0,1,MPI COMM WORLD) ;

o SCAl

SuperComputing Applicatio

Debug MPI Applications

* The second next doesn’t produce any output underlying that the execution is
halted in the calls to MPI Send waiting for the corresponding MPI Recv.

 Let’s type “Ctrl c” to exit from hanging. Using where we receive some
information about where the program stopped. Among them there is the

following message that indicates that the process is waiting for the completion
of the send:

* #4 ompi request wait completion (buf=0x2aaab4801010,
count=500000, datatype=0xfb8, dst=0, tag=1l,
sendmode=MCA PML BASE SEND STANDARD, comm=0x60c180)
at ../../../../ompi/request/request.h:375

e #7 0x0000000000401fee in main (argc=2,
argv=0x7fffffffd2a8) at hung proc.c:23

e Solution:

— Reverse the two calls MPI Sendand MPI Recv atlines 23 and 24.
CINECA

