
MPI introduction
- exercises -

Compiling notes

To compile programs that make use of MPI library:

mpif90/mpicc/mpiCC -o <executable> <file 1> <file 2> … <file n>

Where: <file n> - program source files

 <executable> - executable file

To start parallel execution on one node only:

mpirun -np <processor_number> <executable> <exe_params>

To start parallel execution on many nodes:

mpirun -np <processor_number> -machinefile <node_list_file> \

 <executable> <exe_params>

Hello world! (Fortran)
As an ice breaking activity try to compile and run the Hello program, either in C or in
Fortran.

The most important lines in Fortran code are emphasized:

PROGRAM HelloWorld
 INCLUDE 'mpif.h'
 INTEGER my_rank, p
 INTEGER source, dest, tag
 INTEGER ierr, status(MPI_STATUS_SIZE)
 . . .
 CALL MPI_Init(ierr)
 CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierr)
 CALL MPI_Comm_size(MPI_COMM_WORLD, p, ierr)

 WRITE(*,FMT="(A,I)") “Hello world from process ”, my_rank

 CALL MPI_Finalize(ierr)
END PROGRAM HelloWorld

Hello world! (C/C++)

The most important lines in C code are emphasized:

#include "mpi.h"

int main(int argc, char *argv[])
{
 int my_rank, numprocs;
 int dest, tag, source;
 MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 printf(“Hello world from process %d\n",my_rank);

 MPI_Finalize();
 return 0;
}

Hello world! (output)

If the program is executed with one process the output is:

Hello world from process 0

If the program is executed with four processes the output is:

Hello world from process 0

Hello world from process 1

Hello world from process 2

Hello world from process 3

E1 – exercise – ping-pong

ping-pong is perhaps the simplest example of point to point
communication.

In a two process execution of a ping-pong program the process 0
sends a message to process 1 and this sends it back to process 0.
This could be easily generalized in a round robin fashion if more
than two processes are engaged.

Try modifying the Hello World example in order of realizing
round robin communications.

E2 – example – Pi by quadrature

E2 – example – Pi by quadrature

Thus the program may be sketched this way:

• (if my_rank == 0) get number of intervals for quadrature

• Broadcast number of intervals to all the processes

• Assign the intervals to the processes (they should not overlap)

• Sum function values in the centre of each interval

• Divide by interval range and multiply by 4

Source code: Pi_integral

